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Abstract
Owing to its unique structure, porosity and photoresponse properties, two-dimensional hierarchically porous 
(2D-HP) C3N4 has attracted wide attention in environmental remediation and sustainable energy evolution fields. 
Up to today, 2D-HP C3N4 has been developed as an efficient photocatalyst for various environmental/energy 
photocatalytic applications. Its advantages in promoting light harvesting, reactant diffusion and transportation, 
surface molecule activation and photoinduced carrier separation have been verified. In this perspective, we 
highlighted the advantages of 2D-HP C3N4 in various photocatalytic reactions such as water splitting and H2O2 
production. The relevant mechanism was simultaneously discussed. Moreover, the prospects and obstacles for the 
industrial utilization of 2D-HP C3N4-based photocatalysts are outlined and summarized. Finally, we envision 
available approaches for the deployment of 2D-HP C3N4-based materials to promote its practical application.
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INTRODUCTION
Since Geim and Novoselov[1], for the first time, prepared two-dimensional (2D) graphene via the exfoliation 
of graphite by Scotch tape 20 years ago and revealed the fantastic performance of such innovative 
material[1,2]. A variety of outstanding characteristics of 2D graphene have been exploited, facilitating its 
applications in catalysis, biosensors, energy storage, optoelectronic devices, etc.[3]. In the past decade, a great 
deal of work has been conducted to investigate other 2D nanomaterials beyond graphene[4,5]. Furthermore, 
hierarchical pores are frequently produced on the 2D nanomaterials during the specific synthesis processes 
such as thermal-exfoliation and hydrothermal treatment, making 2D-hierarchically porous (HP) materials a 
research spot in current studies[6]. Owing to the large surface area, low density, tunable electronic bandgap 
configuration and good light response properties, 2D nanomaterials commonly present superior activity 
than the bulk counterpart in photocatalysis, thermocatalysis and electrocatalysis fields[7].

Furthermore, the HP structure is also favorable for improving the chemical and physical properties of 
nanomaterials[8]. To be specific, hierarchical pores could make materials with facile mass diffusion channels, 
lower density, and rich surface reaction sites, enabling them to be more proficient in light utilization, 
electron/ion migration, and reactant diffusion. Thus, hierarchically porous materials are deemed as a kind 
of important candidates in environmental protection and energy evolution/storage fields including 
environmental photocatalysis, gas detection, toxic substance elimination, waste decomposition, etc.[9]. The 
2D-HP materials could couple the structure, morphology and electronic band gap merits from both 2D and 
HP materials, therefore showing extraordinary photocatalytic performance. Their light absorption ability is 
superior to other kinds of materials because of the multiple light scattering effect[10]. Meanwhile, the 
impassable channels could completely be penetrated, abundant edges and boundaries would be generated, 
and almost all the positions of 2D-HP materials could be contacted to the surrounding reaction media and 
the reactants, thus accelerating the diffusion of reactant molecules into the inner space of materials. 
Nevertheless, the fact that the nanosheets are prone to agglomeration in aqueous solution should be paid 
more attention in future studies.

In the past decade, 2D-HP C3N4, as an emerging class of nanomaterials, has appealed to extensive study, 
which usually exhibits a plate-like morphology and consists of ultrathin layers[11,12]. Because of its 
outstanding light response, abundant reactive sites, large surface area and tunable electronic characteristics, 
2D-HP C3N4 is considered as a high-performance advanced functional material [Figure 1A and B]. 
Nowadays, environmental pollution and energy shortage issues have appealed to increasing concerns[13]. In 
this regard, 2D-HP C3N4 is extensively studied as a promising photocatalyst to convert solar energy into 
chemical energy to drive various photocatalytic reactions such as pollutant degradation, hydrogen 
evolution, H2O2 production, and CO2 reduction.

UNIQUE PROPERTIES OF 2D-HP C 3N 4 IN PHOTOCATALYSIS
Migration kinetics of electron/ion
The electron/ion migration kinetics is highly important for the activity of photocatalysts in chemical 
reactions[14]. The 2D-HP material possesses apparent advantages for ion/charge carrier diffusion and shift 
via coupling the characteristics of 2D configuration, which displays outstanding electronic properties and 
abundant exposed atoms on the surface, and HP material, which has a large specific surface area, low 
density and excellent accessibility [Figure 1C and D]. In particular, 2D-HP C3N4 can offer a high exposed 
surface with rich channels for solution, electrolyte and gas, thus effectively improving their wetting and 
penetration ability. Meanwhile, the carrier shift, charge transport, and reactant diffusion between various 
phases and the surface reaction rates of C3N4 are significantly enhanced. For example, boron-doped 2D-HP 
C3N4 [Figure 1E] displayed much higher photocatalytic H2O2 evolution ability than other 2D C3N4 samples 
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Figure 1. (A) Advantages of 2D-HP C3N4 materials in photocatalysis; (B) Schematic structure of C3N4 photocatalyst; (C and D) 
Photograph of C3N4 powder and the low density; (E) TEM image of boron-doped 2D-HP C3N4; (F) Photographs for the aqueous 
dispersion of the different C3N4 samples; (G) Images of water droplets on the C3N4 thin films; (H) SEM and (I) TEM images of 2D porous 
C3N4; (J) Photocatalytic H2 evolution rate over various photocatalysts. 2D-HP: Two-dimensional hierarchically porous; TEM: 
transmission electron microscopy; SEM: scanning electron microscope.

without hierarchical porous configuration and other developed nonporous nanoplates[10]. The superior 
photocatalytic activity is attributed to the function of hierarchical pores on 2D nanosheets, which could 
reduce the shift way of O2 via facile cross-plane movement of reactants to the reactive centers and make the 
migration of photoinduced electrons to the surface much easier. More importantly, the unique structure 
leads to good wetting ability and makes the reaction more efficient in aqueous solution [Figure 1F and G].

Surface active sites
Generally, the photocatalytic activity is positively correlated with the amount of reactive centers in which 
the adsorption of reactant molecules and photogenerated carriers shift are carried out[15]. Typically, Xiao et 
al. adopted a facile bottom-up strategy to fabricate 2D few-layer C3N4 with rich pores on its surface 
[Figure 1H and I], which includes melamine molecule assembly into 2D precursors, alcohol molecules 
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connection, and the final exfoliation process[11]. As expected, the synthesized 2D porous C3N4 nanosheets 
give rise to a specific surface area as high as 164.2 m2·g-1, being around 14 and 4 times higher than those of 
bulk C3N4 (11.3 m2·g-1) and C3N4 microtubes (42.6 m2·g-1) photocatalysts, respectively. Meanwhile, the pore 
size distribution characterization suggests that the 2D porous C3N4 nanosheets display hierarchically porous 
structure on their surface, which not only offer a high surface area for the accommodation of reactive 
centers, but also reduce shift distance for reactant molecules, intermediates and photoinduced charges. 
Notably, the nitrogen vacancies were also generated on the ultrathin 2D nanosheets, which could serve as 
reactive sites to facilely capture photoexcited electrons from the CB of C3N4 to effectively activate the 
reactant molecules. Finally, the 2D porous C3N4 nanosheets display efficient photocatalytic H2 productivity 
of about 160 μmol·h-1, being 26 folds larger than those of bulk C3N4 and microtube C3N4, respectively 
[Figure 1J].

Stability and corrosion resistance ability
Layered 2D materials are usually prone to aggregation and accumulation, generating a compact 
configuration that leads to decreased surface area, poor surface reactive center, restricted mass/charge 
transport, and, therefore, attenuated photocatalytic activity[16]. For instance, the van der Waals interaction 
and p-p stacking frequently result in serious aggregation of C3N4 nanosheets and prohibit the transfer of 
reactant molecules and intermediate species, hence damaging the activity of C3N4 during the reaction 
process[13]. The generation of abundant pores into nanosheets could effectively alleviate this issue by 
reducing the van der Waals force between the 2D nanosheets. Furthermore, it has been found that the 
creation of pores on 2D materials apparently stabilizes ultrathin 2D structure by reducing the surface 
energy[17,18]. From another perspective, the shortened mass transfer pathway and facile shift of 
photogenerated carriers from 2D-HP materials tightly attracted reactants between solution and 
photocatalyst[19-22], thus bringing out a low corrosion degree of photocatalyst and increased stability of 2D 
materials. Typically, Wu et al. prepared 2D porous C3N4 nanosheets via a solvothermal reaction with 
subsequent vacuum freezing-drying treatment[12]. The obtained 2D g-C3N4 exhibits outstanding recycling 
stability for H2 evolution reaction for 100 h, being ascribed to the structure and porosity merits.

SUMMARY AND PERSPECTIVE
In short, 2D-HP C3N4, as an emerging advanced material, has displayed significant potential for pollutant 
elimination and sustainable energy production owing to its structure, morphology and electronic band gap 
merits. The photocatalytic activity and cycling stability of current 2D-HP C3N4-based materials have met the 
requirement of organic pollutant decomposition and H2/H2O2 production to a certain extent in the 
laboratory. However, there is still a long road to achieve the demand of industrial application of 2D-HP 
C3N4-based materials. Nevertheless, 2D-HP C3N4, with the advantages of low cost, high surface area, 
abundant active sites, and tunable electronic structure, still holds great competitiveness in environmental 
and energy photocatalytic fields. We hope this perspective can stimulate several innovative concepts in the 
preparation of high-performance 2D-HP photocatalysts for achieving the ultimate industrial use.
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