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Abstract
Introduction: Mice harboring a D257A mutation in the proofreading domain of the mitochondrial DNA polymerase, 
Polymerase Gamma (POLG), experience severe metabolic dysfunction and display hallmarks of accelerated aging. 
We previously reported a mitochondrial unfolded protein response (UPTmt) - like (UPRmt-like) gene and protein 
expression pattern in the right ventricular tissue of POLG mutant mice.

Aim: We sought to determine if POLG mutation altered the expression of genes encoded by the mitochondria in a 
way that might also reduce proteotoxic stress.

Methods and Results: The expression of genes encoded by the mitochondrial DNA was interrogated via RNA-seq 
and northern blot analysis. A striking, location-dependent effect was seen in the expression of mitochondrial-
encoded tRNAs in the POLG mutant as assayed by RNA-seq. These expression changes were negatively correlated 
with the tRNA partner amino acid’s amyloidogenic potential. Direct measurement by northern blot was conducted 
on candidate mt-tRNAs identified from the RNA-seq. This analysis confirmed reduced expression of MT-TY in the 
POLG mutant but failed to show increased expression of MT-TP, which was dramatically increased in the RNA-seq 
data.

Conclusion: We conclude that reduced expression of amyloid-associated mt-tRNAs is another indication of 
adaptive response to severe mitochondrial dysfunction in the POLG mutant. Incongruence between RNA-seq and 
northern blot measurement of MT-TP expression points towards the existence of mt-tRNA post-transcriptional 
modification regulation in the POLG mutant that alters either polyA capture or cDNA synthesis in RNA-seq library 
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generation. Together, these data suggest that 1) evolution has distributed mt-tRNAs across the circular 
mitochondrial genome to allow chromosomal location-dependent mt-tRNA regulation (either by expression or 
PTM) and 2) this regulation is cognizant of the tRNA partner amino acid’s amyloidogenic properties.

Keywords: Cardiac aging, mt-tRNA, UPRMT, POLG

INTRODUCTION
Mitochondrial function and mitochondria-derived signals play central roles in many pathologies, including 
those associated with aging. Several mitochondrial diseases in humans are attributed to mutations in the 
mitochondrial DNA polymerase, Polymerase Gamma (POLG) (reviewed in[1]). Mouse models recapitulating 
these POLG mutations display severe metabolic dysfunction and accelerated aging phenotypes including 
hair loss, weight loss, brittle bones, cardiac dysfunction, and early mortality[2-9].

We recently reported evidence for a pattern of protein and nuclear-encoded gene expression similar to the 
mitochondrial unfolded protein response (UPRmt) in the POLG D257A mutant mouse[10]. POLG lacks 
proofreading capacity in this mutant, resulting in reduced mitochondrial DNA integrity[11] and severe 
dysfunction. In mammals, building on well-characterized pathways in lower-level organisms (e.g., 
C. elegans), UPRmt is thought to be activated when mitochondrial dysfunction impedes the ability of the 
mitochondria to import AFT4/ATF5/CHOP which then become available to enter the nucleus and function 
as transcription factors. A host of nuclear-encoded genes are then activated that sum to reduce 
mitochondrial dysfunction by reducing proteotoxic stress (increase expression of mitochondrial chaperones 
and proteases), reducing reactive oxygen species, increasing mitochondrial protein import, and activating 
innate immunity (reviewed in[12,13]). Our previous analysis of the POLG mutant indicated post-
transcriptional activation of proteins associated with mitochondrial protein expression and complex 
assembly along with decreased expression (mRNA and protein) of metabolic complex subunits[10]. Thus, the 
UPRmt-like response in POLG does not completely recapitulate UPRmt but is a pattern consistent with 
reducing proteotoxic stress similar to UPRmt. For instance, POLG mutants show increased protein 
expression of mitochondrial proteases (AFG3L2, PMPCB), mitochondrial ribosomal proteins (MRPS30, 
MRPL21, MRPL37, MRPS14, DAP3), translation regulators (ATAD3A, EEFA1A, GUF1), mitochondrial 
chaperones (PHB1, PHB2, PET100, STOML2), enzymes required for protein folding (PPIB, TMX1), 
mitochondrial protein importers (TOMM40, MTX1), and factors necessary for complex assembly (ECSIT, 
DNAJC11, COQ4, COA3, COA5)[14]. Given the presence of rRNAs and tRNAs in the mitochondrial 
genome, we sought to determine if POLG mutation altered the expression of genes encoded by the 
mitochondria in a way that might also reduce proteotoxic stress.

MATERIALS AND METHODS
Animals
As reported in[10], PolG D257A mutant mice were acquired from the Jackson Laboratory (B6.129S7(Cg)-
Polgtm1Prol/J, deposited by Dr. Tomas A Prolla) and housed in the Davis Heart and Lung Research 
Institute vivarium. Wild type (WT) and homozygous POLG D257A mutants (POLG) were generated by 
heterozygous breeding. Animals were maintained on a 12:12 light:dark schedule and had free access to 
water and food (Teklad 7012). All animal care and experimental procedures were in accordance with the 
Ohio State University IACUC and NIH ethical use of animal guidelines. All samples included in this 
analysis were from female mice at 9-10 months of age.
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RNA sequencing and analysis
RNA sequencing and analysis through differential expression were performed as reported in[10]. Briefly, 
Poly(A) RNA sequencing library was prepared from DNAse treated RNA from flash frozen RV tissue 
[female WT (4) and POLG (4) at 9-10 months of age] following Illumina's TruSeq-stranded-mRNA sample 
preparation protocol. Paired-ended sequencing was performed on Illumina's NovaSeq 6000 sequencing 
system. Reads were mapped to MM10 with HISAT2[15] assembled and normalized in StringTie[16]. Global 
differential expression analysis was conducted in EdgeR[17]. Normalized gene expression values (generated 
with Stringtie) for genes encoded by the mitochondrial DNA were recovered from transcriptome-wide 
RNA-seq data. A t-test was used to compare the expression between control and POLG mutant RVs. We 
also considered the edgeR calculated p value from the global RNA-seq analysis and is reported together with 
the t-test value in Supplementary Table 1. These tests weigh the magnitude of change and within-group 
variability differently (edgeR does not consider within-group variability). Genes showing expression 
changes of P < 0.05 by t-test and P < 0.05 by edgeR or P < 0.1 by t-test and P < 0.0001 by edgeR were 
determined to be significantly changed. Library generation, sequencing, and initial differential expression 
analysis was conducted by LC Sciences (Houston, TX).

mt-tRNA northern blot
Cardiac tissue was homogenized in TRIzol using a tissue homogenizer (Next Advance). Total RNA was 
then isolated using the TRIzol-chloroform method. RNA was precipitated with isopropanol and washed 
with ethanol. A total of 2 μg of RNA was resuspended in RNA urea loading dye, dissolved in 8M urea 8% 
polyacrylamide gels (80 V, 150 min), and electroblotted (80 V at 4 °C, 90 min) into Zeta-probe nylon 
membranes (Bio-Rad). The membrane was then UV-cross-linked for 1 min. DNA oligonucleotides in 
reverse complementarity to the tRNA were radioactively labeled with 32P γ-ATP. Northern blot 
hybridization was performed according to manufacturer specifications (Bio-Rad) using the 32P-labeled 
oligonucleotides. After hybridization, membranes were exposed overnight to a phosphorimager screen. 
Blots were analyzed using a Typhoon FLA 9000 scanner and the ImageQuant TL software (GE Healthcare). 
The following probes were used for Northern hybridization[18]:

MT-TP TCAAGAAGAAGGAGCTACTCCCCACCACCA,

MT-TY TGGTAAAAAGAGGATTTAAACCTCTGTGTT,

MT-TL1 TATTAGGGAGAGGATTTGAACCTCTGGGAA.

Statistics
Statistical analysis was conducted in GraphPad Prism v7.05 using linear regression and t-test functions. All 
t-tests were unpaired and two-tailed.

RESULTS
POLG mutant-induced gene expression changes in mitochondria-encoded genes
Expression values for mitochondria-encoded genes were recovered from whole genome RNA-seq data 
generated from WT and POLG mutant mouse right ventricular cardiac tissue [Figure 1A] and are displayed 
in heatmap format [Figure 1B]. Seventeen of the 37 mitochondrial genes showed significant expression 
changes in the POLG mutant compared to WT control mice [Supplementary Table 1]. Importantly, gene 
expression changes were not unidirectional. Among non-tRNA genes, we observed robustly increased 
expression of rRNAs (mt-Rnr1 and mt-Rnr2) and increased expression of cytochrome C oxidase subunit I 
(mt-Co1) and NADH dehydrogenase subunit 5 (mt-Nd5). Cytochrome b (mt-Cytb) showed a modest but 
significant reduction in expression in the POLG mutant.

jca3026-SupplementaryMaterials.pdf
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Figure 1. Polymerase gamma mutation drives altered mitochondrial gene expression in the cardiac right ventricle. Experimental workflow 
is depicted (A). Row normalized expression of the 37 mitochondria encoded genes is shown in heatmap format (B). Twelve of the 
22 mt-tRNAs showed altered expression in the POL mutant (C).

Remarkably, 12 of 22 mt-tRNAs were significantly altered in the POLG mutant [Figure 1C]. When the 
expression of these mt-tRNAs in POLG mutant vs. WT mice is displayed along the mitochondrial genome 
(circular), a striking location-dependent pattern emerges [Figure 2]. Specifically, 4 clusters of mt-tRNAs 
were identified for which the expression of the mt-tRNAs in the cluster moved in the same direction during 
mitochondrial stress. Cluster 1 holds MT-TP (encoding tRNA proline) and MT-TT (tRNA threonine), both 
of which are significantly activated in the mutant. Cluster 2 holds MT-TL2 (tRNA leucine 2), MT-TH 
(tRNA histidine), and MT-TS2 (tRNA serine 2), which all show decreased expression (MT-S2 did not meet 
significance criteria). Cluster 3 holds MT-TD (tRNA aspartic acid) and MT-TS1 (tRNA serine 2) which 
increased expression (MT-TD did not meet significance criteria). Cluster 4 holds MT-TW (tRNA 
tryptophan), MT-TA (tRNA alanine), MT-TY (tRNA tyrosine), MT-TN (tRNA asparagine), and MT-TC 
(tRNA cysteine), all of which showed decreased expression.

Mitochondrial genes are expressed from only two transcription start sites (the existence of a third, alternate 
HSP is controversial) and specific genes are spliced from the larger transcript containing up to 25 genes 
(reviewed in[19]). To determine if alternate promoter usage could explain the expression differences observed 
in the POLG mutant, log2FC expression changes were examined for each gene expressed by the available 
promoters, HSP and LSP [Figure 3]. No pattern of promoter-specific effect could be identified.
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Figure 2. Chromosomal location-specific effect of POLG mutation on mt-tRNA expression as measured by RNA-Seq. Expression of 
clustered mt-tRNAs in WT and POLG mutant mice is presented in relation to location of encoding within the mitochondrial genome. A 
pattern of 4 local clusters of mt-tRNAs emerges where each mt-tRNA in the cluster shows similar changes in gene expression in 
response to POLG mutation (center depiction of mitochondrial chromosome derived in BioRender).

Figure 3. POLG-dependent changes in mitochondrial gene expression are not associated with promoter usage. Genes are depicted 
based on expression from mitochondrial promoters HSP (A) and LSP (B). Descriptor column provides information related to gene 
function. Log2FC in POLG mutant relative to control RV tissue show opposite direction of gene expression regulation from the same 
promoterr.



Page 6 of Bayazit et al. J Cardiovasc Aging 2023;3:41 https://dx.doi.org/10.20517/jca.2023.2610

Investigation of amino acid properties for mt-tRNAs that showed altered expression by RNA-seq
Large bodies of literature report amino acid characteristics relative to the propensity to form protein 
aggregates and beta-amyloid structures (recent reviews available, e.g.,[20-22]). More recently, increased 
understanding has been gleaned by studying the amino acid residues in protein disordered regions. Amino 
acid characteristics in these disordered regions appear to strongly influence non-specific protein 
interactions that give rise to aggregate formation[23]. Mt-tRNA fold change values for those significantly 
altered in the POLG mutant were plotted against a series of amino acid characteristic scores developed for 
the study of protein aggregation. The fold changes for the mt-tRNAs showed a significant negative 
correlation with two scores that are indicative of the amino acid’s amyloidogenic potential 
[Figure 4A and B[24]]. As measured by RNA-seq, POLG mutants increased the expression of mt-tRNAs for 
benign amino acids and decreased the expression of mt-tRNAs for amyloidogenic amino acids. Consistent 
with this notion, the mt-tRNA fold changes showed a positive correlation to amino acid Contact Potential 
Sum [Figure 4C[25]] and Side Chain Orientation (Figure 4D[26] as reported in[27]), which are associated with 
specific protein interactions. Further, the average FoldAM triple hybrid score was significantly lower for 
partner amino acids of mt-tRNAs that showed increased expression relative to those that showed decreased 
expression [Figure 4E].

Direct measurement of select mt-tRNAs identified as significantly altered by RNA-seq
Three mt-tRNAs were selected for measurement by northern blot in cardiac tissue [Figure 5]. Analysis of 
the left ventricle was included to determine if any patterns observed in the right ventricle [Figure 4A and B] 
would be conserved in the left ventricle [Figure 4C and D], which has a different developmental origin and 
experiences different hemodynamics[28]. MT-TL1 served as a control as it showed no changes in expression 
in the POLG mutant by RNA-seq. As expected, MT-TL1 showed no significant expression changes in the 
POLG mutant. Similarly, MT-TY showed reduced expression in the POLG mutant RV and LV tissues, 
consistent with RNA-seq.  MT-TP, however, did not show any significant change in the POLG mutant, 
indicating that the dramatically increased MT-TP expression seen in RNA-seq reflected changes in cDNA 
library generation that were not indicative of actual expression.

DISCUSSION
There is a clear link between mitochondrial dysfunction and protein aggregation in age-related diseases, 
including Parkinson’s, Huntington’s, Alzheimer’s, and heart failure[29-31]. Nearly all preclinical accelerated 
aging models show mitochondrial dysfunction and protein aggregation. In the POLG mutant, RNA-seq 
suggests activation of an adaptive mechanism to limit protein aggregation by shifting mt-tRNA expression 
towards non-amyloidogenic amino acids. We also suggest that evolution has distributed mt-tRNAs into 
clusters that allow chromosomal location-dependent regulation, potentially in relation to a mechanism to 
buffer mitochondrial proteotoxicity. Northern blot recapitulated RNA-seq observed decreased expression of 
MT-TY, validating the notion that the mitochondria reduce the expression of mt-tRNAs corresponding to 
amino acids of higher amyloidogenic potential in the POLG mutant. Failure, however, of the northern blot 
to confirm increased expression of MT-TP complicates interpretation. Given that our RNA-seq 
measurement is dependent on both polyA capture (mt-tRNAs are poly-adenylated) and cDNA synthesis, 
we speculate the existence of a post-transcriptional modification on mt-tRNA (either added or removed in 
the POLG mutant) that dramatically influences the ability of the mt-tRNA to be measured in RNA-seq. 
Accordingly, increased MT-TP RNA-seq measurement in the POLG mutant may be due to a reduced tRNA 
modification that improves sequencing efficiency. There are at least 18 types of RNA modifications found at 
137 positions in the 22 human mt-tRNAs[32]. It is known that m1A9, m1G9, m1G37 and m1A58 
modifications confer hard stops in the sequencing of mitochondrial tRNAs[33].
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Figure 4. POLG-dependent changes in mt-tRNAs are negatively correlated with amino acid amyloidogenic potential. Log2FC values for 
significantly altered mt-tRNAs in the POLG mutant (X-axis) were plotted against a series of amino acid characteristic scores (Y-axis) 
used for predicting amino acid contributions to protein aggregation and beta-amyloid formation (A-D). Linear regression analysis 
confirms significant negative correlation with FoldAM triple hybrid and regular scoring criteria (A and B). There was a positive 
correlation with the AA's sum contact potential value (C) and side chain orientation scores (D). These scores can be indicative of the 
AA's propensity to mediate specific protein:protein interactions. As another validation, group analysis (t-test) confirmed lower FoldAM 
triple hybrid score for mt-tRNAs that showed significantly increased vs. decreased expression in the POLG mutant (E).

This work does have limitations. First, the current study did not sequence the mitochondrial genome for 
mutation analysis. Analysis of the mitochondrial mutation landscape in the D257A mutant has been 
somewhat inconsistent, likely due to both technical challenges and heterogeneity. Using a custom technique 
termed Mito-seq, Williams et al. conducted an in-depth analysis of mutations in the heart, brain and liver of 
D257A mutants. While a detailed overlay of mutation data with our expression values was not 
accomplished, it is important to note that mt-tRNA cluster 1 (MT-TP, MT-TT) closely aligns with an area 
identified as potentially prone to accumulation of copy number variants or control region multimers in the 
POLG mutant due to proximity to the origin for replication[11].

Analyzing mitochondrial gene expression by RNA-seq is not common. This may be due to early RNA-seq 
and microarray analysis pathways being based on nuclear-enriched RNA and the presence of mitochondrial 
reads indicating poor nuclei isolation. In addition, high mitochondrial read content could indicate apoptosis 
as cleaved mitochondrial DNA could co-purify with RNA. Another aspect of this discussion is that many 
commonly used pipelines and practices in transcriptome-wide expression quantification were developed for 
cancer research where mitochondria content is far lower than in cardiac tissue. For instance, the 
mitochondrial content of adult cardiac tissue has been reported to range from ~7,000 - ~17,000 mtDNA 
copies per diploid nuclear genome[34,35]. Contaminating mtDNA in the RNA isolation was a consideration in 
this study, though we do not see it as likely given the DNase treatment of the isolated RNA and non-
uniform directionality of altered gene expression in the POLG mutant.
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Figure 5. Northern blot analysis of candidate mt-tRNAs identified from RNA-seq analysis. Three mt-tRNAs were selected for 
measurement by northern blot in cardiac RV and LV tissue: (1)MT-TL1 (control, no change in RNA seq); (2) MT-TY (significantly 
decreased in RNA-seq); and (3) MT-TP (significantly increased in RNA-seq). In the RV, MT-TY showed significantly reduced 
abundance in the POLG mutant relative to WT controls (confirming RNA-seq finding) while MT-TP showed no change in abundance 
between the groups [Northern blots shown in (A) and quantified in (B)]. This pattern of mt-tRNA abundance between WT and POLG 
mutants was also present in the LV tissue (C and D).

While testing to determine if this phenomenon occurs in human samples remains a future aim, the 
remarkable conservation of mitochondrial chromosome gene distribution architecture between mice, 
humans, and even zebrafish suggests that location-dependent regulation of mitochondrial genes would also 
be conserved. Interestingly, single-celled eukaryotes, such as yeast, show far less mt-tRNA gene distribution 
across the mitochondrial chromosome, potentially implicating candidate regulatory mechanisms in the 
evolution of multicellular organisms or tissue/organ specialization.

There has recently been much speculation surrounding the potential ability to stimulate the UPRmt as a 
therapeutic strategy in multiple disease contexts. Similarly, it is intriguing to ponder: would manipulation of 
mt-tRNA expression or function based on amyloidogenic/aggregation potential also alter the course of 
disease? The mechanisms by which mitochondria appear to do this endogenously in the face of severe 
mitochondrial dysfunction are unknown. Though mitochondrial gene expression was first observed in the 
1960s, a detailed understanding of dynamic mitochondrial gene regulation, particularly for mt-tRNAs, is 
lacking. The basic processes of RNAse-mediated excision from multi-gene/polycistronic transcripts and 
critical post-transcriptional chemical modifications and amino acid additions are well known (recently 
reviewed in[36]). However, how specific mt-RNAs of different abundance are generated at steady state or in 
response to stress has not been robustly characterized. It is likely these differences arise through a number 
of combined mechanisms that could include regulation of transcriptional efficiency (i.e., more expression of 
genes found early in the transcript), site-specific regulation of RNAse activity for gene excision, regulation 
of specific mt-tRNA CCA sequence addition, regulation RNA post-transcriptional modifications, and RNA 
degradation. All of these factors can be impacted by RNA-binding proteins. Conceptually, this regulation 
could be viewed as mirroring what happens in the nucleus where RNAs can be alternately modified (e.g., 
splicing and chemical modification) based on locally engaged epigenetic modifiers.
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