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Abstract
Per- and poly-fluoroalkyl substances (PFAS) represent an extensive and expanding group of chemicals considered 
contaminants of emerging concern (CECs). These elements have found widespread usage in diverse industrial and 
commercial sectors since the 1940s. The advancement of modern analytical methods in developed countries has 
significantly contributed to the increased research on the environmental behavior and risk assessment of PFAS. 
However, what about developing countries? Over time, the focus on PFAS has expanded beyond legacy PFAS to 
encompass novel ones. In this perspective, we focus on analyzing the existing knowledge concerning PFAS in the 
marine environment, aiming to shed light on the limited research pertaining to per- and polyfluoroalkyl pollution in 
the marine ecosystems of Africa.
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INTRODUCTION
Per- and polyfluoroalkyl substances (PFAS) represent a set of anthropogenic organic substances, 
comprising more than 8,000 distinct acknowledged structures listed in the Toxic Substances Control Act 
Inventory[1,2]. These compounds are employed in various utilizations in commercial and industrial sectors 
dating back to the 1940s[2]. Owing to their extensive use in numerous consumer items such as food 
packaging and water-resistant textiles, coatings, and firefighting foams, these elements are now pervasive 
throughout the environment[3,4]. Referred to as the “forever chemicals”, PFAS exhibit remarkable persistence 
in the environment and resist degradation due to the exceptional durability of their carbon-fluorine bonds, 
making their breakdown particularly challenging. PFAS [e.g., perfluorooctane sulfonate (PFOS) or 
perfluorooctanoic acid (PFOA)] emissions into the environment originate from multiple sources, including 
intentional manufacturing, utilization, and disposal processes[5-7]. Furthermore, PFAS can be present as 
impurities in substances emitted into the environment or can result from the degradation of precursor 
substances through abiotic or biotic pathways[8].

While the focus on PFAS has primarily revolved around their negative effects on human health, there is an 
increasing awareness of their bioaccumulation in biota, particularly in marine organisms, owing to the 
growing number of studies highlighting their presence in these ecosystems[9]. PFAS have demonstrated the 
capability to disrupt various physiological functions and biochemical routes that are conserved among 
different phyla, raising concerns regarding their impacts on marine biota[2,9]. To achieve improved risk 
management objectives concerning PFAS occurrence, bioaccumulation, and biomagnification, it is 
imperative to further advance our understanding of uptake and elimination kinetics[2]. This necessitates 
obtaining additional information and data on these crucial processes from several parts of the world, 
including developing countries.

As of the existing global knowledge concerning PFAS, there is growing concern about their impact on 
marine environments. PFAS, known for their persistence and bioaccumulative properties, have become a 
significant environmental issue worldwide[7,10]. Despite extensive research on PFAS pollution, there remains 
a need to deepen our understanding of their distribution, behavior, and long-term effects on marine 
ecosystems, particularly in developing countries. In light of the current situation, here we attempted to 
answer the question: “What is the position of Africa in the current knowledge about PFAS pollution in 
marine environments?”

CURRENT KNOWLEDGE ABOUT PFAS IN THE MARINE ENVIRONMENT
First, compared with freshwater environments, marine matrices have not attracted significant interest from 
scientists, especially in Africa[11]. According to a recent review by Khan et al., the majority of worldwide 
studies concerning PFAS in the marine environment have primarily focused on water and sediment[2]. 
Limited information is available regarding PFAS bioaccumulation in invertebrates, with most data 
concentrated on crustaceans and mollusks. In fish, PFAS concentrations are commonly recorded in muscle 
tissue or fillet, primarily addressing concerns related to seafood safety. However, some studies have also 
investigated PFAS burdens in whole fish and liver. In the case of seabirds, research on PFAS occurrence and 
bioaccumulation often involves examining levels in eggs, liver, and blood (or plasma). It is recognized that 
marine mammals can bioaccumulate these compounds at significant levels, particularly in hepatic and 
circulatory tissues. Thus, the essential origins of PFAS in the marine environment are land-generated, 
including pesticides, paints, surfactants, textiles, firefighting foams, and fast food packaging, among several 
others. These chemicals are transported from land into the marine environment via the water cycle[4]. Then, 
various ecological phenomena interfere, such as the accumulation in organisms, transfer through food 
chains, and magnification within ecosystems[12].
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Second, the quantification methods of PFAS involved a series of procedures, including preconditioning, 
extraction, clean-up, and concentration before the analytical instrumentation. Hence, liquid 
chromatography (LC) coupled with tandem mass spectrometry (MS/MS) is a widely employed technique 
for PFAS analysis with notable sophistication as well as meticulous calibration and quality control strategies. 
Indeed, this technique provides high sensitivity, excellent selectivity, and considerable precision even in 
complex environmental matrices like seawater and sediment. However, this technique may have limitations 
in detecting all possible PFAS compounds owing to differences in ionization efficiency and fragmentation 
patterns among various PFAS species[13]. LC-MS/MS methods can be technically complex, expensive, and 
require expertise for operation and maintenance, which is the main reason for the limited number of studies 
about PFAS in African and developing countries. Table 1 presents examples of field investigations that 
unveil the presence of PFAS across diverse marine matrices globally, delineating their geographical 
distribution, study matrix, identification methodology, and the range of occurrence.

WHAT IS AFRICA’S POSITION IN THE GLOBAL KNOWLEDGE ABOUT PFAS IN THE 
MARINE ENVIRONMENT?
The studies conducted on PFAS in Africa have predominantly focused on terrestrial aquatic ecosystems, 
primarily rivers, and lakes. Research efforts have been dedicated to understanding the presence, 
distribution, and potential ecological impacts of PFAS compounds in sediment and freshwater, mainly in 
South Africa, Nigeria, and Kenya[31]. Thus, this context forces us to raise relevant questions about the place 
of marine and coastal environments in the global knowledge of PFAS in Africa. To the best of our 
knowledge, the two only marine field studies in Africa were carried out in a lagoon area in the north of 
Tunisia in 2018 and in the Gulf of Guinea in 2022 [Table 1]. The study of Tunisia investigated nine marine 
species (three fish, two crustaceans, and four mollusks) collected from Bizerte lagoon using (LC-MS/MS) 
technique, reporting values between 0.20-2.89 ng/g dry weight[29]. The second study utilized the same 
technique to quantify the amount of PFAS in four fishery products along the Gulf of Guinea, revealing 
values between 91 and 1,510 pg/g wet weight[30]. In a separate investigation, the assessment of PFAS was 
conducted on marine shellfish farmed in land-based facilities in South Africa. The PFAS concentrations 
(expressed in ng/g wet weight) varied between 0.12 and 0.49 in abalone, 4.83-6.43 in mussels, 0.64-0.66 in 
oysters, and 0.22 ng/g ww in lobsters using UHPLC-MS/MS method[32]. Few other studies included some 
sampling points in estuaries in global surveys of terrestrial water bodies[11,13,33].

Unfortunately, the lack of studies in Africa is a significant concern. While PFAS pollution has been 
extensively researched in various parts of the world, there remains a notable gap in our understanding of the 
presence and impact of these chemicals on this continent. This group of human-made chemicals is widely 
used in various industrial and consumer products in Africa for their water and grease-resistance 
properties[34,35]. However, their persistent nature and potential adverse health effects have raised global 
concerns[36-38] that must not exclude African countries. Despite the growing recognition of PFAS as 
emerging contaminants, research efforts have predominantly focused on regions such as North America, 
Europe, and parts of Asia[18].

With its diverse coastal and marine ecosystems and substantial population relying on fisheries, the African 
continent should not be overlooked in PFAS research. Marine areas in Africa face unique environmental 
challenges, including industrial activities, burgeoning urbanization, climate change vulnerability, threatened 
biodiversity hotspots, and increasing plastic waste generation[39-41]. These factors can contribute to the 
release and accumulation of PFAS in coastal waters, sediments, and organisms, potentially posing risks to 
both human and ecological health. By expanding studies to include African coasts and marine habitats, 
researchers can gain valuable insights into the presence, distribution, and potential impacts of PFAS in new 
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Table 1. Examples of field investigations reporting PFAS are available for various marine matrices worldwide, with only two studies 
conducted in African marine environments

Country Location Matrix Identification technique Range (min - max) Ref.

Seawater 
Coastal sediment

UHPLC system coupled to 
mass spectrometer

1.1-113 ng/L (seawater) 
0.1-8.4 ng/g (sediment)

[14]US Florida

Coastal waterway UHPLC-MS/MS 2.47-4.69 ng/L [15]

Sweden 
Denmark 
Germany

Baltic sea Several marine 
organisms 
such as the blue mussel 
(Mytilus edulis), 
the Atlantic herring 
(Clupea harengus), 
and the grey seal 
(Halichoerus grypus)

LC-MS/MS 1.1-450 ng/g per wet weight [16]

Germany Seaside Büsum village Coastal atmosphere GC-MS 8.6-155 pg/m3 [17]

Antarctica Ross island Blood of Weddell seal 
(Leptonychotes weddellii)

UHPLC-MS/MS 0.08-0.23 ng/mL [18]

Livingston Island Seawater 
Coastal snow 
Plankton

UFLC-MS/MS coupled to 
a triple quadrupole mass 
spectrometer

94-420 pg/L (seawater) 
760-3,600 pg/L (snow) 
3.1-16 ng/g dry weight 
(plankton)

[19]

Estuaries and Delta of 
Pearl River region

Coastal water HPLC-MS/MS 0.003-2.09 items/m3 
of water

[20
]

Bohai sea Marine mollusks such as 
Chlamys farreri, 
Crassostrea 
talienwhanensis, 
Meretrix meretrix, 
and Mytilus edulis

Liquid chromatography column 
equipped with a tandem mass 
spectrometry system

2.51-1,351 ng/g dry weight [21]

China

South China sea Seawater 
Coastal sediment

Ultra-performance liquid 
chromatograph interfaced 
with mass spectrometer

38-1,015 pg/L (seawater) 
7.5-84.2 pg/g dry weight 
(sediment)

[22]

Australia Estuary of Werribee 
River

Coastal water HPLC-MS/MS 22-187 ng/L [23]

Bay of Marseille Coastal water LC-QTOF-MS 0.11-9 ng/L [24]France

Several locations in 
the English channel, 
the Mediterranean sea, 
and the Atlantic ocean

Mussel (Mytilus edulis,
Mytilus galloprovincialis)
Oyster (Crassostrea gigas)

Acquity ultra performance liquid 
chromatograph coupled to a triple 
quadrupole mass spectrometer

0.007-0.549 ng/g wet weight [25]

Chile Central coast Coastal litter HPLC-MS/MS 279-1,211 pg/g [26]

Saudi Arabia Red sea Seawater QqQ equipped with 
the  AJS-ESI

0-956 ng/L [27]

Spain Coastal area of 
Ebro Delta

Coastal water 
Coastal sediment

TQ-MS 0-2,775 ng/L (water) 
0-22.6 ng/g (sediment)

[28]

Tunisia 
(Africa)

Bizerte lagoon Seafood UPLC system coupled 
to a LC-MS/MS

0.20-2.89 ng/g dry weight [29]

Guinea 
(Africa)

Golf of Guinea Fishery products LC-MS/MS 91-1,510 pg/g wet weight [30]

PFAS: Per- and poly-fluoroalkyl substances; UHPLC: ultra-high performance liquid chromatography; UHPLC-MS/MS: ultra-high-pressure liquid 
chromatography coupled with tandem mass spectrometry; LC-MS/MS: liquid chromatography and tandem mass spectrometry; GC-MS: gas 
chromatography coupled with mass spectrometer; UFLC-MS/MS: ultra-fast liquid chromatography-tandem mass spectrometry; HPLC-MS/MS: 
high-performance liquid chromatography coupled with tandem mass spectrometry; LC-QTOF-MS: liquid chromatography quadrupole time-of-
flight mass spectrometry; QqQ: triple quadrupole tandem mass spectrometer; AJS-ESI: jet stream electrospray ionization; TQ-MS: triple 
quadrupole mass spectrometer; UPLC: ultra-performance liquid chromatography.

environmental conditions. It is essential to evaluate the levels of contamination, identify potential sources, 
and understand the pathways through which PFAS enter the African marine environment. Moreover, the 
pervasive presence of PFAS poses a significant risk to marine products intended for export, particularly in 
the context of food safety. Investigations into the accumulation of PFAS in marine biota are crucial to 
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understanding the potential hazards associated with seafood consumption by human populations. As these 
substances accumulate in marine life, they can find their way into the food supply chain, posing risks to 
consumers both domestically and internationally. Therefore, comprehensive studies addressing the 
bioaccumulation of PFAS in marine species are indispensable for safeguarding the integrity of exported 
marine products and ensuring global food safety standards.

CONCLUSION
Overall, the existing literature on PFAS in the marine environment, particularly in Africa, reveals a 
noticeable lack of interest and a limited number of studies conducted in this context. The coasts and marine 
habitats of Africa remain relatively unexplored and understudied. This knowledge gap calls for urgent 
attention and increased research efforts to understand the potential presence, distribution, and ecological 
impacts of PFAS chemicals. Addressing the lack of studies on PFAS in the marine environment of Africa 
requires collaborative efforts among researchers, environmental agencies, and policymakers. It is imperative 
to foster more robust international collaborations and partnerships with leading scientists in the field from 
across the world, such as China, the USA, and Europe. Leveraging the expertise and experience of these 
prominent researchers can facilitate knowledge transfer, exchange of methodologies, and establishment of 
standardized protocols for PFAS studies in marine environments. Such initiatives can help generate region-
specific data, raise awareness about PFAS pollution, and guide the development of appropriate mitigation 
and regulatory measures. By shedding light on the presence and potential risks of PFAS in African marine 
environments, we can work towards safeguarding both the environment and the well-being of the 
communities relying on these vital ecosystems.
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