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Abstract
Aim: Barth syndrome (BTHS) is a rare X-linked genetic disease in which mitochondrial oxidative phosphorylation is 
impaired due to a mutation in the TAFAZZIN gene. The protein kinase C delta (PKCδ) signalosome exists as a high 
molecular weight complex in mitochondria and controls mitochondrial oxidative phosphorylation.

Method: Here, we examined PKCδ levels in mitochondria of aged-matched control and BTHS patient B 
lymphoblasts and its association with a higher molecular weight complex in mitochondria.

Result: Immunoblot analysis of blue-native polyacrylamide gel electrophoresis mitochondrial fractions revealed an 
increase in total PKCδ protein expression in BTHS lymphoblasts compared to controls. In contrast, PKCδ associated 
with a higher molecular weight complex was markedly reduced in BTHS patient B lymphoblasts compared to 
controls. Given the decrease in PKCδ associated with a higher molecular weight complex in mitochondria, we 
examined the uptake of creatine, a compound whose utilization is enhanced upon high energy demand. Creatine 
uptake was markedly elevated in BTHS lymphoblasts compared to controls.

Conclusion: We hypothesize that reduced PKCδ within this higher molecular weight complex in mitochondria may 
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contribute to the bioenergetic defects observed in BTHS lymphoblasts and that enhanced creatine uptake may 
serve as one of several compensatory mechanisms for the defective mitochondrial oxidative phosphorylation 
observed in these cells.

Keywords: Barth syndrome, TAFFAZIN, protein kinase C delta, B lymphoblasts, mitochondria, cardiolipin, creatine 
uptake, monolysocardiolipin

INTRODUCTION
Barth syndrome (BTHS) is a rare X-linked genetic disease caused by a mutation in the TAFAZZIN gene 
localized on chromosome Xq28.12[1-3]. BTHS is characterized by cardiomyopathy, skeletal myopathy, growth 
retardation, neutropenia, and frequently 3-methylglutaconic aciduria. At the cellular level, BTHS patients 
exhibit impaired mitochondrial oxidative phosphorylation. The TAFAZZIN gene product is a transacylase 
enzyme involved in the remodeling of the mitochondrial phospholipid cardiolipin (CL) from 
monolysocardiolipin (MLCL)[4,5]. Hence, mutations in TAFAZZIN result in reduced CL, elevated MLCL, 
and impairment in oxidative phosphorylation[1-3,6]. In several studies, Epstein-Barr virus transformed 
lymphoblasts from patients have been used to examine BTHS metabolic pathology[6-9].

Protein kinase C delta (PKCδ) is a signaling kinase that regulates many cellular responses and is controlled 
via multi-site phosphorylation[10-13]. The PKCδ pathway adjusts the fuel flux from glycolytic sources to the 
intensity of mitochondrial respiration, thus controlling mitochondrial oxidative phosphorylation. In 
mitochondria, the PKCδ signalosome exists in a high molecular weight complex, which includes 
cytochrome c as the upstream driver of PKCδ, the adapter protein p66Shc as the assembly platform, and 
retinol[12,14]. All four components are required for activation of PKCδ signaling in mitochondria. We 
previously demonstrated that PKCδ phosphorylation was altered on several sites in BTHS patient B 
lymphoblasts compared to control patient B lymphoblasts[15]. Given that PKCδ is involved in B lymphocyte 
differentiation and cell fate[16] and that altered phosphorylation of PKCδ may impact its activation, it is 
possible that PKCδ associated with a higher molecular weight complex is altered in mitochondria of BTHS B 
lymphoblasts.

Creatine is an amino acid derivative that, upon entrance into cells, is phosphorylated to phosphocreatine 
and used as an energy buffer. For example, during increased energy demand, ATP is rapidly resynthesized 
from ADP and phosphocreatine. Thus, creatine uptake is required to support phosphocreatine generation. 
Since oxidative phosphorylation is impaired in BTHS B lymphoblasts, it is possible that enhanced creatine 
uptake may occur as a compensatory mechanism to maintain energy metabolism, as observed with other 
metabolites such as glucose[17].

In this study, we demonstrate for the first time that PKCδ is associated with a higher molecular weight 
complex in B lymphoblast mitochondria but that its association with this higher molecular weight complex 
is reduced in BTHS patient B lymphoblasts mitochondria compared to age-matched controls in spite of an 
increase in overall PKCδ protein expression. We hypothesize that the lack of PKCδ within this high 
molecular weight complex may contribute to defective mitochondrial PKCδ signaling and thus to the 
bioenergetic defects observed in BTHS cells. Moreover, we observe enhanced creatine uptake into BTHS 
patient B lymphoblasts compared to control cells. We hypothesize that enhanced creatine uptake may, in 
part, contribute as a compensatory mechanism to maintain energy metabolism in BTHS B lymphoblasts.
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MATERIALS AND METHODS
Epstein-Barr virus transformed BTHS B lymphoblasts from 4- to 9-year-old males and male age-matched 
control lymphoblasts were graciously provided by Dr. Richard Kelley, Kennedy Kreiger Institute, Baltimore, 
MD., and obtained from Coreill Institute (Camden, NJ) and were cultured as previously described[9]. 
[14C]Creatine was obtained from American Radiochemicals Inc. (Burnaby, BC, Canada, Catalog number 
ARC 0176-50 µCi). Ecolite scintillant was obtained from ICN Biochemicals (Montreal, Quebec, Canada). 
All other chemicals were of American Chemical Society (ASC) grade and obtained from either Sigma 
Aldrich Canada Ltd. (Oakville, ON, Canada) or Thermo Fisher Scientific (Carlsbad, CA, USA).

Electrospray ionization mass spectrometry (ESI-MS) coupled with high-performance liquid 
chromatography (HPLC) mass spectrometry of cardiolipin (CL) and monolysocardiolipin (MLCL) from 
cell lysates was performed as described[18]. Mitochondrial fractions were isolated using the mitochondrial 
isolation kit from Abcam (Toronto, ON, Canada, Catalog number ab110170). Mitochondrial protein 
content was determined using the M protein assay kit (Mississauga, ON, Canada). For Blue-Native 
polyacrylamide gel electrophoresis (BN-PAGE) analysis, mitochondrial protein (80 µg) was treated with 
0.2% digitonin and then separated on a 3%-12% gradient gel as described[9]. Immunoblot analysis of the gel 
was performed using anti-PKCδ antibody (1:1,000) (Abcam, Toronto, ON, Canada) as described[19]. PKCδ 
was visualized using the Amersham Enhanced Chemiluminescence Western blotting detection system 
(VWR, Mississauga, ON, Canada). Band intensity was quantified using Image J software. Citrate synthase 
activity was measured using the citrate synthase assay kit (Sigma-Aldrich, Oakville, ON, Canada, Catalog 
number CS0720).

Cells were cultured in RPMI 1,640 medium containing 10% fetal bovine serum and 1% antimycotic and 
antibiotic solution and incubated at 37 °C in 5% CO2 until used. Cells were incubated with 2 mL medium 
containing 0.1 µM [14C]Creatine (specific activity 50-60 mCi/mmol) for up to 60 min. At the indicated time 
points, the medium was removed and cells washed twice with 2 mL of ice-cold PBS. The PBS was removed 
and 2 mL of methanol:water (1:1 v/v) was added. The cells were harvested using a rubber policeman and put 
into test tubes. The mixture was vortexed, and a 50 μL aliquot was taken for protein determination and a 
50 μL aliquot taken for determination of radioactivity. Data are expressed as mean ± standard deviation of 
the mean. Comparisons between control and BTHS patient lymphoblasts were performed by unpaired, two-
tailed Student’s t-test. A probability value of P < 0.05 was considered significant.

RESULTS
All major molecular species of CL were significantly reduced in BTHS lymphoblasts compared to age-
matched control lymphoblasts [Figure 1A]. This reduction in CL molecular species was accompanied by a 
general, but not significant, increase in most major MLCL species. In contrast, a > 20-fold increase 
(P < 0.01) in trioleoyl-MLCL [mass/charge (m/z) 1192] molecular species was observed in BTHS 
lymphoblasts compared to age-matched control lymphoblasts [Figure 1B].

BTHS patient lymphoblasts exhibited abnormally increased mitochondrial mass[7,8]. To confirm this, 
mitochondrial fractions were prepared and citrate synthase activity determined. Citrate synthase activity 
was elevated 20% (P < 0.05) in BTHS lymphoblasts compared to age-matched control cells [Figure 1C]. 
Thus, the reduction in CL, increase in MLCL and MLCL/CL ratio, and increase in citrate synthase activity 
were consistent with that observed in BTHS patient B lymphoblast cells.
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Figure 1. CL levels are reduced and trioleoyl-MLCL and citrate synthase activity elevated in BTHS lymphoblasts. Quantification of the 
major CL. (A) and Major MLCL (B) Fatty acyl molecular species in age-matched control and BTHS lymphoblasts as described in 
Materials and Methods. (C) Mitochondrial fractions were prepared from age-matched control and BTHS lymphoblasts and citrate 
synthase activity determined as described in Materials and Methods. Data represent the mean + SD, n = 4. #P < 0.001; **P < 0.01; 
*P < 0.05; ns: not significant.

We previously observed that PKCδ phosphorylation was altered on several sites examined in BTHS 
lymphoblasts[15]. Since altered phosphorylation may affect PKCδ activation[13], we examined if this was 
related to altered PKCδ associated with higher molecular weight complex in mitochondria of BTHS patient 
lymphoblasts. Mitochondrial fractions were subjected to BN-PAGE followed by immunoblot analysis for 
determination of PKCδ levels. The two upper bands indicated on the left of the blot are molecular mass 
markers at 1,236 and 1,048 kDa, respectively [Figure 2A]. The level of PKCδ located on the gel at a predicted 
molecular mass near 77.5 kDa was elevated by 1.5-fold (P < 0.05) in BTHS lymphoblasts compared to age-
matched control cells. In contrast, the level of PKCδ located on the gel at approximately 480 kDa was 
reduced by 72% (P < 0.01) in BTHS lymphoblasts compared to age-matched control cells [Figure 2B]. Thus, 
BTHS lymphoblasts exhibit elevated expression of PKCδ but reduced PKCδ associated with a higher 
molecular weight complex in mitochondria.

Since oxidative phosphorylation is impaired in BTHS B lymphoblasts[9], it is possible that enhanced creatine 
uptake may occur as a compensatory mechanism to maintain energy metabolism as observed with other 
metabolites such as glucose[17]. Control and BTHS lymphoblasts were incubated with [14C]Creatine for up to 
60 min and radioactivity incorporated into cells determined. [14C]Creatine incorporation into BTHS 
lymphoblasts was markedly elevated compared to control cells [Figure 3]. Thus, BTHS lymphoblasts exhibit 
enhanced creatine uptake.

DISCUSSION
BTHS is a rare X-linked genetic disease and is the only known disease in which the specific biochemical 
defect is a reduction in CL and accumulation of MLCL[1-3]. We observed a reduction in all major molecular 
species of CL in BTHS lymphoblasts accompanied by a > 20-fold elevation in trioleoyl-MLCL. Previous 
studies demonstrated an increase in abnormal mitochondrial mass in BTHS patient lymphoblasts[7,8]. We 
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Figure 2. BTHS lymphoblasts exhibit reduced PKCδ associated with a higher molecular weight complex in mitochondria. Mitochondrial 
fractions were prepared from age-matched control and BTHS lymphoblasts and subjected to BN-PAGE followed by immunoblot analysis 
of PKCδ. (A) Age-matched control (lanes 1, 3, 5 and 7); BTHS lymphoblasts (lanes 2, 4, 6 and 8). Molecular mass markers are in the first 
lane and indicated on the left. (B) Densitometry quantification of PKCδ.

Figure 3. BTHS lymphoblasts exhibit elevated creatine uptake. Control (closed symbols) and BTHS (open symbols) B lymphoblasts 
were incubated with [14C]Creatine for up to 60 min and radioactivity incorporated into cells determined. Data represent the mean + SD, 
n = 4. *P < 0.001.

confirmed this observation in our BTHS patient lymphoblasts through an increase in mitochondrial citrate 
synthase activity.

BTHS lymphoblasts exhibit impaired oxidative phosphorylation, elevated oxidative stress, and increased 
reactive oxygen species[8,9]. It was recently demonstrated that accumulation of MLCL in several BTHS 
models forms a peroxidase complex with cytochrome c capable of oxidizing polyunsaturated fatty acid-
containing lipids[20]. The authors of that study showed that accumulation of MLCL facilitates the formation 
of anomalous MLCL-cytochrome c peroxidase complexes and hypothesized that peroxidation of 
polyunsaturated fatty acid phospholipids is the primary pathogenic mechanism of BTHS. Indeed, oxidative 
stress is known to induce the expression of PKCδ[21]. We observed increased protein expression of 77.5 kDa 
PKCδ in the mitochondria of BTHS lymphoblasts compared to controls. The elevated PKCδ levels observed 
might serve as a compensatory mechanism to increase ATP production in BTHS cells through PKCδ 
signaling[12]. Additionally, elevated expression of PKCδ promotes mitochondrial proliferation[21]. As 
indicated above, abnormal proliferation of BTHS lymphoblast mitochondria has been observed 
previously[7,8]. Phosphorylation of PKCδ is required for its activation[13]. We previously observed an 
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alteration in the phosphorylation of PKCδ in BTHS lymphoblasts[15]. Hence, altered phosphorylation of 
PKCδ might contribute to an attenuated mitochondrial PKCδ signaling in these cells.

The molecular components that mediate PKCδ signaling in mitochondria are beginning to emerge. 
Mitochondria contain a high molecular weight functional complex, which includes cytochrome c as the 
upstream driver of PKCδ, and it uses the adapter protein p66Shc as the assembly platform with vitamin A 
(retinol)[12,14,22]. All four partners are required for functional PKCδ signaling. BN-PAGE immunoblot analysis 
of mitochondrial proteins not only has the advantage of probing for expression of individual proteins but 
may additionally be used to detect if these proteins are associated with higher molecular weight complexes. 
Using this approach, we observed a reduction in PKCδ associated with a higher molecular weight complex 
in BTHS B lymphoblasts mitochondria. It is possible that the decreased association of PKCδ with the high 
molecular weight complex was associated with accumulation of MLCL in our BTHS lymphoblasts and that 
the increased ratio of MLCL to CL may affect inner membrane structural integrity such that the high 
molecular weight complex dissociates. Previous studies have demonstrated that MLCL-protein interactions 
compromise the stability of the protein-dense mitochondrial inner membrane[23].

The PKCδ/retinol complex signals the pyruvate dehydrogenase complex for enhanced flux of pyruvate into 
the Krebs cycle[12,14]. Interestingly, in the UK BTHS NHS clinic, almost half of the BTHS boys examined 
showed signs of Vitamin A deficiency (Nicol Clayton: https://www.youtube.com/watch?v=wNDr_oCTJ7A). 
However, supplementation with Vitamin A did not increase plasma levels. This was not because tissue levels 
were low but possibly due to increased levels of Vitamin A (retinyl esters) in chylomicrons. It is possible 
that this unique observation is coupled to defective mitochondrial PKCδ signaling, which might contribute 
to reduced ATP production in the Krebs cycle through alteration in the mitochondrial PKCδ/retinol 
signaling complex and contribute to the multitude of bioenergetic defects observed in BTHS. However, it is 
unknown whether the decreased association of PKCδ within the high molecular weight complex in Barth 
Syndrome is a cause of mitochondrial dysfunction or an effect of mitochondrial dysfunction.

Creatine is an important energy metabolite that is used as an energy buffer. Impaired mitochondrial 
oxidative phosphorylation, as seen in BTHS, may require increased energy demand from alternative sources 
such as ATP synthesis from enhanced glucose uptake and oxidation or ATP resynthesis from ADP and 
phosphocreatine. Interestingly, creatine supplementation has been shown to increase glucose uptake and 
oxidation and adenosine monophosphate kinase (AMPK) phosphorylation in skeletal muscle cells[24]. We 
previously reported that increased AMPK phosphorylation and its activation accompanied elevated glucose 
uptake in BTHS B lymphoblasts[17]. Enhanced glucose uptake in TAFZZIN-deficient cells may additionally 
be linked to the upregulation of pyruvate dehydrogenase 4 mediated through AMPK activation and 
transcriptional upregulation by forkhead box protein O1[25]. Moreover, creatine kinase has been shown to be 
mildly elevated in the plasma of some BTHS patients[26]. Thus, enhanced creatine uptake might be required 
to support phosphocreatine generation if creatine kinase was depleted in cells of these patients. In the 
current study, creatine uptake was significantly enhanced in BTHS B lymphoblasts compared to controls. 
Interestingly, the human creatine transporter (CRTR) gene was shown to be localized on Xq28 and, at one 
time, was hypothesized to be a candidate gene for BTHS and infantile cardiomyopathy[27]. However, a 
subsequent study by Sylvia Bione identified the actual locus of the human TAFAZZIN gene to be 
Xq28.12[28]. Whether creatine supplementation improves the health of BTHS patients is unknown. A 
previous study indicated that creatine supplementation in humans improved performance during exercise 
of high to maximal intensity[29].

https://www.youtube.com/watch?v=wNDr_oCTJ7A
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It would be intriguing to examine creatine uptake and whether localization of PKCδ within a higher 
molecular weight complex in mitochondria is impaired in cells of multi-system mitochondrial disease 
patients with CL synthase (CRLS1) dysfunction in which loss of CL and phosphatidylglycerol accumulation 
results in fragmented mitochondrial morphology and bioenergetic dysfunction[30]. This might address 
whether the accumulation of MLCL is responsible for our observations.

Although much has been learned on regulation of cellular metabolism and the immune response from 
Epstein-Barr virus transformed B lymphoblasts since the discovery of the first human tumor virus by 
Epstein, Achong and Barr 60 years ago[31], caution should be exercised in interpretation of our results as the 
transformed nature of these cells has been shown to modify both expression and alternative splicing of host 
cell genes[32,33].

CONCLUSION
We conclude that impaired localization of PKCδ within a higher molecular weight complex in mitochondria 
may contribute to the bioenergetic defects observed in BTHS B lymphoblasts and enhanced creatine uptake 
may serve as a compensatory mechanism for the defective mitochondrial oxidative phosphorylation 
observed in these cells.
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