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Abstract
Aqueous zinc batteries that utilize metallic Zn as the anode are considered as a promising alternative to lithium-ion 
batteries due to their intrinsic high safety, low cost, and relatively high energy density. Compared to inorganic 
cathodes, organic cathodes exhibit several advantages including high theoretical capacity, tunable structure, 
abundant sources, and environmental friendliness. In this paper, we summarize the recent progress in organic 
cathodes for aqueous zinc-organic batteries, covering the working mechanisms of three typical types of organic 
cathodes, their electrochemical performance, and common strategies for further improvement. Finally, we discuss 
the current challenges and possible future research directions. We hope this review will offer useful information for 
exploring high-performance organic cathodes.
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INTRODUCTION
Green energy and new energy storage technologies are vital for addressing the environmental challenges 
and achieving the carbon neutrality goal. Since Sony introduced the first commercial lithium-ion batteries 
(LIBs), they have been widely adopted across various fields owing to their high efficiency and decent 
lifespan[1,2]. However, they also have some drawbacks, such as the safety risks, limited lithium reserves and 
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high cost[3,4]. As a promising alternative to LIBs, aqueous zinc-ion batteries (AZIBs) have garnered 
significant interest owing to their excellent theoretical capacity (820 mAh·g-1), appropriate redox potential 
(-0.76 V vs. standard hydrogen electrode), inherent safety and low cost and demonstrated considerable 
potential for applications in stationary energy storage systems[5-9].

Cathode materials play a crucial role in the performance of AZIBs. Currently, the main types of inorganic 
cathode materials are V/Mn/Co/Mo-based compounds[10-13] and Prussian blue analogs[14,15]. However, these 
materials often suffer from slow kinetics and structural instability due to the dissolution and/or lattice 
evolution during the electrochemical process[16,17]. Moreover, some inorganic materials contain harmful and 
toxic elements that would cause negative environmental impacts. On the other hand, organic materials are 
more suitable for AZIB cathodes, benefiting from their high theoretical capacity, environmental 
friendliness, designable structure, and wide availability[18].

As research on AZIBs advances, various organic materials have been employed to develop aqueous zinc-
organic batteries (AZOBs)[19-25]. However, several challenges, including the low conductivity and stability of 
organic materials and the unclear charge storage mechanisms, impede their further development. There is a 
pressing need to consolidate and delve deeper insights into these issues to devise effective solutions. In this 
review, we present a comprehensive overview and future outlook on AZOBs. We explore their history and 
mechanisms, the recent advancements in organic cathode, and strategies for enhancing their 
electrochemical performance. Lastly, we discuss the challenges facing organic cathodes and potential future 
directions.

DEVELOPMENT HISTORY AND ELECTROCHEMICAL MECHANISMS
Development history
AZOBs are composed of anodes, electrolytes, separators, and organic cathodes. The anode is mostly 
commercial high purity zinc foil. The electrolyte is usually a weakly acidic or neutral aqueous solution 
containing soluble zinc salts. The separator is generally a glass microfiber filter that separates the anode and 
cathode and prevents short circuits. The organic cathode is generally prepared by mixing organic materials 
with active functional groups, conductive agents (e.g., acetylene black and ketjen black), and binders (e.g., 
polyvinylidene fluoride and carboxymethylcellulose) in different proportions. The organic materials, which 
are abundant on earth and consist mainly of H, C, N, O, and other elements such as F and S, can be 
synthesized through biomass or artificial synthesis[26].

The organic cathode materials almost determine the electrochemical properties of AZOBs. In the past few 
decades, substantial advancements have been achieved in investigating organic cathode materials for 
AZOBs [Figure 1]. In 1985, Macdiarmid et al. first used organics (polyaniline) as a cathode for AZIBs[27]. 
Since then, researchers have reported various organic compounds with different redox-active groups as 
cathodes for AZOBs, such as nitronyl nitroxides[28], organosulfur compounds[29], conjugated carbonyl 
compounds[30], triphenylamine derivatives[31], imine compounds[32], dual redox groups compounds[33], 
nitroaromatics[34], and azobenzene compounds[35]. Despite these impressive achievements, designing suitable 
organic materials to construct AZOBs with high capacity, decent rate performance, and excellent long 
lifespan remains highly challenging.

Electrochemical mechanisms
Organic cathode materials of AZOBs can be categorized as p-, n-, and bipolar-type materials based on the 
change of the free radical state of redox-active groups[24,36,37]. Figure 2 presents the corresponding redox 
mechanisms. For p-type organics (e.g., nitronyl nitroxides, triphenylamine derivatives, and organosulfur 
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Figure 1. The development of organic cathode materials for AZOBs. AZOBs: Aqueous zinc-organic batteries.

Figure 2. Redox mechanisms of the three types of organics.

compounds), they typically lose electrons and get oxidized; therefore, they must bind to anions in the 
electrolyte (e.g., Cl-, BF4

-, SO4
2-, ClO4

-, CF3SO3
- or CH3COO-) to remain electric neutrality. On the contrary, 

n-type organics (such as conjugated carbonyl compounds, imine, and azo compounds) acquire electrons 
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and convert to anions, which can then be combined with cations (e.g., Zn2+ or H+) to maintain charge 
balance. Bipolar-type organics exhibit both p- and n-type properties and can be either reduced or oxidized 
within specific voltage windows[38]. In general, p-type organics exhibit low capacities due to limited redox-
active molecular structures, whereas n-type organics often possess high specific capacities[21].

Based on the different redox mechanisms, four ion storage mechanisms have been proposed for zinc-
organic batteries, i.e., Zn2+ storage, H+ storage, co-storage of H+ and Zn2+, and anion storage [Figure 3]. The 
most reported mechanism is the Zn2+ storage. Reversible uptake/removal of Zn2+ takes place during the 
charging and discharging by coordination with the active center of organics. For example, the active center 
(C=O) of pyrene-4,5,9,10-tetraone (PTO) can obtain electrons during discharge and convert to anions 
(-C-O-). At the same time, the Zn anode is oxidized to Zn2+, combining with -C-O- of the PTO cathode. On 
the contrary, -C-O- loses electrons and is oxidized to the original C=O during charging, while Zn2+ will be 
released and reduced on the Zn anode[39]. In addition, the hydrated Zn2+ storage was also confirmed in 
triangular macrocyclic phenanthrenequinone (PQ-Δ) cathode. During the discharge process, PQ-Δ can 
capture hydrated Zn2+, resulting in a reduced de-solvation energy penalty. The hydrated Zn2+ ions return to 
the electrolyte during the subsequent charge process[40].

The unique redox mechanism of organic electrodes makes it possible to accommodate various carriers. 
Compared with Zn2+, H+ with a smaller ion radius and lower atomic mass is easier to be inserted into 
organic cathode materials. Tie et al. first observed the reversible uptake/removal of H+ in diquinoxalino[2,3-
a:2’,3’-c]phenazine (HATN) cathode[32]. During the discharge process, the C=N functional group in HATN 
transforms into -C-N-, combining with H+ generated by the decomposition of water in electrolyte. 
Conversely, -C-N- is reversibly oxidized to C=N during charging and H+ is removed from the HATN 
cathode. The rapid kinetics of H+ uptake/removal endow organic electrodes with excellent electrochemical 
performance[41,42].

Although the uptake/removal of H+ is relatively fast, Zn2+ may also participate in the storage process 
together since it has a much higher concentration than H+ in the electrolyte. Actually, the phenomenon of 
Zn2+/H+ co-storage has already been reported in many organic compounds such as dibenzo[b,i]thianthrene-
5,7,12,14-tetraone (DTT)[43], diquinoxalino[2,3-a:2′,3′-c]phenazine-2,8,14-tricarbonitrile (HATN-3CN)[44], 
and hexaazatrinaphthalene-quione (HATNQ)[45]. For example, Wang et al. confirmed co-storage 
phenomenon of Zn2+/H+ in the DTT cathode[43]. Both experiments and theoretical calculations have proved 
that Zn2+ and H+ can insert this cathode to form DTT2(H+)4(Zn2+), improving its stability.

The anion storage mechanism usually occurs in p-type organics, which typically first lose electrons and 
yield cations, which then bind to anions from the electrolyte. For instance, the nitroxyl radicals of 
poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl vinylether) (PTVE) lose electrons and are oxidized to -N+=O 
during charging, enabling them to bind with absorbed anions (Cl-) from electrolyte. In the process of 
subsequent discharge, -N+=O reversibly transforms back to nitroxyl radicals, and the anion is removed from 
the PTVE and released to the electrolyte[28].

DESIGN OF ORGANIC CATHODES
In the above section, we have discussed the working mechanisms of distinct types of organic cathodes. In 
general, the molecular structure plays an essential role in determining their redox/ion storage mechanism 
and, thus, the electrochemical performance. Next, we will discuss the properties and applications of these 
organic cathodes in AZOBs.
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Figure 3. Schematic diagram of four different types of ion storage mechanisms for AZOBs during discharging and charging. AZOBs: 
Aqueous zinc-organic batteries.

P-type organic cathodes
Nitronyl nitroxides
Nitronyl nitroxides typically show fast redox kinetics and high redox voltage[46]. In 2009, Koshika et al. 
investigated PTVE with nitroxyl radicals as a cathode for AZOBs[46], which possessed a voltage plateau of 
1.7 V and a cycling life of over 500 cycles under 60 C [Figure 4A]. Subsequently, Luo et al. found that the 
anion types can affect the working voltage of PTVE cathodes[47]. Benefiting from the strong electrostatic 
interaction between SO4

2- and nitroxyl radicals, the working potential of Zn//PTVE batteries with ZnSO4 
electrolytes can reach up to 1.77 V [Figure 4B], which is higher than that with Zn(ClO4)2 electrolytes 
(1.53 V) and Zn(CF3SO3)2 (1.58 V). However, because high voltage would inevitably lead to electrolyte 
decomposition, the cycling lifespan of Zn//PTVE batteries with ZnSO4 electrolytes was comparatively poor 
with a 21.9% capacity retention over 1,000 cycles under 1 A·g-1. It should be noted that nitronyl nitroxides 
generally suffer from the dissolution of nitroxyl radicals and exhibit unsatisfactory stability. To solve this 
problem, Winsberg et al. introduced different polymer frameworks to stabilize nitroxyl radicals by 
synthesizing copolymers of 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO)[48]. The cathode delivered a 
high voltage window of 2 V and, more importantly, a 78.6% capacity retention after 1,000 cycles 
[Figure 4C].

Organosulfur compounds
Organosulfur compounds are also p-type organics, with sulfur as the active site. In 1998, C´iric´-
Marjanovic´ et al. prepared a rechargeable zinc battery based on polythiophene (PT) cathode[49]. In non-
aqueous electrolytes, PT//Zn batteries can provide a discharge voltage of 1.25 V and a Coulombic efficiency 
(CE) of over 95% at low current densities (10-50 µA·cm-2). However, as the current density increased, the CE 
of PT//Zn batteries significantly decreased. Poly(3,4-ethylenedioxythiophene) (PEDOT) is another common 
conjugated sulfide compound that can be synthesized using PT. In 2015, Simons et al. designed 
rechargeable PEDOT//Zn batteries using imidazolium-based ionic liquid as the electrolytes[50]. The cyclic 
voltammetry (CV) curves are almost identical under various cycles [Figure 4D), indicating a good structural 
reversibility of the PEDOT cathode. Subsequently, Häupler et al. prepared a poly(acetylene)-based polymer 
cathode with 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene moieties (PexTTF) for AZOBs[29]. 
Thanks to the conjugated skeleton that improves the electron transfer, the battery delivered a remarkable 
rate capacity (111 mAh·g-1 at 120 C). Additionally, it provided an 81 mAh·g-1 capacity after 9,400 cycles 
under 10 C, with a loss of approximately 14% [Figure 4E]. Recently, Cui et al. reported three organic sulfur 
compounds (thianthrene, phenoxathiine and phenothiazine) as cathodes for zinc metal batteries[51]. They 
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Figure 4. (A) Cycling performance of PTVE cathode. Reproduced with permission[46]. Copyright 2009, Wiley Online Library; (B) CV 
profiles of Zn//PTVE battery based on 1M ZnSO4 electrolyte. Reproduced with permission[47]. Copyright 2020, Wiley Online Library; 
(C) Cycling performance of TEMPO cathode. Reproduced with permission[48]. Copyright 2016, Wiley Online Library; (D) CV profiles of 
PEDOT cathode. Reproduced with permission[50]. Copyright 2015, Wiley Online Library; (E) Rate capability of PexTTF. Reproduced with 
permission[29]. Copyright 2016, Springer Nature; (F) CV curves of thianthrene cathode. Reproduced with permission[51]. Copyright 2022, 
Wiley Online Library; (G) Diagram of the function of CNC membrane. Reproduced with permission[31]. Copyright 2019, American 
Chemical Society; (H) Synthesis route of m-PTPA. Reproduced with permission[52]. Copyright 2021, Wiley Online Library; (I) The relative 
solubility of DMPZ in different electrolyte solvents. Reproduced with permission[53]. Copyright 2022, American Chemical Society. PTVE: 
Poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl vinylether); CV: cyclic voltammetry; TEMPO: 2,2,6,6-tetramethylpiperidinyl-N-oxyl; PEDOT: 
poly(3,4-ethylenedioxythiophene); PexTTF: 9,10-di(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene moieties; CNC: cellulose nanocrystal; 
m-PTPA: porous polytriphenylamine; DMPZ: 5,10-dihydro-5,10-dimethylphenazine.

found that electron cloud density is a key factor influencing the voltage of organics. Organics with a 
uniform distribution of electron clouds are more likely to lose electrons, leading to an increase in electron 
loss energy, which, in turn, provides a relatively high voltage. The discharge voltage of thianthrene with 
symmetrically distributed electron clouds can reach 1.5 V in a solution of ethyl methyl carbonate with 1M 
zinc trifluoromethanesulfonate [Zn(OTF)2] as electrolyte, which is higher than that of phenoxathiine and 
phenothiazine. The operating voltage can be further increased by electrolyte design by manipulating the 
anionic de-solvation energy. In Zn(OTF)2 electrolyte using acetonitrile as the solvent, the voltage of the 
thianthrene cathode can reach 1.7 V [Figure 4F].

Triphenylamine derivatives
Triphenylamine derivatives with strongly electron-donating N atoms can readily oxidize to form positively 
charged cationic radicals[22]. For example, the tertiary nitrogen of 1,4 bis(diphenylamino)benzene (BDB) 
molecule undergoes reversible oxidation/reduction in two steps, while anions are inserted/released from 
high concentration aqueous electrolytes with high oxidative stability[31]. However, the BDB discharge 
products are severely dissolved in the electrolyte, leading to a gradual loss of capacity during cycling. Glatz 
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et al. introduced an additional cellulose membrane and a glass fiber separator to limit the dissolution of 
BDB discharged products [Figure 4G]. The BDB cathode combined with cellulose nanocrystal (CNC) 
membrane can maintain an ~82% capacity retention over 500 cycles at 0.39 A·g-1 and exhibit decent cycling 
life. To further enhance the stability of triphenylamine derivatives, Zhang et al. prepared a porous 
polytriphenylamine (m-PTPA) as the cathode of AZOBs [Figure 4H][52]. The m-PTPA with insoluble 
polymerization skeleton and specific 3D covalent organic framework exhibited a decent electrochemical 
stability (an 87.6% retention over 1,000 cycles under 16 A·g-1). In addition to adjusting the molecular 
structure, electrolyte design can also improve the stability of triphenylamine derivatives. Lee et al. found 
that the solubility of 5,10-dihydro-5,10-dimethylphenazine (DMPZ) in water is significantly lower than that 
in most non-proton solvents [Figure 4I][53]. A DMPZ cathode can maintain an ~81% capacity retention over 
1,000 cycles at 0.255 A·g-1 in 17 m NaClO4 aqueous electrolyte, which proves the decent cycling stability.

Conductive polymers
Conductive polymers (CPs) have high conductivities and highly delocalized electron clouds, which would 
contribute to rapid redox kinetics[22,54]. Various polymers, such as polypyrrole (PPy)[55], polyindole (PIn)[56,57], 
and poly(5-cyanoindole)[58], have been reported as cathodes for AZOBs [Figure 5A]. Among them, PPy has 
been extensively explored benefiting from its high redox reversibility, non-toxicity, and decent conductivity. 
Wang et al. prepared the Zn//PPy cell based on PPy cathodes and obtained a capacity of 123 mAh·g-1 at 
1.9 A·g-1 [Figure 5B][55]. PIn and its derivatives also have high conductivities. Cai et al. synthesized PIn as the 
cathode for AZOBs, which displayed a capacity of about 80-60 mAh·g-1 at 200-1,000 A·m-2, demonstrating a 
good rate capability[57]. Subsequently, they used poly(5-cyanoindole) fibers as the cathode of AZOBs[58]. Zn//
poly(5-cyanoindole) cell showed a voltage of 2.0 V and the highest discharge capacity (107 mAh·g-1) at 0.2 C 
[Figure 5C], much higher than that of Zn//PIn batteries (80 mAh·g-1).

In summary, p-type organic cathodes generally exhibit high redox potentials, which can be attributed to the 
nature of their redox reactions. In p-type materials, the redox reactions involve the removal of electrons 
from the highest occupied molecular orbital (HOMO) or single occupied molecular orbital (SOMO) during 
oxidation[59]. This process typically results in higher redox potentials compared to n-type materials (which 
will be discussed later). However, high voltages inevitably lead to the decomposition of aqueous electrolytes, 
which results in poor cycling performance. Using organic electrolytes can effectively solve this problem[51,60], 
but it suffers from safety hazards and high costs. Introducing electrolyte additives could be a viable way to 
improve the stability of aqueous electrolytes as their efficacy has already been confirmed in aqueous Zn 
batteries[61,62]. Moreover, some p-type organic cathodes and their discharge products in aqueous electrolytes 
suffer from severe dissolution and thus poor cycling lifespan, which can be improved by electrolyte and 
separator design and the structural optimization through co-polymerization[29,48]. It is worth mentioning that 
most p-type organic cathodes suffer from complex preparation processes and low capacity, which hinder 
their application. In contrast, n-type organic cathodes often possess high capacity, and their preparation is 
relatively simple. Below, we will discuss the latest progress in n-type organic cathodes for AZOBs.

N-type organic cathodes
Conjugated carbonyl compounds
As a typical N-type cathode material, conjugated carbonyl compounds have been widely studied as cathodes 
for AZOBs owing to their good reversibility, diverse structure, and outstanding theoretical capacity 
[Figure 6][30,63-75]. In the process of discharge, the carbonyl group (C=O) obtained electrons and converted to 
enolate (C-O-), accompanied by the insertion of cations (Zn2+ or H+) to maintain charge neutrality. Below, 
we will discuss three typical types of conjugated carbonyl compounds, namely, quinones, ketones and 
imides.
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Figure 5. (A) The molecular structure of p-type conductive polymers, including PPy, PIn and poly(5-cyanoindole); (B) (Dis-)charge 
profiles of Zn//PPy battery under different currents. Reproduced with permission[55]. Copyright 2018, Royal Society of Chemistry; (C) 
Rate capability of the Zn//poly(5-cyanoindole) battery. Reproduced with permission[58]. Copyright 2015, Elsevier. PPy: Polypyrrole.

Zhao et al. explored for the first time various quinone compounds, including 9,10-anthraquinone 
(9,10-AQ), calix[4]quinone (C4Q), 9,10-phenanthrenequinone (9,10-PQ), 1,2-naphthoquinone (1,2-NQ), 
and 1,4-naphthoquinone (1,4-NQ) as cathode materials for AZOBs[30]. Among them, the C4Q exhibits a 
high capacity of 335 mAh·g-1 thanks to the open bowl structure that possesses a small steric hindrance and 
thus can accommodate more Zn2+ [Figure 7A]. However, the discharge product C4Q2x- of C4Q can dissolve 
in the electrolyte, pass through the filter paper, and react with zinc to form byproducts, resulting in poor 
cycling life, which is a common problem for quinone compounds. Multiple strategies have, therefore, been 
proposed to address this issue. For instance, Zhao et al. used a Nafion membrane to prevent anions from 
passing through by utilizing the ionic selectivity of the membrane[30]. As a result, the battery can be operated 
for at least 1,000 cycles under 0.5 A·g-1, with a capacity decay of only 0.015% per cycle. Hybridizing quinone-
based compounds with carbons [such as graphene and carbon nanotubes (CNTs)] is also a common 
method for enhancing stability and improving conductivity[65,76]. Kumankuma-Sarpong et al. investigated 
several composites of naphthoquinone (NQ)-based organics and CNTs for AZOBs[65]. They found that 
during the redox process, the CNT skeleton not only provides electrical and ionic pathways but also 
minimizes the discharge product dissolved. After 1,500 cycles under 0.339 A·g-1, Zn-NQ@CNT batteries can 
also show a capacity of 137.2 mAh·g-1. Additionally, the stability of organic cathodes can be enhanced by 
small molecule polymerization. Sun et al. prepared a poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide) 
(PDBS) as the cathode in AZOBs[69]. The O and S coordination groups exhibit strong electron donor 
properties during discharge and can be used as the coordination arms of Zn2+ [Figure 7B]. Hence, PDBS||Zn 
cell can provide a 79% capacity retention after 2,000 cycles under 2 A·g-1.
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Figure 6. The molecular structure of common carbonyl compounds in AZOBs[30,63-75]. AZOBs: Aqueous zinc-organic batteries; C4Q: 
calix[4]quinone; 9,10-AQ: 9,10-anthraquinone; 1,2-NQ: 1,2-naphthoquinone; 9,10-PQ: 9,10-phenanthrenequinone; PBQS: 
poly(benzoquinonyl sulfide); TABQ: tetraamino-p-benzoquinone; 1,4-NQ: 1,4-naphthoquinone; APh-NQ: 2-[(4-hydroxyphenyl) amino] 
naphthalene-1,4-dione; PTO: pyrene-4,5,9,10-tetraone; NTCDI: 1,4,5,8-naphthalene diimide; PDB: 2,5-dihydroxy-1,4-benzoquinonyl; 
PDBS: poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide); PT: polythiophene; DTT: dibenzo[b,i]thianthrene-5,7,12,14-tetraone; 4S6Q: 
6a,16a-dihydrobenzo[b]naphtho[2′,3′:5,6][1,4]dithiino[2,3-i]thianthrene-5,7,9,14,16,18-hexaone; PQ-Δ: triangular macrocyclic 
phenanthrenequinone; rPOP: redox-active quinone-based porous organic polymer; PTCDA: perylene-3,4,9,10-tetracarboxylic 
dianhydride; HqTp: Hq-2,5-diaminohydroquinone, Tp-1,3,5-triformylphloroglucinol; BT-PTO: benzenetricarboxaldehyde pyrene-4,5,9,10-
tetraone; COF: covalent-organic frameworks.
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Figure 7. (A) The Zn2+ storage mechanism of the C4Q cathode. Reproduced with permission[30]. Copyright 2018, AAAS; (B) The Zn2+ 
storage mechanism of the PDBS-Zn. Reproduced with permission[69]. Copyright 2021, Wiley Online Library; (C) Cycling performance of 
NTCDI cathode. Reproduced with permission[67]. Copyright 2019, Wiley Online Library; (D) Cycling performance of BT-PTO COF 
cathode under 5 A·g-1. Reproduced with permission[75]. Copyright 2022, Wiley Online Library. C4Q: Calix[4]quinone; PDBS: poly(2,5-
dihydroxy-1,4-benzoquinonyl sulfide); NTCDI: 1,4,5,8-naphthalene diimide; BT-PTO: benzenetricarboxaldehyde pyrene-4,5,9,10-
tetraone; COF: covalent-organic frameworks.

Compared with quinone compounds, ketone compounds usually exhibit good stability in electrolytes. For 
instance, PTO cathodes can maintain an ~70% capacity retention after 1,000 cycles under 3 A·g-1, which 
verifies a decent cycling life[39]. Compared with quinones and ketones, nitrogen atoms in imide compounds 
have lone pair electrons, which can improve the storage capacity of Zn2+ by enhancing the redox ability of 
carbonyl groups. Wang et al. prepared 1,4,5,8-naphthalene diimide (NTCDI) as the cathode for AZOBs[67]. 
The large π-conjugated structure makes NTCDI flexible and guarantees its durability during continuous 
discharge and charge, maintaining a 73.7% capacity retention under 1 A·g-1 after 2,000 cycles [Figure 7C]. 
Covalent-organic frameworks (COF) containing carbonyl groups are also popular cathode materials for 
AZOBs. Zheng et al. synthesized the BT-PTO COF cathode using a benzenetricarboxaldehyde (BT) node 
and PTO monomer[75]. Thanks to the ordered channel structure that promotes the ion transfer, the cathode 
provided a prominent cycle lifespan, with a 98.0% capacity retention over 10,000 cycles under 5 A·g-1 
[Figure 7D]. However, the synthesis of COFs is usually complicated and tedious, and the inactive node 
components in these frameworks would increase molecular weight and reduce their theoretical capacity.
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Imine compounds
The active functional group (C=N) of imine compounds can obtain electrons and convert to anions (-C-N-) 
during discharging, accompanied by the insertion of cations (Zn2+ or H+) to maintain charge neutrality. 
Additionally, the presence of N atoms can improve the electron conductivity and increase the redox 
potential[20]. In recent years, imines have shown broad applications in AZOBs [Figure 8][32,44,77-87].

Small organic 2,3-diaminophenazine (DAP) has been widely used as cathode materials for AZOBs. 
However, the amino groups in the molecular structure of DAP increase the possibility of hydration by 
forming hydrogen bonds [Figure 9A], promoting the dissolution in aqueous electrolytes, resulting in poor 
cycling performance (a 29% capacity retention under 0.1 A·g-1 over 200 cycles)[77]. Liang et al. used a CNTs-
modified glass fiber membrane to suppress the dissolution of DAP [Figure 9B] and achieved a decent 
cycling lifespan (an 80% capacity retention over 10,000 cycles under 25.5 A·g-1)[78]. In addition to the 
membrane modification, extending the π-conjugated structure of organics is an effective method to 
suppress dissolution and enhance the electrochemical performance. Tie et al. prepared the HATN with a 
π-conjugated aromatic structure as a cathode for AZOBs[32]. They claimed that the capacity contribution of 
the HATN comes from H+ insertion [Figure 9C]. Thanks to the fast proton uptake kinetics, the Zn-HATN 
batteries delivered an extremely high capacity of 405 mAh·g-1 under 0.1 A·g-1. Moreover, π-conjugated 
structure enhances the π-π intermolecular interactions and inhibits the dissolution in mild electrolytes. 
Therefore, Zn//HATN batteries possessed a super lifespan with a 93.3% capacity retention after 5,000 cycles 
under 5 A·g-1. Introducing electron-withdrawing groups (-CN) into HATN can further promote the 
dispersion of negative charges on N atoms [Figure 9D], stabilizing the reaction intermediates to obtain 
rapid reaction kinetics[44]. Therefore, HATN-3CN displayed an outstanding capacity of 190 mAh·g-1 under 
20 A·g-1. Similarly, introducing electron-withdrawing conjugated groups (-COOH) to obtain 5,6,11,12,17,18-
hexaazatrinaphthylene-2,8,14-tricarboxylic acid (HATTA) cathode also shows excellent rate ability 
(136.1 mAh·g-1 under 25 A·g-1) and superior lifespan (an 84.07% capacity retention after 10,000 cycles under 
25 A·g-1)[79]. Recently, Li et al. prepared a hexaazatrinaphthalene-phenazine (HATN-PNZ) as the cathode 
material of AZOBs[80]. Due to the conjugation elongation of aromatic rings and phenazine, HATN-PNZ 
with large charge delocalization area can effectively transfer electrons in molecules and lead to rapid 
reaction kinetics. Based on this, HATN-PNZ cathodes showed an exceptional rate capability of 144 mAh·g-1 
under 100 A·g-1. Besides, molecular polymerization is also a common method for limiting the dissolution of 
small molecular organics. Zhang et al. developed a poly(o-phenylenediamine) (PoPD) cathode for AZOBs, 
where the Zn2+ reversibly coordinates with adjacent C=N bonds in the PoPD structure [Figure 9E][81]. This 
coordination mechanism sustains a stable conjugated structure (a 66.2% capacity retention under 1 A·g-1 
over 3,000 cycles). COF compounds containing C=N bonds also offer excellent electrochemical properties. 
Wang et al. designed the phenanthroline-COF (PA-COF) through the solvothermal condensation reaction 
between 2, 3, 7, 8-phenazinetetramine and hexaketocyclohexane. It has rich active sites, an electron-rich 
backbone, and abundant pores with sizes of 2-5 nm, which can better promote reversible ion intercalation. 
Therefore, PA-COF can provide a capacity of 247 mAh·g-1 under 0.1 A·g-1, and its capacity decay is only 
0.38% per cycle within 10,000 cycles under 1.0 A·g-1 [Figure 9F][87]. However, only the HATN units in 
PA-COF molecules can host Zn2+, and the components connecting the active groups are inactive, reducing 
the capacity of PA-COF cathode material to a certain extent.

Compounds with dual redox groups
Organic materials with a single redox group (C=O or C=N) have been extensively explored, but their 
specific capacity is usually limited. Designing organic compounds with multiple redox groups can achieve 
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Figure 8. The molecular structures of common imine compounds in AZOBs[32,44,77-87]. AZOBs: Aqueous zinc-organic batteries; PNZ: 
phenazine; DAP: 2,3-diaminophenazine; PoPD: poly(o-phenylenediamine); PTO: pyrene-4,5,9,10-tetraone; HATN: 
hexaazatrinaphthalene; HATN-3CN: diquinoxalino[2,3-a:2′,3′-c]phenazine-2,8,14-tricarbonitrile; HATTA: 5,6,11,12,17,18-
hexaazatrinaphthylene-2,8,14-tricarboxylic acid; HFHATN: hexafluorohexaazatrinaphthylene; HMHATN: hexamethoxy 
hexaazatrinaphthylene; BBQP: benzo[a]benzo[7,8]quinoxalino[2,3-i]phenazine-5,6,8,14,15,17; HA-COF: hexaazatriphenylene-based 
covalent-organic frameworks; PA-COF: phenanthroline covalent-organic frameworks.
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Figure 9. (A) Hydration mechanisms of DAP in aqueous electrolytes. Reproduced with permission[77]. Copyright 2020, Elsevier; (B) 
Schematic diagram of Zn/DAP battery. Reproduced with permission[78]. Copyright 2022, Elsevier; (C) Calculated structural evolution 
and protonation pathway at discharging process of HATN. Reproduced with permission[32]. Copyright 2020, Wiley Online Library; (D) 
Calculated molecular electrostatic potential distribution of HATN-3CN molecule. Reproduced with permission[44]. Copyright 2021, 
Elsevier; (E) Zinc storage mechanism of PoPD. Reproduced with permission[81]. Copyright 2020, Elsevier; (F) (Dis-)charge profiles of 
PA-COF cathode under 1.0 A·g-1. Reproduced with permission[87]. Copyright 2020, American Chemical Society. DAP: 2,3-
diaminophenazine; HATN: diquinoxalino[2,3-a:2’,3’-c]phenazine; HATN-3CN: diquinoxalino[2,3-a:2′,3′-c]phenazine-2,8,14-
tricarbonitrile; PoPD: poly(o-phenylenediamine); PA-COF: phenanthroline covalent-organic frameworks.

higher energy density and working voltage. In recent years, some compounds with dual redox groups (C=O 
and C=N) have recently been developed as cathodes for AZOBs [Figure 10][33,45,86,88-94].

Gao et al. combined the structures of quinone and pyrazine to synthesize a novel organic cathode material 
for AZOBs, named 5,7,12,14-tetraaza-6,13-pentacenequinone (TAPQ)[33]. TAPQ with abundant C=N and 
C=O groups provides a significant reversible specific capacity of 443 mAh·g-1. However, the poor 
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Figure 10. The molecular structures of commonly reported compounds with dual redox groups in AZOBs[33,45,86,88-94]. AZOBs: Aqueous 
zinc-organic batteries; TAPQ: 5,7,12,14-tetraaza-6,13-pentacenequinone; BPD: benzo[b]phenazine-6,11-dione; PTONQ: benzo[i]benzo
[6′,7′]quinoxalino[2′,3′:9,10]phenanthro[4,5-abc]phenazine-5,10,16,21-tetraone; PPPA: poly(phenazine-alt-pyromellitic anhydride); 
DADB: 8,21-dihydronaphtho[2,3-a]naphtha[2′,3′:7,8]quinoxalino[2,3-i]phenazine-5,11,16,22-tetraone; TABQ-PQ: dibenzo [a,c] dibenzo 
[5, 6:7, 8] quinoxalino [2, 3-i] phenazine-10, 21-dione; HATNQ: hexaazatrinaphthalene-quione; TTPQ: poly(triazine-5,7,12,14-tetraaza-
6,13-pentacenequinone); HAQ-COF: quinone-functionalized covalent-organic frameworks.

reversibility of excessive H+ insertion leads to the collapse of TAPQ cathode structure and unsatisfactory 
cycling lifespan in 0.1-1.6 V [Figure 11A]. Subsequently, Wang et al. enhanced the cycling lifespan of TAPQ 
by polymerization[93]. They synthesized poly(triazine-5,7,12,14-tetraaza-6,13-pentacenequinone) (TTPQ) 
based on TAPQ monomers as cathodes for AZOBs [Figure 11B]. The TTPQ provided a decent cycle 
stability, with an ~94% capacity retention under 0.5 A·g-1 over 250 cycles. Recently, Li et al. prepared a 
hydrogen-bonded organic framework, benzo[a]benzo[7,8]quinoxalino[2,3-i]phenazine-5,6,8,14,15,17-
hexane (BBQPH), as the cathode for AZOBs[95]. The intermolecular hydrogen bonding enhances the 
structural stability of BBQPH, and the abundant C=N and C=O groups trigger multi-electron redox 
chemistry with super delocalization. Therefore, BBQPH cathodes demonstrated a high reversible capacity of 
498.6 mAh·g-1 and a high energy density of 355 Wh·kg-1 under 0.2 A·g-1. Similarly, Chen et al. designed 
HATNQ as cathode material for AZOBs. The two-dimensional layered supramolecular structure of 
HATNQ is conducive to rapid charge transfer and ion transport [Figure 11C]. Compared with HATN, the 
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Figure 11. (A) Cyclic performance of TAPQ cathode under 0.05 A·g-1. Reproduced with permission[33]. Copyright 2021, Elsevier; (B) 
Schematic diagram of Zn//TTPQ battery. Reproduced with permission[93]. Copyright 2022, Royal Society of Chemistry; (C) Diagram of 
two-dimensional layered supramolecular structure of HATNQ. (D) The cyclic voltammetry curves of HATN and HATNQ at 0.2 mV·s-1; 
(E) (Dis-)charge profiles of the HATNQ cathode at 0.2 A·g-1. Reproduced with permission[45]. Copyright 2022, Wiley Online Library; (F) 
Synthesis route of HAQ-COF and HA-COF; (Dis-)charge profiles of HAQ-COF (G) and HA-COF (H) cathode under 0.1 A·g-1. 
Reproduced with permission[86]. Copyright 2021, Wiley Online Library. TAPQ: 5,7,12,14-tetraaza-6,13-pentacenequinone; TTPQ: 
poly(triazine-5,7,12,14-tetraaza-6,13-pentacenequinone);  HATN: diquinoxalino[2,3-a:2’ ,3’-c]phenazine; HATNQ: 
hexaazatrinaphthalene-quione; HAQ-COF: quinone-functionalized covalent-organic frameworks; HA-COF: hexaazatriphenylene-based 
covalent-organic frameworks.

HATNQ electrode had a lower polarization and higher operating voltage [Figure 11D][45]. Impressively, the 
HATNQ cathode displayed a magnificent capacity of 482.5 mAh·g-1 under 0.2 A·g-1 [Figure 11E]. In 
addition, introducing additional redox groups can increase the capacity of COF cathodes. For example, 
Wang et al. obtained quinone-functionalized COF (HAQ-COF) by introducing quinone groups to replace 
the inactive components in hexaazatriphenylene-based COF (HA-COF), significantly improving their 
electrochemical performance[86]. As presented in Figure 11F, HA-COF and HAQ-COF were prepared 
through solvent thermal condensation of 1,2,4,5-tetraaminobenzene and 1,2,4,5-tetramino-benzoquinone 
with hexaketocyclohexane octahydrate, respectively. Compared with HA-COF, HAQ-COF showed better 
uptake ability for Zn2+ and H+ due to the existence of quinone groups. Therefore, HAQ-COF delivered a 
superb capacity of 344 mAh·g-1 under 0.1 A·g-1 [Figure 11G], higher than that of HA-COF (195 mAh·g-1, 
Figure 11H). The preparation of organics with dual redox groups is still complex and costly. In addition, the 
ion storage mechanisms of dual redox groups are controversial and need further exploration.
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Other n-type compounds
In addition to organics with the most common C=O or C=N groups, several n-type organics with other 
functional groups (e.g., nitro groups, azo groups, and hydroxyl groups) have also demonstrated the 
capability of storing Zn2+ and/or H+ ions. Song et al. found that para-dinitrobenzene (p-DB) can be used as 
redox-active molecules in AZOBs [Figure 12A][34]. They found the nitro groups possessed strong redox 
activity that enables two consecutive two-electron Zn(OTF)+ (triflate, OTF-=CF3SO3

-) reaction mechanisms, 
which shared Zn2+ with adjacent nitro groups. Impressively, p-DB encapsulated in carbon nanoflower (CF) 
provided an excellent cycling lifespan under 5 A·g-1 over 25,000 cycles [Figure 12B]. Although many organic 
cathodes have shown promising performance, their recycling process often faces the problem of complete 
destruction or decomposition of electrode materials. To this end, Chen et al. proposed a low-cost, recyclable 
Zn// azobenzene organic battery [Figure 12C][35]. In situ characterizations and quantitative analyses proved 
that azobenzene can be transformed into hydro-azobenzene by storing protons. Because azobenzene and 
the discharge product hydro-azobenzene can exist stably in air, and they have very good solubility in 
organic solvents, the battery can be efficiently recovered under any charge and discharge state, and the 
average yield of recycled active material in different solvents is as high as 89.1% [Figure 12D]. Interestingly, 
some originally inert groups can become active centers after proper electrochemical activation. For example, 
Sun et al. reported a hydroxyl polymer polytetrafluorohydroquinone (PTFHQ) as a cathode for AZOBs[96]. 
The part of hydroxyl groups in PTFHQ can be oxidized to active carbonyl groups through an in-situ 
activation process; thereby, Zn2+ can be stored/released. Additionally, the Z-fold structure of PTFHQ is 
essential for rapid ion diffusion [Figure 12E]. As a result, the PTFHQ cathode offered an outstanding rate 
capacity (196 mAh·g-1 under 20 A·g-1, Figure 12F). This work expands the understanding of the working 
mechanism of AZOBs and offers a constructive method for applying polymer cathode materials.

As discussed above, n-type organics exhibit high specific capacity and outstanding rate capacity. However, 
similar to p-type organics, some n-type organics and their discharge products dissolve severely in aqueous 
electrolytes, resulting in poor cycle life. This can be improved through structural optimization (such as co-
polymerization and expanding π-conjugated structures of molecules) and separator design[45,69,78]. 
Hybridizing organics with carbons can also enhance the stability and improve conductivity[65]. Additionally, 
the low working voltage of n-type organics results in a lower energy density of the battery. Introducing 
electron-withdrawing conjugated groups can increase the working voltage, but its improvement is generally 
limited[32,44]. Organics integrating carbonyl and imine compounds exhibit relatively high voltage and 
capacity, with high energy density, which can be further explored in future work.

Bipolar-type organic cathodes
Bipolar organic molecules contain n-type and p-type redox components that can serve as either electron 
acceptors or electron donors. Bipolar organics combine the advantages of p-type organics and n-type 
organics and, therefore, often show improved capacity and operating voltage [Figure 13][97-103].

At present, various bipolar polymers [e.g., polyaniline (PANI)[97], poly(p-phenylene) (PPP)[98], etc.] are 
reported as cathodes for AZOBs, among which PANI is the first reported one. The PANI-Zn battery in 
earlier research was operated in ZnCl2/NH4Cl electrolyte[27]. In order to evidently explain the 
electrochemical mechanism, Wan et al. designed and synthesized PANI/carbon felt (PANI/CF) electrodes 
and explored the mechanism by ex situ spectroscopy[97]. During the initial discharging process, Cl- was 
removed from PANI, and Zn2+ may interact with PANI. During the charging process, Zn2+ was removed 
from PANI and CF3SO3

- was embedded [Figure 14A]. This dual-ion insertion/extraction mechanism is 
conducive to fast transfer of charge carriers. Therefore, PANI/CFs exhibited decent rate ability (95 mAh·g-1 
under 5 A·g-1). Noteworthy, the mass loading of most reported AZOB organic cathodes is relatively low 
(about 2 mg·cm-2), far away from the requirements for commercial use (10 mg·cm-2, as referred to LIBs). 
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Figure 12. (A) Proposed redox reaction of p-DB; (B) Cycling performance of p-DB@CF cathode under 5 A·g-1. Reproduced with 
permission[34]. Copyright 2022, Wiley Online Library; (C) Diagram of a recyclable and scalable Zn//AZOB battery; (D) Recovery rate of 
active substances in different solvents. Reproduced with permission[35]. Copyright 2023, Wiley Online Library; (E) The synthesis of 
PTFHQ and proposed redox mechanism; (F) Rate capability of PTFHQ cathode. Reproduced with permission[96]. Copyright 2023, Wiley 
Online Library. p-DB: Para-dinitrobenzene; AZOB: aqueous zinc-organic battery; PTFHQ: hydroxyl polymer polytetrafluorohydroquinone.

Yan et al. reported a polymer poly(1,8-diaminonaphthalene) (PDAN) as a cathode for AZOBs, showing a 
reaction mechanism similar to that of PANI [Figure 14B][103]. Benefiting from the bipolar-type reaction 
mechanism and semi-conductive property of PDAN, Zn//PDAN batteries with high-quality load 
(10 mg·cm-2) of PDAN cathodes demonstrated a good capacity of 140 mAh·g-1 under 0.1 A·g-1. In addition to 
polymers, some small molecules such as methylene blue (MB)[99] and thionin (Thn-CH3COO)[102] have also 
been investigated. Compared with MB, Thn-CH3COO demonstrates a higher theoretical capacity 
(186/235 mAh·g-1 for the moiety with/without anions)[102]. Extensive characterization and DFT calculations 
proved that H+ cations and CF3SO3

- and CH3COO- anions were involved in n-type and p-type reactions, 
respectively [Figure 14C]. Thanks to the dual electron bipolar redox mechanism, Thn-CH3COO cathodes 
delivered a good cycling lifespan (a 65% capacity retention under 1 A·g-1 after 500 cycles).

In general, the redox process of bipolar-type organic cathodes involves the insertion/extraction of cations 
and anions. They often show superior performance than n- or p-type organic cathodes. It should be noted 
that most bipolar-type organics are polymers that require many inactive components to stabilize the 
structures, which compromises the specific capacity. In addition, the synthesis of bipolar-type organics is 
generally much more complex, and thus, they have been considerably less explored as cathodes for AZOBs. 
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Figure 13. The molecular structure of common bipolar-type organics in AZOBs[97-103]. AZOBs: Aqueous zinc-organic batteries; PANI: 
polyaniline; PPP: poly(p-phenylene); MB: methylene blue; PTD-1:      PONEA: poly quinone phenylenediamine; PDAN: polymer poly(1,8-
diaminonaphthalene).

Figure 14. (A) Redox mechanism of PANI/CFs. Reproduced with permission[97]. Copyright 2018, Wiley Online Library; (B) Redox 
mechanism of PDAN. Reproduced with permission[103]. Copyright 2022, Wiley Online Library; (C) Bipolar ion storage mechanism of 
Thn-CH3COO. Reproduced with permission[102]. Copyright 2023, Wiley Online Library. PANI/CFs: Polyaniline/carbon nanoflower; 
PDAN: polymer poly(1,8-diaminonaphthalene).

In future research, it may be considered to maximize the specific capacity of bipolar-type organic cathodes 
while ensuring high voltage and conductivity, such as developing bipolar-type organics with low molecular 
weight and solubility.
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The characteristics of three types of organic cathodes are shown in Figure 15 (also see a detailed comparison 
of the electrochemical performance of various organic cathodes in Table 1). To summarize, p-type organic 
cathodes necessitate a substantial amount of salt from the electrolyte during the charging process, which 
escalates the assembly cost of the battery[38]. Despite demonstrating high voltages and conductivity, their 
limited active center results in unsatisfactory capacity and low energy density. However, their high electron 
affinity and excellent biocompatibility make them promising candidates for wearable medical devices. In 
contrast, n-type organic cathodes have a relatively straightforward preparation process and typically offer 
higher capacity, energy density, and longer cycling lifespan[45,95], albeit at a lower operating voltage. Given 
these characteristics, n-type organic cathodes are well-suited for energy storage systems that demand high 
energy density and long cycle life, such as those used in residential and commercial settings. Furthermore, 
bipolar-type organic cathodes amalgamate the advantages of both n- and p-type organic cathodes, 
exhibiting high operating voltage, high conductivity, and robust cycle life. They are ideal for energy storage 
systems that require high electrical conductivity and stability, such as medical devices and sensor 
equipment.

IMPROVEMENT STRATEGIES FOR HIGH PERFORMANCE
Although organic cathodes have shown significant advantages for AZOB application, some issues remain 
unsolved, such as the dissolution of small molecular compounds, low operating voltage, poor conductivity, 
etc., which lead to poor cycling lifespan and low energy density of the AZOBs. This chapter will discuss 
strategies to improve the voltage, specific capacity, cycling lifespan and rate capability of organic cathodes 
[Figure 16], which are crucial parameters for evaluating battery performance.

Voltage
The cathode voltage (Ecathode) is determined by the Gibbs free energy change (ΔG) during the electrochemical 
reactions, as formulated in

where F and n represent the Faraday constant and the number of transferred electrons, respectively[104]. 
Therefore, high-voltage organic cathodes can be identified by screening their corresponding ΔG/n values. 
Cui et al. explored the effect of electron cloud distributions on the voltage of organic sulfur compounds 
(thianthrene, phenoxathiine and phenothiazine)[51]. The electronegativity of thianthrene (-13.30) with a 
symmetrically distributed electron cloud distribution is greater than that of phenoxathiine (-16.72) and 
phenothiazine (-20.21). Due to the difference in electronegativity, the ΔG of thianthrene is greater than that 
of phenoxathiine and phenothiazine, and the discharge voltage of thianthrene (1.5 V) is notably higher than 
that of phenoxathiine (1.3 V) and phenothiazine (0.85 V). Optimization of electrolyte composition can also 
increase ΔG/n, which is an efficacious method to enhance the working voltage. For example, DFT 
calculation results show that ΔG/n of [2(PTVE+)SO4

2-] is higher than that of (PTVE+ClO4
-) and 

(PTVE+CF3SO3
-)[47]. Therefore, the voltage of Zn//PTVE cells using ZnSO4 electrolyte (1.77 V) is higher than 

that using Zn(CF3SO3)2 electrolyte (1.58 V) or Zn(ClO4)2 electrolyte (1.53 V). In addition, the working 
voltage of AZOBs is closely related to the energy level of the lowest unoccupied molecular orbital (LUMO) 
in n-type organic cathodes or the HOMO in p-type organic cathodes[105]. A lower HOMO/LUMO energy 
level suggests that the potential of electrons exiting or entering it is higher, given their negative charge[106]. 
For instance, thianthrene cathodes, which have a low HOMO energy (-5.7 eV), exhibit a higher working 
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Table 1. Electrochemical performance of organic cathodes for AZOBs

Cathode Type Electrolyte Capacity 
(mAh·g-1/A·g-1)

Rate capacity 
(mAh·g-1/A·g-1)

Cycling stability 
(%/no. cycle/A·g-1) Ref.

PTVE 1M Zn(CF3SO3)2 83/0.2 52/10 77.0/1,000/1 [47]

Thianthrene 1M Zn(OTF)2-acetonitrile 112/0.5 66/20 82/8,000/1 [51]

BDB 1M Zn(OTF)2-19M LiN(SO3CF3) 125/0.026 80/0.78 75/1,000/0.78 [31]

m-PTPA 2M ZnCl2 210.7/0.5 107.5/6 87.6/1,000/6 [52]

DMPZ 17M NaClO4 231/0.051 107/1.275 81/1,000/0.255 [53]

PPy - 123/1.9 40/44.7 38/200/4.4 [55]

Poly(5-cyanoindole)

p

1M ZnCl2 107/0.2C 61/10C 63/800/2C [58]

C4Q 3M Zn(CF3SO3)2 335/0.02 172/1 87/1,000/0.5 [30]

NQ@CNT 2M ZnSO4 333.5/0.34 129.7/0.68 41/1,500/0.339 [65]

PDBS 2M ZnSO4 260/0.01 161.25/5 79/2,000/2 [69]

PTO 2 M ZnSO4 336/0.04 113/20 70/1,000/3 [39]

NTCDI 2 M ZnSO4 240/0.1 140/2 73.7/2,000/1 [67]

BT-PTO COF 3 M Zn(CF3SO3)2 225/0.1 108/500 98/10,000/5 [75]

DAP 3�M Zn(CF3SO3)2 219.1/0.255 77/127.5 80/10,000/25.5 [78]

HATN 2 M ZnSO4 405/0.1 123/20 93.3/5,000/5 [32]

HATN-3CN 2 M ZnSO4 320/0.05 190/20 90.7/5,800/5 [44]

HATTA 1M Zn(CF3SO3)2 225.8/0.05 136.1/25 84.07/10,000/25 [79]

HATN-PNZ 2 M ZnSO4 226/5 159/30 92.7/30,000/30 [80]

PoPD 2 M ZnSO4 318/0.05 95/5 66.2/3,000/1 [81]

PA-COF 1 M ZnSO4 247/0.1 68/10 62/10,000/1 [87]

TAPQ 1 M ZnSO4 443/0.05 15/5 50.2/100/0.05 [33]

TTPQ 2 M ZnSO4 404/0.3 204/5 94/250/0.5 [93]

HATNQ 3 M ZnSO4 482.5/0.2 177.5/9 80/11,000/5 [45]

HA-COF 2 M ZnSO4 164/0.1 35.4/10 75.3/10,000/5 [86]

HAQ-COF 2 M ZnSO4 344/0.1 95.6/10 85/10,000/5 [86]

p-DB@CF 3�M Zn(CF3SO3)2 402/0.1 214/20 93.9/25,000/5 [34]

PTFHQ

n

2 M Zn(CF3SO3)2 215/0.1 145/50 92/3,400/20 [96]

PANI/CFs 1 M Zn(CF3SO3)2 200/0.05 95/5 92/3,000/5 [97]

PDAN 0.5 M Zn(CF3SO3)2 171/0.1 54/100 82.3/10,000/5 [103]

Thn-CH3COO

bi

2 M Zn(CF3SO3)2 162/0.1 113.4/5 65/500/1 [102]

AZOBs: Aqueous zinc-organic batteries; PTVE: poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl vinylether); OTF: trifluoromethanesulfonate; BDB: 1,4 
bis(diphenylamino)benzene; m-PTPA: porous polytriphenylamine; DMPZ: 5,10-dihydro-5,10-dimethylphenazine; PPy: polypyrrole; C4Q: calix[4]
quinone; NQ@CNT: naphthoquinone@carbon nanotube; PDBS: poly(2,5-dihydroxy-1,4-benzoquinonyl sulfide); PTO: pyrene-4,5,9,10-tetraone; 
NTCDI: 1,4,5,8-naphthalene diimide; BT-PTO COF: benzenetricarboxaldehyde pyrene-4,5,9,10-tetraone covalent-organic frameworks; DAP:
2,3-diaminophenazine; HATN: diquinoxalino[2,3-a:2’,3’-c]phenazine; HATN-3CN: diquinoxalino[2,3-a:2′,3′-c]phenazine-2,8,14-tricarbonitrile; 
HATTA: 5,6,11,12,17,18-hexaazatrinaphthylene-2,8,14-tricarboxylic acid; HATN-PNZ: hexaazatrinaphthalene-phenazine; PoPD: poly(o-
phenylenediamine); PA-COF: phenanthroline covalent-organic frameworks; TAPQ: 5,7,12,14-tetraaza-6,13-pentacenequinone; TTPQ: 
poly(triazine-5,7,12,14-tetraaza-6,13-pentacenequinone); HATNQ: hexaazatrinaphthalene-quione; HA-COF:hexaazatriphenylene-based covalent-
organic frameworks; HAQ-COF: quinone-functionalized covalent-organic frameworks; p-DB@CF: para-dinitrobenzene@carbon nanoflower; 
PTFHQ: hydroxyl polymer polytetrafluorohydroquinone; PANI/CFs: polyaniline carbon nanoflowers; PDAN: polymer poly(1,8-
diaminonaphthalene).

voltage compared to phenothiazine (-4.68 eV) and phenoxathiazine (-5.47 eV). The HOMO or LUMO 
energy levels can be adjusted by changing the position of functional groups or introducing electron-
withdrawing/donating groups. For example, due to the lower LUMO energy of 1,2-NQ compared to that of 
1,4-NQ, the average discharge potential of 1,2-NQ is approximately 0.17 V higher than that of 1,4-NQ[30]. 
Introducing electron-withdrawing groups (e.g., -CN, -COOH) can also reduce the LUMO energy and thus 
increase the operating voltage. Compared to HATN-3CN (-3.87 eV), the discharge voltage of HATN with 
high LUMO energy (-2.78 eV) is 0.16 V lower than that of HATN-3CN[44].
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Figure 15. The characteristics of three types of organic cathodes.

Figure 16.
 Strategies for improving the voltage, specific capacity, cycling lifespan and rate capability.

Specific capacity
The theoretical capacity (QTheory) of organic cathodes is obtained as
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where n, F, and M represent the theoretically maximal number of electrons transferred during charging/
discharging, Faraday constant, and relative molecular mass, respectively. Therefore, increasing the “n” and 
decreasing the “M” of organics are conducive to obtaining high theoretical specific capacity. Increasing the 
redox-active sites of organics can increase the “n” value, thereby increasing the theoretical specific capacity. 
For example, PTO, obtained by introducing two carbonyl groups in 9,10-PQ, has a theoretical capacity of 
409 mAh·g-1[39], higher than 9,10-PQ (258 mAh·g-1)[30]. Similarly, compared to HATN (419 mAh·g-1), 
HATNQ has six more carbonyl groups and a higher theoretical capacity of 515 mAh·g-1[32,45]. Removing 
inactive components from organics can reduce the “M”; it is also a method to enhance theoretical specific 
capacity. For example, PNZ can be obtained by removing the inactive amino components in DAP 
molecules, and the theoretical specific capacity is increased from 255 to 297 mAh·g-1[77,78]. However, 
dissociating some small molecular organics in aqueous electrolytes usually leads to poor cycle lifespan. 
Cycling stability needs to be considered when the “M” is reduced.

The above two approaches can enhance the theoretical specific capacity of organics. However, the actual 
specific capacity is influenced by many factors, such as electrolytes, conductivity, and morphology. 
Combining organics with highly conductive carbon materials is the most direct method to improve the 
conductivity. For instance, the initial capacity of NQ@CNT composite cathodes is 333.5 mAh·g-1, close to 
their theoretical capacity (339.0 mAh·g-1)[65]. Similarly, the actual specific capacity of the PANI/graphene 
composite cathode (184.5 mAh·g-1) is also higher than that of the PANI cathode (163.1 mAh·g-1)[107]. Besides, 
the morphology of organics also affects their actual specific capacity. For instance, the specific capacity of 
“pebble-like” PANI is half that of “sponge-like” PANI because electrolytes and solvents can more easily 
enter the porous structure[108]. Moreover, the m-PTPA conjugated microporous polymer (CMP) cathode 
with a conjugated microporous structure exhibits a discharge capacity of 210.7 mAh·g-1 at 0.5 A·g-1, which is 
higher than the nonporous conjugated PTPA cathode (99.8 mAh·g-1)[52]. In addition, Zhang et al. 
synthesized cuboid, sphere, and narrow strip-shaped PoPD (PoPDH, PoPDN and PoPDA) in acidic, neutral, 
and alkaline solvents as cathodes for AZOBs, respectively[81]. The cuboid PoPDH cathode, due to its higher 
conductivity compared to the spherical PoPDN and narrow strip PoPDA cathodes, has a higher discharge 
capacity at 0.05 A·g-1. The capacities are as follows: cuboid PoPDH (318 mAh·g-1), spherical PoPDN 
(124 mAh·g-1), and narrow strip PoPDA (c101 mAh·g-1). Besides, different types of electrolytes also affect the 
specific capacity of AZOBs[47,97,102,109]. For example, due to the weaker electrostatic interaction between 
thionin cation (Thn+) and CF3SO3

- compared to CH3COO- and SO4
2-, the specific capacity of the Thn-CH3

COO cathode using Zn(CF3SO3)2 electrolytes is higher than that using Zn(CH3COO)2 electrolytes and Zn
SO4 electrolytes[102]. The specific capacity can also be significantly influenced by the concentration of the 
electrolyte used. It is, therefore, vital to select an optimal electrolyte concentration, which could be either 
super- or low-concentrated, to boost the capacity of AZOBs[110]. A case in point is the polycatechol cathode, 
which, when used with a 3M ZnSO4 electrolyte, yields a higher specific capacity (204 mAh·g-1) compared to 
when it is used with a 0.2 M ZnSO4 electrolyte (~142 mAh·g-1), at a discharge rate of 0.05 A·g-1[109].

Cycling lifespan
The cycle lifespan of AZOBs is significant for their practical application, which is determined by their 
components, including the organic cathodes, Zn anodes, electrolytes, and separators. Some of the organic 
materials suffer from dissolution issues and, consequently, unsatisfactory cycling lifespan in liquid 
electrolytes, mainly because of the intrinsic instability of the molecular structure due to the weak 
intermolecular van der Walls forces. In addition, they may also be detached from the electrode by the 
solvation of solvent molecules in electrolytes[111]. Molecular polymerization can expand the molecular size of 
monomers and hinder the solvation process, thereby suppressing the dissolution and enhancing structural 
stability. For example, the serious dissolution of 2,5-dichloro-3,6-dihydroxy-p-quinone (CLA) monomers in 
aqueous electrolytes leads to rapid capacity decline. To solve this problem, Sun et al. prepared PDBS based 
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on CLA monomers as the cathode for AZOBs[69]. Compared with CLA, the stability of PDBS cathodes was 
significantly enhanced (a 79% capacity retention under 2 A·g-1 after 2,000 cycles). Additionally, COFs 
connected by covalent bonds to form a spatial network structure reveal good stability. For example, 
compared to PTO, BT-PTO COF has a remarkable cycle lifespan, with a 98% capacity retention under 
5 A·g-1 over 10,000 cycles[75]. Expanding the π-conjugated system of organics is beneficial for π electron 
delocalization, leading to improved electrochemical stability. For example, the large π-conjugated 
framework of HATTA enhances π-π intermolecular interaction, resulting in enhanced stability of HATTA 
in 1M Zn(CF3SO3)2 aqueous electrolytes, which is conducive to long cycle lifespan (an 84.07% capacity 
retention under 25 A·g-1 over 10,000 cycles)[79]. Combining organics with insoluble conductive carbon 
materials (e.g., CNTs[65], CMK-3[66] and CF[34]) is another efficient strategy. For example, NQ@CNTs 
composite cathodes exhibited a decent cycling lifespan (137.2 mAh·g-1 for 1,500 cycles under 0.339 A·g-1) as 
the NQ was captured within the CNTs framework, and consequently, the dissolution was inhibited[65].

As a part of the AZOBs structure, separators also significantly influence the cycle lifespan. Through delicate 
separator design, the dissolution of active substances and the shuttle of dissolved substances to the counter-
electrode could be effectively suppressed. Liang et al. used a modified glass fiber membrane with CNTs film 
to inhibit the dissolution of DAP, providing an outstanding cycling lifespan (an 80% capacity retention 
under 25.5 A·g-1 over 10,000 cycles)[78]. With a cation-selective membrane (Nafion membrane), Zn//C4Q 
batteries can provide a cycling lifespan of 1,000 cycles under 0.5 A·g-1 (87% capacity retention)[30]. Similarly, 
Zn//copper-tetracyanoquinodimethane (CuTCNQ) batteries using a graphene-modified glass fiber 
membrane showed high rate performance and decent cycling lifespan, as the modified membrane can 
inhibit the dissolution of CuTCNQ and the shuttle effect in aqueous electrolytes[112]. However, ion-selective 
membranes and graphene-modified membranes cannot fundamentally solve the dissolution problem, and 
their cost is generally much higher than that of commonly used glass fiber membranes. In addition, 
different types and concentrations of electrolytes can affect the cycling lifespan of AZOBs. For example, the 
cycling lifespan of the PANI/CFs in Zn(CF3SO3)2 electrolytes is better than that in ZnSO4 electrolytes 
because the CF3SO3

- can stabilize the oxidized PANI by reducing the number of water molecules around 
oxidized PANI[97]. The number of free solvent molecules in high-concentration electrolytes greatly decreases 
with changes in solvation structure, which can alleviate the dissolution of organics. For example, 3,4,9,10-
perylenetetracarboxylic dianhydride exhibited excellent cycling lifespan in high concentration electrolytes, 
with an 87% capacity retention under 1 A·g-1 over 1,000 cycles[113]. In addition, electrolytes can also be 
optimized from the perspectives of ionic liquids[114-116], electrolyte additives[117-119], organic solvents[120-122], and 
quasi/all-solid electrolytes[123-125]. Additionally, 5,7,12,14-pentacenetetrone cathodes were found to be more 
stable in 1 M Zn(CF3SO3)2 electrolytes containing trimethyl phosphate (TMP) additives (with a 61.86% 
capacity retention under 0.1 A·g-1 after 550 cycles) than in 1 M Zn(CF3SO3)2 electrolytes[126], due to the strong 
interaction between Zn2+ and TMP that changes the solvation structure and inhibits parasitic reactions. As 
an important component of batteries, Zn anodes also restrict the cycling lifespan of AZOBs to a certain 
extent. During the cycling process, Zn anodes typically face issues such as hydrogen evolution reaction, zinc 
dendrites growth, corrosion, and byproduct formation, leading to a decrease in cycling lifespan[127-131]. At 
present, the protection of Zn anodes is mainly achieved through strategies such as artificial surface coatings, 
controllable synthesis, advanced separators, and electrolyte engineering[132-136]. For instance, a Na3Zr2Si2PO12 
(NZSP) coating was shown to effectively suppress the hydrogen evolution and the formation of zinc 
dendrites, resulting in a prolonged lifespan of NZSP-Zn//V2O5@PEDOT batteries compared to Zn//V2O5

@PEDOT[136]. Overall, in addition to designing structurally stable organic cathode materials, separator 
modification, electrolyte optimization, and Zn anode protection are also promising strategies for improving 
the long cycle lifespan of AZOBs.
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Rate capability
The rate capability is a key indicator for evaluating the fast-charging capacity of batteries, mainly related to 
the mobility of ions and electrons. In general, the electronic conductivity of most organic compounds is 
relatively poor, and their rate capability is often unsatisfactory. Expanding the π-conjugated structures in 
organics is an efficacious way to enhance its intrinsic conductivity, which can increase π-electron 
delocalization and thus improve electron migration and further the conductivity of organics[44,137]. For 
example, HATTA cathodes obtained by introducing electron-withdrawing conjugative groups (-COOH) 
into the HATN molecule delivered a capacity of 136.1 mAh·g-1 under 25 A·g-1, higher than HATN cathodes 
(123 mAh·g-1 under 20 A·g-1)[79]. Besides, HATN-PNZ with large charge delocalization area can effectively 
transfer electrons in molecules due to the conjugation elongation of aromatic rings and phenazine, leading 
to rapid kinetic reactions. Compared with PNZ (97 mAh·g-1 under 100 A·g-1), HATN-PNZ offered a 
superior rate capacity of 144 mAh·g-1 under 100 A·g-1[80].

Optimizing synthesis methods and conditions to control the crystal structure and morphology of organic 
materials is also a viable strategy to enhance conductivity. For instance, Luo et al. prepared organic cathodes 
of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) with varying degrees of crystallinity. Compared 
to pure PTCDA, the variant with higher crystallinity expands the π-π conjugated system, leading to more 
delocalized electrons. This facilitates the transfer of electrons and ions, thereby improving the conductivity 
and providing superior rate capability[138]. Given that protons can serve as charge carriers, the conductivity 
of PoPD synthesized under acidic conditions significantly surpasses that of its counterpart synthesized 
under neutral/alkaline conditions. This results in a high capacity of 318 mAh·g-1 at 0.05 A·g-1 and decent rate 
performance (95 mAh·g-1 at 5 A·g-1)[81]. Doping organic polymers with metal ions or organic molecules can 
alter the structure and carrier concentration of the organics, thereby enhancing their conductivity. For 
example, Gong et al. designed a Zn2+-doped polyaniline (PAZ) organic cathodes using a re-doping method, 
which resulted in high conductivity. Consequently, with the current density increasing from 1.0 to 10 A·g-1, 
the Zn//PAZ battery can deliver a capacity of 285.4 to 134.1 mAh·g-1[139]. Similarly, Ma et al. leveraged the 
semi-self-doping properties of phytic acid to effectively boost the conductivity of PANI cathode by doping it 
with phytic acid. This resulted in a superior rate capacity, with a specific capacity of ~150/114 mAh·g-1 at 
1/10 A·g-1[140]. Besides, the orderly and open channels and well-defined porosity of COFs allow cations to 
move quickly and facilitate the penetration of electrolyte ions, providing superior rate performance. Based 
on this, BT-PTO COF delivered a decent rate capability (108 mAh·g-1 under 500 A·g-1)[75].

The most used strategy for improving conductivity is to composite organics with conductive carbon 
materials. These materials typically have superior conductivity and large specific surface area, allowing 
electrons to quickly transfer along the network, thereby improving rate capability. For example, the poly 
quinone phenylenediamine (PONEA)/graphene composite cathodes can exhibit a splendid capacity of 
277 mAh·g-1 under 20 A·g-1, higher than PONEA cathodes[101]. In addition, different charge carriers (e.g., 
SO42-, CF3SO3

-, ClO4
-, BF4

-, Zn2+ or H+) can also affect the rate capability. For example, the rate capability of 
Zn//PTVE batteries in Zn(ClO4)2 and Zn(CF3SO3)2 electrolyte is lower than that in ZnSO4 electrolyte[47]. The 
small size and high ion migration of H+ ensure fast kinetics. Organic cathodes that can store H+ typically 
provide better rate capability than those that can only store Zn2+[32,44].

CONCLUSIONS AND PERSPECTIVES
In recent years, organic cathode materials have shone in the field of aqueous zinc ion batteries because of 
their advantages of environmental friendliness, wide sources, adjustable structure, and high capacity. In this 
review, we first introduced the development history of AZOBs and then summarized the recent progress in 
three typical types of organic cathodes, namely the p-, n-, and bipolar-type organics, in terms of both the 
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working mechanisms and electrochemical performance. These organic materials have their pros and cons. 
For instance, n-type organic materials have drawn increasing attention due to their high capacity, fast rate 
capability, environmental friendliness, and abundance. However, they still suffer from low electrical 
conductivity and high solubility in electrolytes. P-type organic materials, on the other hand, offer different 
advantages and challenges. While they can also exhibit high redox voltage and fast rate capability, they may 
face issues related to stability and reversibility of the redox reactions. Bipolar-type organic materials can 
potentially combine the advantages of both p-type and n-type materials, offering a balance between 
performance, stability, and cost. However, the design and synthesis of bipolar-type materials can be more 
complex. In this regard, we further discussed the developed strategies for improving the performance of 
AZOBs based on the voltage, specific capacity, cycling lifespan and rate capability.

Though the research of organic cathodes in AZOBs has made great progress, the commercial application of 
AZOBs still faces many challenges: (1) The energy density is relatively low. Due to using aqueous 
electrolytes, the working voltage of the AZOBs is normally less than 2.0 V. Moreover, additional conducting 
additives are often required to enhance the conductivity of organic cathodes, which, however, might reduce 
the energy density; (2) Working mechanism is not fully understood. Currently, it is proposed that these 
materials may store Zn2+ and/or H+ ions. However, it remains unclear which mechanism dominates. 
Furthermore, the regulation of the reaction mechanism is also not well understood; (3) Unexpected side 
effects. During the charging and discharging process, some small organics and discharge products are often 
dissolved in aqueous electrolytes, resulting in a poor cycling lifespan.

In response to the above challenges, we propose the following prospects for the future development of 
organic cathodes.

(1) Improving the energy density of organic cathodes. Many organic materials suffer from low conductivity 
and thus require a lot of conductive carbon during the electrode fabrication process, which, in turn, would 
reduce the active materials and, consequently, the energy density of the battery. Several strategies could be 
considered to address this issue.

(a) Advanced manufacturing techniques. Techniques such as nanostructuring or creating composite 
materials could be used to improve the distribution of conductive carbon in the electrode, which could 
enhance conductivity without significantly reducing the proportion of active materials.

(b) Surface modification. Surface modification of active materials could be another way to improve their 
conductivity. This could involve coating the surface of the active materials with a thin layer of conductive 
material or altering the surface chemistry to improve its interaction with conductive carbon.

(c) Structural optimization. The structure of the active materials could be optimized to improve their 
interaction with conductive carbon, thereby enhancing the overall conductivity of the electrode without 
needing to add excessive amounts of conductive carbon.

(d) Developing new materials: research could focus on developing new organic materials with higher 
intrinsic conductivity, which would reduce the need for additional conductive carbon.

These are just a few potential strategies, and research in this area is ongoing. The goal is to find a balance 
that allows for high conductivity while maintaining a high proportion of active materials, thereby 
maximizing the energy density of the battery. It is also worth mentioning that machine learning could be a 



Page 26 of Li et al. Energy Mater 2024;4:400033 https://dx.doi.org/10.20517/energymater.2023.11631

very promising approach to facilitating the discovery of new and high-performance organic cathodes. By 
analyzing the electrochemical data of known organic materials and furthering the structure-property 
relationship, key elements that affect the battery performance can then be identified. Consequently, new 
organic structures with these key elements can be predicted and further experimentally verified. It is noted 
that the application of machine learning in new organics design is still in its early stages, requiring high-
quality and diverse data and algorithm support.

(2) Understanding the charge storage and capacity decay mechanisms of organic cathodes. Previous studies 
reveal that both Zn2+ and H+ storages contribute to the capacity of organic cathodes of AZOBs. The 
diffusion of protons is kinetically smoother and is beneficial to high-rate performance, but it also induces 
local pH changes and promotes the generation of byproducts. Therefore, understanding the reaction 
mechanism and furthering its regulation are essential to achieving high-performance AZOBs. It should be 
noted that organic cathodes containing carbon elements are often quite sensitive and easy to decompose 
under certain characterization conditions, such as the high voltage electron beams. This brings about 
additional difficulty in tracking the dynamic structural evolution of the material during charging and 
discharging. Some advanced characterization techniques (e.g., in situ Fourier transform infrared 
spectroscopy, nuclear magnetic resonance, and electrochemical quartz crystal microbalance), together with 
theoretical simulations, provide approaches to comprehending the detailed energy storage mechanism of 
organic cathodes and, consequently, the performance optimization.

(3) Enhancing the stability of organic cathodes. The stability and lifespan of organic cathodes in aqueous 
zinc batteries can be compromised due to the dissolution of some organic materials in aqueous electrolytes. 
This dissolution is closely tied to the structure and composition of the organic materials. As such, 
optimizing these aspects could potentially decrease their solubility in the electrolyte, thereby enhancing the 
cycling lifespan of batteries. Additionally, applying protective layers or coatings on the cathode material can 
prevent the organic materials from directly contacting the electrolyte, further improving the stability of the 
organic cathodes. Modifying the electrolyte formula or incorporating specific electrolyte additives may also 
help minimize the dissolution of the organic materials. However, the key to devising effective mitigation 
strategies lies in a thorough understanding of the dissolution process.

(4) Exploring other avenues for organic cathodes. Organic cathodes have good flexibility and elasticity, and 
flexible batteries based on organic cathodes have broader application prospects in wearable devices. Based 
on their good biocompatibility, organic cathodes can be used in medical devices such as pacemakers to 
provide continuous electrical energy. In addition, the degradability of organic cathodes is also conducive to 
the construction of biodegradable batteries, making them easier to handle and recover after the end of 
battery life, thereby reducing the impact on the environment.

In summary, there is still a long way to go in developing sustainable, economical, and high-performance 
organic cathodes for AZOBs. We aspire that this review will offer valuable inspiration for the mechanism 
research and construction of high-performance AZOBs.
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