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Abstract
Crystal plasticity (CP) simulation is a powerful tool for studying and understanding the mechanical behavior of 
materials. A critical aspect of this method is the accurate determination of CP parameters, which ensures that the 
constitutive model accurately represents the real deformation behavior of a material, especially in high-fidelity 
simulations. However, identifying these parameters poses a significant challenge due to the high computational 
cost and the difficulty of finding optimal solutions within a vast and complex parameter space. To address these 
challenges, we propose a fast search strategy that leverages active learning (AL) and experimental data to 
accelerate the optimization of CP parameters. Using the Al-Cu eutectic materials as a case study, we introduced a 
quantitative index, Cecp, to measure the consistency between simulated and experimental stress-strain curves. We 
demonstrated that Gaussian process regression (GPR) serves as the most appropriate surrogate model for relating 
CP parameters and Cecp based on our dataset. After only six iterations guided by AL, the optimal CP parameters 
were successfully identified, resulting in a high-fidelity CP model for analyzing the mechanical behavior of Al-Cu 
eutectic materials. The machine learning-enhanced strategy is far superior to traditional methods in terms of both 
efficiency and accuracy. It advances our understanding of the macro-micro relationships of materials and 
accelerates the material design process.
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INTRODUCTION
Materials design fundamentally relies on the comprehensive understanding and prediction of mechanical 
behaviors. Crystal plasticity (CP) simulation has become a powerful tool for this purpose, offering 
advantages such as low cost and high fidelity in accurately describing complex deformation behaviors across 
various scales[1-4].

The deformation behavior of a material can be elucidated by replicating the stress-strain curve based on 
high-fidelity CP simulation[2,5-8], the accuracy of which hinges on the precise calibration of material 
parameters. For instance, flow rules and hardening behaviors can be represented using physically or 
phenomenologically based expressions, including power-law or hyperbolic sine-type expressions[9,10]. These 
kinematic descriptions involve numerous adjustable material parameters that cannot be directly obtained 
from experiments. Utilizing imprecise parameters may lead to misleading predictions of mechanical 
properties from the stress-strain curve, including yield strength, elastic modulus, flow rules, and hardening 
behaviors, posing significant risks in practical applications. Moreover, the strong nonlinear relationship 
between CP parameters and the material’s deformation behaviors complicates the rapid optimization of 
these parameters. Therefore, efficiently identifying the optimal parameters in CP models is an urgent task.

Traditionally, a common approach for CP parameter identification is trial-and-error. Unlike exhaustive 
strategy, this method relies on expert intervention, and it is simplest to implement[2,6,8,11-13]. However, this 
random process often requires an unexpected amount of time and computational resources, making it 
challenging to find a global optimum quickly, especially with a large number of CP parameters. Inverse 
analysis is another commonly used approach. It utilizes experimental mechanical data to establish a 
mathematical function linking deformation behavior and CP parameters, which is then used to determine 
the optimal parameters. Typically, the solution of this function is non-unique, and various optimization 
methods are applied to find the best one. Guery et al. proposed a cost function based on two least squares 
criteria to correlate microstructural displacement fields with macroscopic stress, achieving a unique solution 
using a weighted finite element model[14]. However, the process can become ill-conditioned with even minor 
input changes. Additionally, it is generally suitable for optimizing 2-3 parameters. To identify more 
parameters in the CP model, Chakraborty et al. determined four adjustable parameters in the CP 
constitutive law for the face-centered cubic lattice structure by minimizing the deviation between the 
measured and simulated indentation response of individual grains[15]. They used a Nelder-Mead simplex 
algorithm to overcome the influence of crystal orientation on parameter selection. However, the 
applicability of this method remains unclear for more complex material structures, such as anisotropic 
crystals. Subsequently, Cauvin et al. identified the CP parameters of a Zn-Cu-Ti alloy, which exhibits highly 
anisotropic behavior, by an inverse analysis that compared the simulated and experimental results in terms 
of obtained tensile curves along three different directions[16]. They used the covariance matrix adaptation-
evolution strategy genetic algorithm to ensure the solution uniqueness of the inverse problem. Compared to 
trial-and-error, inverse analysis is indeed more efficient. However, it requires a specific mathematical 
function for the inverse problem, which is often inadequate for multidimensional parameter selection in 
simulations of complex structures.

To avoid the randomness in selection and to establish the relationship between multidimensional 
parameters and the reliability of CP simulation for complex structures, it is necessary to explore a more 
intelligent approach capable of high-dimensional nonlinear modeling. Active learning (AL), an emerging 
machine learning paradigm, has great potential for efficiently addressing these issues[17-19]. It has been widely 
applied in the composition design of complex multi-element alloys, including high-entropy alloys[20,21], high-
temperature alloys[22], steels[23,24], and perovskites[25,26]. Its effectiveness in achieving global optimization 
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solutions from vast search spaces has been demonstrated. It is noteworthy that the parameter search in CP 
models is essentially analogous to the composition design, and the relationship between CP input 
parameters and the simulation output results of complex structures exhibits high-dimensional, nonlinear 
characteristics, which is an area where machine learning excels[27-31]. Recently, Goswami et al. and 
Samaniego et al. employed a neural network to quantitatively analyze the influence of all uncertain input 
parameters on all uncertain output parameters[32,33]. They also build a unified framework for optimization 
and inverse analysis and design. Although neural networks are expected to effectively optimize the CP 
parameters, their performance is highly dependent on the availability of extensive data, and their 
effectiveness in cases with sparse data sets is somewhat limited. Therefore, identifying a suitable approach to 
quickly optimize CP parameters remains a challenge in CP modeling.

In this study, we propose a fast parameter optimization strategy for CP simulation leveraging AL and in-situ 
experiments. Using Al-Cu eutectics as a case study, we establish a quantitative index that reflects the 
discrepancies between experimental and simulated stress-strain data. Then, we establish the relationship 
between the index and CP parameters using a high-precision machine learning model. Through several 
iterations, we identify the optimal CP parameters and examine the consistency between the simulations 
with these parameters and experimental data. Finally, we analyzed the mechanical behavior of Al-Cu 
eutectic materials. We believe this strategy proposed in this study can efficiently elucidate the macro-micro 
relationships of materials and accelerate materials design.

METHODS
Material preparation and characterization
A bulk directional solidification sample of Al-Cu alloys with 17.39 at.% Cu was initially prepared in a 
vacuum induction melting furnace, employing metal raw materials with a purity of 99.99%. A tensile 
specimen was then extracted from the bulk sample, and its schematic is depicted in Figure 1A, where the 
long axis is along the withdrawal direction of directional solidification. Macroscopic stretching of the 
specimen was conducted along the withdrawal direction of directional solidification (x-axis) with an initial 
strain rate of 10-4 s-1 using a TSMT EM6.504 tensile testing machine to obtain its macroscopic stress-strain 
curve, as shown in Figure 1B. Note that the starting point of the engineering stress-strain curve in Figure 1B 
does not originate from (0, 0). This is due to the fact that the initial force setting of the force sensor used in 
the testing procedure typically starts recording data when the force exceeds 54 N. Furthermore, Wei et al. 
and Ebrahimi et al. have also conducted tensile tests on materials using the same experimental equipment, 
and their stress-strain curves similarly do not originate from (0, 0)[34,35]. Their results proved evidence for the 
reliability of the experimental results obtained in this study. Additionally, it should be noted that all stress-
strain curves presented in this study are of the engineering stress-strain curves. Furthermore, an in-situ 
tensile specimen was fabricated via electro-discharge machining with a gauge length of 8.0 mm, width of 
3.2 mm and thickness of 1.0 mm, and its microstructure was observed using a TESCAN MIRA3 field 
emission scanning electron microscope (SEM), as shown in Figure 1C. The specimen was subsequently 
ground and finely polished using colloidal silica. A mono-layer of SiO2 nanoparticles was then deposited on 
the specimen surface using the drop-casting technique[36] to ensure a dense and uniform speckle 
morphology, and Figure 1D displays an example of an emission scanning electron microscope and 
microscopic-digital image correlation (SEM-DIC) speckle image. The microscopic deformation behavior 
was observed through in-situ tensile testing, with the specimen being deformed at an initial strain rate of 1 × 
104 s-1 in a Kammrath & Weiss tensile stage. The parameters of the Kammrath & Weiss system can be found 
at https://www.kammrath-weiss.com/en/tensile-compression-modules/. After testing, the local strain 
distribution was analyzed using the GOM Correlate software, and details of the local strain distribution will 
be analyzed in Section “Sensitivity analysis between CP parameters and simulation output”.

https://www.kammrath-weiss.com/en/tensile-compression-modules/
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Figure 1. (A) Schematics of the uniaxial tensile specimen, where the long axis is the directional solidification direction; (B) The 
engineering stress-strain curve of the tensile specimen; (C) Microstructure in the directional growth direction of the specimen; (D) An 
example of SEM-DIC speckle image (C). SEM-DIC: Scanning electron microscope and microscopic-digital image correlation.

CP model
To predict the deformation behavior of Al-Cu eutectic materials, the polycrystalline elasto-viscoplastic CP
model proposed by Lebensohn et al. was employed. In this study, we introduced the model briefly, and the
details were seen in the literature[37-40].

For an elastoplastic issue, the total strain for a system εij
t(x) can be decomposed into two parts: elastic strain

εij
e(x) and plastic strain εij

p(x). Using Euler implicit time discretization and Hooke’s law, the total strain at
point x with t + Δt can be expressed as

(1)

-1  represents the inverse of the elastic tensor Cijkl. The constitutive relation between the plastic
strain rate εij

p(x) and the stress σkl is given by the classic incompressible rate-dependent CP equation:

(2)

where γs(x) and γ0 are the shear rate and reference shear rate, respectively. mij
s(x) is symmetric Schmid tensor

with slip system s at point x, n is the stress exponent, τ0
s(x) is the critical shear stress (CRSS) of the slip

system s, and the symbol “:” represents double contraction of indices.

where Cijkl



Jiang et al. J Mater Inf 2024;4:22 https://dx.doi.org/10.20517/jmi.2024.31 Page 5 of 22

To solve Equation (2) efficiently, the algorithm of fast Fourier transform (FFT) is employed. In the FFT 
algorithm, the local deformation response of heterogeneous materials can be expressed by convoluted 
integrals between the Green function of a linear reference medium and a fluctuating polarization field. 
Thus, using the stiffness of a linear reference medium and a displacement gradient uk,l(x), the stress can be 
expressed as:

(3)

(4)

here, φ(x) is the polarization field, and the local strain field εkl(x) = (uk,l(x) + uk,l(x))/2. When the stress 
equilibrium is reached, σij,j(x) = 0, one can obtain:

(5)

As the polarization field described by Equation (5) is a function of an unknown strain field, some iterative 
procedures are required to solve them. To ensure the effectiveness and stability of solving during iteration, 
the augmented Lagrangian scheme[41] proposed by Michel was applied. In this scheme, two auxiliary fields λ 
and e were introduced, in which λij

(i) and eij
(i) represent auxiliary guess stress field and strain fields at the i-th 

iteration, respectively. The polarization field can be rewritten as:

(6)

Thus we obtain:

(7)

The augmented Lagrangian scheme is suitable for solving Equation (7), which requires the elimination of a 
residual (R) for each material point x. The residual R is a function of the stress field σi+1 constitutively related 
to the strain field εi+1:

(8)

Note that, for convenience, in Equation (8), the residual is represented by the contraction symbol for 
symmetric tensors. For example, σij → σk, k = 1, 6; Cijmn → Ckl, k, l = 1, 6, and so on. The nonlinear Equation 
(8) is solved using a Newton-Raphson (N-R) method, that is:

(9)

Combing Equations (8) and (1), the Jacobian in Equation (9) can be provided as:

(10)
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The derivative on the right-hand side of Equation (10) is the tangent compliance of Equation (2). Due to the 
dependence of plastic strain on the stress, the CRSS is a function of stress τ0

s(εp(σij(x)) = τ0
s(σij(x)). The 

approximate expression for this tangent compliance is:

(11)

Combining Equations (10) and (11), an approximate Jacobian can be given as[37]:

(12)

Despite this approximation, the convergence rate is almost unaffected even in the case of strain hardening, 
compared to the case of without hardening.

According to the expression of the Jacobian in Equation (11), different hardening laws are obtained. For the 
strain hardening behavior of Al-Cu eutectics, the CRSS evolution of each slip system is a function of the 
total accumulated shear strain[37]:

(13)

Where H is a positive scalar related to the strength of the work-hardening behavior. Note that the hardening 
law employed in this study is phenomenological, and it does not account for dislocation evolution. To 
encompass more intricate dislocation movements, it is essential to couple the dislocation evolution within 
the CP model, including dislocation multiplication and annihilation.

Optimization search methodology
Machine learning
Five commonly used machine learning models - linear regression[42], ridge regression[43,44], support vector 
regression (SVR)[45,46], random forest (RF)[47,48] and Gaussian Process Regression (GPR)[49-51] - were used to 
establish the relationship between CP parameters and mechanical behavior (stress-strain curves). It is 
important to note that both SVR and GPR models use an isotropic radial-base kernel function (RBF-
kernel). The hyper-parameters of the five models were determined by a method of Bootstrap Sampling 
Cross-Validation (BSCV), and the prediction uncertainty of the models was estimated by 1,000 samples.

The performance of these models was quantified by the root mean square error (RMSE), defined as

(14)
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0_Al2Cu, HAl and HAl2Cu. Note that these determined CP

0_Al2Cu Al2Cu

0_Al 2Cu

where μi and μi are the experimental and predicted values at the i-th strain position, respectively. n is the
number of discrete points. The smaller the RMSE, the closer the predictions are to experiments.

To accurately elucidate the relationship between CP parameters and a quantitative indicator Cecp, five
candidate machine learning models - Linear, Ridge, SVR, RF and GPR - were trained, and the best model
was subsequently selected. Here, Cecp is used to evaluate the quality of the CP parameter, which lies in
characterizing the discrepancy between experimental and simulated stress-strain curves. Further details will
be provided in Section “Quantitative evaluation of CP parameter quality”. The hyper-parameter of SVR and
RF was determined through exhaustive search and BSCV. The regularization coefficient (C) and the RBF
kernel’s length related parameter (γ) were identified as the principal parameters for the SVR model; the
number of trees (N) and the maximum tree depth (H) were designated as key parameters for the RF model;
the scale parameter(Length_scale) was primarily emphasized within the GPR model; the determination of
these hyperparameters is shown in Supplementary Figure 1. The optimal hyperparameters for the SVR, RF
and GPR models are listed in Table 1. Figure 2 presents a comparison between the actual and predicted Cecp

by the five models using the initial training set. A significantly larger number of data points deviate from the
diagonal line in Figure 2A and B compared to Figure 2C-E. This observation suggests that the Linear and
Ridge models fail to capture complex relationships between CP parameters and Cecp, unlike SVR, RF, and
GPR models. Furthermore, nearly all sample points in the GPR model are distributed near the diagonal,
underscoring the superior performance of the GPR model relative to other models. Additionally, the RMSE
comparison among the five models, depicted in Figure 2F, reveals that the GPR model achieves the lowest
RMSE, indicating its highest accuracy in predicting Cecp. Consequently, the GPR model was chosen to
construct the AL framework.

Search strategy
According to Equations (2) and (13), most CP parameters can be confirmed from Refs[2,52-55]. Only four
parameters remain to be undetermined: γ0_Al, γ
parameters come from precise experimental measurements, and can be directly used in CP simulations
without the need for calibration. Optimization becomes necessary only for the parameters that are either
unavailable from experiments or cannot be experimentally measured, that is γ0_Al, γ , HAl and H .
Among them, γ0_Al and γ  are related to the dislocation movements of α-Al and θ-Al2Cu,
respectively[37,56,57], while HAl and HAl2Cu  are related to the work-hardening behavior of α-Al and θ-Al2Cu,
respectively[37,57]. Generally, the range of γ0 is from 10-2 to 10-5, with larger values indicating easier dislocation
movement. The range of H is from 0 to 1,000 MPa, with larger values indicating stronger work-hardening
behavior[37,57]. If 10-5 and 10 MPa are the steps of γ0 and H within their respective ranges, then they have 103

and 102 possible values, respectively. Thus, the total number of parameter combinations is 103 × 103 × 102 ×
102 = 1010. Undoubtedly, searching for the optimal combination in such a large space (denoted as Ω in this
study) is a very challenging task. Therefore, we constructed an adaptive framework for CP parameter
optimization by borrowing the concept of AL from the field of alloy composition design. The complete
process of finding the optimal CP parameters in this study is shown in Figure 3.

Part B in Figure 3 illustrates an intelligent framework called AL to guide the iterative refinement of CP
parameters. The main process is as follows:

(1) A total of 26 groups of initial parameters were selected in the search space Ω. Using these parameters, 26
simulated stress-strain curves were generated using the CP model, and the corresponding Cecp values were
calculated.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202411/jmi4031-SupplementaryMaterials.pdf
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Table 1. Optimal hyperparameters for SVR, RF and GPR models

Models Hyperparameters

SVR C = 45, γ = 1.45

RF N = 95�H = 7

GPR Length_scale = 1.85

SVR: Support vector regression; RF: random forest; GPR: Gaussian Process Regression.

Figure 2. Accuracy evaluation of the trained ML models. (A) Linear regression; (B) Ridge regression; (C) SVR; (D) RF; (E) GPR; (F) RMSE 
comparison among the models. ML: Machine learning; SVR: support vector regression; RF: random forest; GPR: Gaussian Process 
Regression; RMSE: root mean square error.

Figure 3. Strategy of CP parameter optimization based on AL. CP: Crystal plasticity; AL: active learning.
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(2) If the maximum Cecp (denoted as Cecp
max )  exceeds 0.99, the corresponding inputs are the optimal CP 

parameters. If not, proceed to the next step.

(3) An appropriate machine learning model f was trained using the initial parameters as inputs and the 
corresponding 26 Cecp data as outputs. The model f was then used to predict Cecp for all parameter 
combinations in Ω, with the mean and variance of each prediction denoted as μ and σ, respectively.

(4) The efficient global optimization (EGO) utility function was applied to select three parameter 
combinations by maximizing expected improvement (EI) across the entire Ω. EI is defined as EI = σ[ϕ(z) + 
zψ(z)], where z = (μ - μ*)/σ, μ* is Cecp

max, and ϕ(z) and ψ(z) denote the standard normal density and 
distribution functions, respectively.

(5) The three selected parameter groups were then used as input to the CP model, and their corresponding 
Cecp values were calculated.

(6) The initial set was updated with the new recommendations. Steps 2-5 were then repeated until Cecp
max > 

0.99, resulting in the identification of the optimal parameter combinations.

It should be noted that the AL strategy above is an adaptive loop that iteratively aligns the CP simulation 
with experimental results by maximizing Cecp. Once the optimal parameters are identified, the resulting CP 
model will have high fidelity. The use of machine learning in this process makes the parameter search 
intelligent and efficient.

Note that the mechanical properties and microstructure of the Al-Cu eutectic alloy at room temperature 
were displayed in Figure 1. In the CP modeling, the experimental microstructure serves as the input of the 
CP model, with comprehensive details provided in Ref[52]. Additionally, the initial configurations and 
material parameters of the CP simulation for the Al-Cu eutectic materials are from Ref[52].

Quantitative evaluation of CP parameter quality
The key to evaluating the quality of the CP parameter lies in characterizing the discrepancy between 
experimental and simulated stress-strain curves. To quantify this discrepancy, we discretized both the 
experimental and simulation curves into 17 data points, ensuring that the horizontal coordinates of each set 
of points were consistent. Then, the determination coefficient R2 was used to assess the consistency between 
discrete experimental and CP simulation data. Notably, to distinguish it from the accuracy evaluation of 
machine learning illustrated in Figure 2, we redefine it as Cecp, that is:

(15)

where μi represents the average of n discrete points. The closer Cecp is to 1, the closer the simulations are to 
the experiments.

To validate the effectiveness of Cecp in assessing CP parameter quality, Figure 4 shows the degree of 
alignment between two examples of simulated stress-strain curves (simulation 1 and simulation 2) and the 
experimental curve. The CP parameters of the two examples are listed in Table 2. Observations from 
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Table 2. Qualitative and quantitative assessment of the degree of agreement between simulation and experiment under two sets of
parameters

0_Al2Cuγ0_Al γ HAl (MPa) HAl2Cu  (MPa) The degree of agreement Cecp

Simulation 1 0.01 0.00001 10 100 Proximity 0.86

Simulation 2 0.007 0.0035 400 900 Deviation 0.65

Figure 4. Example of quantitative evaluation of CP parameters. CP: Crystal plasticity.

Figure 4 revealed that, in the nearly linear portion of the stress-strain curve, the data of Simulations 1 and 2
are in good agreement with the experimental data, demonstrating that the elastic parameters of the
simulations align with those of experiments. This concurrence is attributed to the fact that the elastic
parameters utilized in this study come from experimental measurements. Upon departing from the initial
linearity, the data points from Simulation 2 (Cecp = 0.65) significantly deviate more from the experimental
data than those from Simulation 1 (Cecp = 0.86). This discrepancy implies that the dislocation movements
(reflected by parameters γ0_Al and γ0_Al2Cu) and the work-hardening behavior (reflected by parameters γ0_Al and
γ0_Al2Cu) in Simulation 2 are more deviated from the experiment than that in Simulation 1. Additionally, the
curve of simulation 1 is closer to the experimental curve than that of simulation 2. The Cecp value between
simulation 1 and experiment is 0.86, which is higher than that for simulation 2 (0.65), as shown in Table 2.
This indicates that a higher Cecp value corresponds to a smaller disparity between simulation and
experiment. This further demonstrates that Cecp is indeed a valid metric for quantifying the quality of CP
parameters. In this study, 0.99 is selected as a threshold of Cecp.

RESULTS AND DISCUSSION
Iterative optimization of CP model parameter
At the early stage, a trial-and-error approach was performed to establish an initial training set, as detailed in
the Supplementary Materials. The maximum Cecp in the initial training set is 0.95, indicating that the
simulated stress-strain curve deviates far from the experimental curve. Following the AL framework shown
in Figure 2, we developed a high-precision GPR model, which was utilized to iteratively improve the CP
parameters. It is important to note that when using a GPR-based search strategy to recommend new

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202411/jmi4031-SupplementaryMaterials.pdf
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parameter combinations, the constraint must be met that the parameter γ0_Al2Cu must be less than the 
parameter γ0_Al. This is because, during the deformation of Al-Cu eutectic alloys at room temperatures, the 
activation of dislocations in the θ-Al2Cu phase is more difficult than that in the α-Al phase.

As illustrated in Figure 5, Cecp surpassed 0.99 in just four iterations, and a total of six iterations were 
executed. Detailed recommendations are provided in Table 3. In the first iteration, there is a significant 
difference among the three points, and the maximum Cecp is only 0.86, which is below the threshold. In the 
second iteration, the Cecp values noticeably increase compared to those from the first iteration, and the data 
range significantly reduces. This indicates that the GPR samples are centrally located at a specific position of 
data sparsity in Ω. Notedly, Cecp continues to rise until it reaches 0.99 in the fourth iteration. Interestingly, in 
this iteration, the three sets of CP parameters are very close to each other, suggesting that the global optimal 
may be successfully identified. As there is no more suitable data in Ω to further improve Cecp, its values start 
to decrease from the fifth iteration onward. By the sixth iteration, the data points began to disperse again, 
indicating that the exploration in Ω guided by GPR has resumed to improve the data distribution of the 
training set. Furthermore, the Cecp values of the recommended CP parameters in the 5th and 6th iterations 
are consistently lower than the Cecp value obtained after the 4th iteration, indicating that the optimal CP 
parameters have been identified. Notedly, Cecp values in the 5th and 6th iterations have been over the preset 
threshold of 0.99 but the iteration continues, which is just to make it more intuitive that the CP parameters 
in the 4th iteration are optimal. Additionally, as shown in Table 3, among the set of optimal CP parameters 
that correspond to the maximum Cecp value, the parameter HAl is approximately 100 MPa and HAl2Cu  is 
around 300 MPa. This consistency with the sensitivity analysis presented in Section “Comparative analysis 
between the AL strategy and the typical traditional methods” further confirms the discovery of the optimal 
CP parameters. Since the optimal has been discovered, the iterative search is terminated.

For an AL process that maximizes EI, the initial sparser training data leads to greater prediction uncertainty 
of GPR on the new sample points and increases the randomness of data distribution[58], as shown in the first 
iteration in Figure 5. The prediction accuracy on each recommendation is depicted in Figure 6A. Evidently, 
GPR overestimates the Cecp for the three new sets of CP parameters, resulting in significant prediction errors 
and uncertainties. From the mathematical expression of the utility function EI that is used to recommend 
the next experimental points, it is easy to understand that given a large uncertainty σ, EI → σ. That is, in the 
limit of high uncertainty, EI is maximized by choosing the next best material with the largest uncertainty 
(“exploration”). It represents a region in our search space, where the regressor is most uncertain. Thus, for 
regions not covered by the training data, GPR will also centrally sample in the early stages. Consequently, 
the values of Cecp at the second iteration are almost consistent, but they deviate significantly from the 
predictions, as indicated by the orange points in Figure 6A. Once the training set’s sparse area is filled, 
prediction uncertainty decreases, model accuracy increases, and the search moves closer to the optimal 
solution[58]. On this occasion, EI → μ - μ*, where μ is the predicted average by the machine learning (ML) 
model, μ* is the current maximum value in the training set. This means that in the limit of no uncertainty or 
if uncertainties are almost the same for all points, EI is maximized by choosing the largest μ (i.e., 
“exploitation”). Therefore, the next best material for measurement is chosen by faithfully trusting the 
predictions from the regressor. This conclusion is supported by the trends of the green and red dots (at the 
fourth and fifth iterations) in Figure 6A. After identifying the global optimization, GPR explores other 
sparse regions in Ω, leading to a more dispersed distribution of new sampling points, yet with accurate 
predictions, as shown by the purple and brown spots in Figure 6A. Additionally, Figure 6B shows that EI 
rapidly decreases from the first to the fifth iteration. Once the maximum Cecp has been identified, the 
probability of new recommendations improving upon the best training data is reduced to 0, causing EI to 
drop to 0.
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Table 3. Recommended CP parameters and Cecp by AL

Iteration γ0_Al γ0_Al2Cu HAl (MPa) HAl2Cu  (MPa) Cecp

0.0001 0.0007 640 20 0.51

0.0003 0.0003 640 20 0.81

1

0.0004 0.0002 640 20 0.86

0.01 0.0003 910 20 0.91

0.01 0.0002 910 20 0.91

2

0.01 0.0001 910 20 0.91

0.0005 0.0001 200 400 0.96

0.005 0.0005 1000 1000 0.98

3

0.003 0.0005 400 500 0.96

0.001 0.0005 300 500 0.99

0.001 0.0005 100 200 0.99

4

0.0015 0.0005 300 400 0.99

0.01 0.0048 550 290 0.84

0.01 0.0049 550 290 0.84

5

0.01 0.005 550 290 0.84

0.0005 0.0001 250 710 0.95

0.0001 0.0009 250 710 0.59

6

0.0003 0.0002 250 710 0.88

CP: Crystal plasticity; AL: active learning.

Figure 5. Cecp for the recommendations in a total of six iterations. Iteration 0 corresponds to the initial training data.

Mechanical behavior analysis of Al-Cu eutectic materials
To validate the optimal CP parameters, we next input the parameter into the CP model, obtained a
simulated stress-strain curve, and compared it with the experimental curve. It is crucial to emphasize that,
in this study, the input microstructure for the CP model is firmly based on direct experimental
observations[52]. For quantitative comparisons between the experimental data and the CP simulations, the
horizontal axes of the experimental and simulated stress-strain curves have been aligned. For comparison,
other curves for the best parameter combinations at each AL iteration are also included, as shown in
Figure 7. Note that the CP simulation of a complex stress status with the xy shear deformation has been
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Figure 6. Prediction accuracy and EI variation during the optimization process of CP parameters. (A) Accuracy between actual and 
predicted Cecp; (B) Variation of EI with the number of iterations. EI: Expected improvement; CP: crystal plasticity.

Figure 7. Comparison of simulated and experimental stress-strain curves. The simulations are performed with the best parameter 
combinations at each AL iteration. AL: Active learning.

provided in Supplementary Figure 2 to ensure the validation of the CP simulation. From Figure 7, it is 
evident that the simulated stress-strain curve for the second iteration (orange curve) is closer to the 
experiment (black curve) than that for the first iteration (blue curve). This is also reflected in the 
comparison of the Cecp list in Table 3. Similar patterns can be observed in other curves, demonstrating that 
Cecp is a suitable quantitative index for evaluating the reliability of CP simulation. Notably, the red curve in 
Figure 7 nearly coincides with the black dots, indicating that the recommendations from the fourth iteration 
may be optimal. In addition, the deviation of the purple (fifth iteration) and brown (fifth and sixth 
iterations) curves in Figure 7 from the black dots indicates that the recommended parameters begin to 
deviate from the optimal solution after the fourth iteration. This further demonstrates the recommendations 
from the fourth iteration are indeed optimal, resulting in a high-fidelity simulation that closely matches 
reality. Note that the elastic part of CP simulated stress-strain curves with different iterations is consistent 
due to the fact that the elastic parameters in this study are sourced from literature[55,59,60].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202411/jmi4031-SupplementaryMaterials.pdf
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Figure 8 shows a comparison between the simulated local strain distributions and the results from in-situ 
DIC experiments. The CP simulation was performed using the optimal parameters. As shown in 
Figure 8A(i)-(iii), with rising total strain εt, experimental strain concentration at microstructural defects 
increases, marked by the black dashed lines. Similarly, in the CP simulations, as shown in Figure 8B(i)-(iii), 
an analogous trend in strain concentration at microstructural defects with increasing total strain is 
observed, also marked by the black dashed lines, demonstrating the consistency of the experiments and 
simulations in microscopic deformation. This further illustrates the reliability of the optimal parameters 
calibrated using our proposed search strategy. In addition, when the total strain is 0.001 or 0.0025, the 
minimum strain is not equal to 0 in CP simulation, as shown in Figure 8B(ii) and (iii), which is different 
from the experimental observation shown in Figure 8A(i) and (iii). The discrepancy arises from the fact that 
the CP model does not account for dislocation reactions between different slip systems, such as dislocation 
annihilation and multiplication. In the actual room-temperature tensile process of the Al-Cu eutectic 
material, there exist dislocation reactions (dislocation multiplication or annihilation) in the α-Al phase, and 
more significantly, these mobile dislocations can cross the two-phase interface and enter the Al2Cu phase, 
further affecting the local strain within the Al2Cu phase[52,61-63]. However, since our CP model ignored the 
dislocation multiplication or annihilation, there is a discrepancy between the simulation and experimental 
results as depicted in Figure 8. It is worth noting that although our CP model primarily investigates the 
situation where the Al2Cu phase is without plastic deformation, it remains applicable to cases where 
considerable plastic deformation is present in the Al2Cu phase. For further details, refer to Supplementary 
Figure 3.

To further explain microscopic deformation behavior, we examined the stress and plastic strain 
distributions at different total strains, as shown in Figure 9. In Figure 9A(i)-(iii), the red phase and blue 
phase represent α-Al phase and θ-Al2Cu phase, respectively. Figure 9B(i)-(iii) shows that the minimum 
stress ranges from 4 to 8 MPa, while the maximum stress increases from 8.5 to 46 MPa as the total strain εt 
increases from 0.0005 to 0.0025. In Figure 9C(i)-(iii), the maximum plastic strain gradually increases, 
whereas the minimum plastic phase remains at 0. The minimum stress and the maximum plastic strain are 
observed in the α-Al phase, while the maximum stress and minimum plastic are found in the θ-Al2Cu phase. 
This indicates that plastic deformation occurs in the α-Al phase even under small stresses, whereas the 
θ-Al2Cu phase is subjected to large stresses without plastic deformation.

To further support this conclusion, we analyzed linear stress and plastic strain distributions along the x-axis 
[labeled by the black dotted line in Figure 9B(i)], and the results are shown in Figure 10. It was found that as 
the total strain εt increases, the stresses in both the α-Al and θ-Al2Cu phases increase, with the stress in the 
θ-Al2Cu phase being significantly higher than that in the α-Al phase. As the total strain increases, the 
increased rate of the stress difference between σmax and σmin in the α-Al phase is significantly slower than that 
in the θ-Al2Cu phase, as shown in Table 4. This indicates that the stress variation in the θ-Al2Cu phase is 
much greater than that in the α-Al phase. Moreover, only the plastic strain in the α-Al phase shows a 
gradual increase, while plastic deformation in the θ-Al2Cu phase remains at 0. For dual-phase materials, the 
deformation behavior is not only related to the stress and strain distributions within each phase but also 
significantly influenced by the inhomogeneous deformation near the interfaces between the two phases. In 
this study, we quantified the non-uniform deformation near the α-Al and θ-Al2Cu phase interface under 
different total strains. To better investigate the inhomogeneous deformation near the phase interface, the 
maximum plastic strain difference of the α-Al and θ-Al2Cu phases near the interface with different total 
strains was counted. Since the plastic deformation of the θ-Al2Cu phase is zero, the inhomogeneous 
deformation of the α-Al and θ-Al2Cu phase dual-phase material is primarily affected by the α-Al phase. The 
statistical results show that under total strains of 0.0005, 0.001, and 0.0025, the maximum plastic strain in 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202411/jmi4031-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202411/jmi4031-SupplementaryMaterials.pdf
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Table 4. The stress and increased rate of the stress difference in the α-Al and θ-Al2Cu phases as the total strain increases

σmin (MPa) σmax (MPa) Δσ (MPa) Increase rate of σεt αAl θAl2Cu αAl θAl2Cu αAl θAl2Cu αAl θAl2Cu

0.0005 40 54 55 65 15 11 - -

0.001 74 90 95 125 21 35 40% 220%

0.0025 96 143 158 318 62 160 200% 360%

The results were accounted for from the linear stress distribution shown in Figure 9A.

Figure 8. Comparison between the simulated and experimental local strain distributions. The CP simulation was completed with the 
optimal parameters. CP: Crystal plasticity.

the α-Al phase is 0.000018, 0.000375, and 0.00317, respectively. This indicates that as the total strain grows, 
the inhomogeneous deformation of the Al-Cu eutectic alloy significantly increases. These findings are not 
only consistent with the DIC experiment of Figure 8 but also align with the previous literature 
reports[52,62-64], further confirming the reliability of our search strategy in optimizing CP parameters.

In summary, the AL-based search strategy successfully optimized the CP parameters for the Al-Cu eutectic 
alloy at room temperature. Although the search strategy in this study was only applied to the parameter 
optimization of a quite simple CP model with only four parameters, it can be anticipated that the strategy 
proposed in this study is also suitable for more complex systems, such as torsional deformation[65,66]. In this 
case, similar treatment for the parameters and the quantification of the simulation reliability should be 
performed, and more iterations may be required due to more undetermined parameters than those in our 
study, but even so, it is faster than the trial-and-error selection. However, we also acknowledge that for the 
parameter optimization of non-uniform computations[67,68], our strategy may need to be further improved.
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Figure 9. Phase field, stress, and plastic strain distributions with different total strains in CP simulations. (A) (i-iii) Phase field; (B) (i-iii) 
Stress distributions; (C) (i-iii) Plastic strain distributions. CP: Crystal plasticity.

Figure 10. Line stress and plastic strain distributions with different total strains. (A) Line stress; (B) Plastic strain distributions. The 
location of the lines is labeled by the black dotted line in Figure 9B(i).

Sensitivity analysis between CP parameters and simulation output
To quantify the impact of the CP input parameters (γ0_Al, γ0_Al2Cu, HAl and HAl2Cu) on the CP simulation output
Cecp, we assumed four cases by a control variable method. The predicted results by GPR are given in
Figure 11. Note that four cases in this study were determined randomly yet all meet the restriction that γ0_Al
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0_Al2Cu Al2Cu 0_Al2Cu

0_Al2Cu Al2Cu 0_Al2Cu

Figure 11. Sensitivity analysis between CP parameters and C ecp. (A) γ0_Al vs. Cecp with a constant of γ , HAl and H ; (B) γ  vs.
Cecp with a constant of γ 0_Al, HAl and HAl2Cu; (C) HAl vs. Cecp with a constant of γ 0_Al, γ  and H ; (D) γ  vs. Cecp with a constant of
γ0_Al, γ0_Al2Cu  and H Al. CP: Crystal plasticity.

is greater than γ0_Al2Cu due to the slip resistance of α-Al phase being significantly lower than that of θ-Al2Cu 
phase at room temperature[2,53].

Figure 11A displays the variation of Cecp with respect to γ0_Al while γ0_Al2Cu (0.00001), HAl (500 MPa) and HAl2Cu 
(500 MPa) are held constant. It is evident that as γ0_Al increases, Cecp decreases linearly. This is due to the fact 
that the dislocation movement in the α-Al phase is increasingly arduous with the increasing parameter γ0_Al, 
resulting in elevating the yield strength of the α-Al phase. Considering that the yield strength of the α-Al 
phase is inferior to that of the Al-Cu eutectics, a reduction in γ0_Al brings the CP simulated outcomes closer 
to the experimental data, that is a larger Cecp. Similarly, as the parameter γ0_Al2Cu diminishes, the dislocation 
movement in the θ-Al2Cu phase is increasingly hindered, rendering CP simulation outcomes more 
congruent with the experimental findings (a greater Cecp), as shown in Figure 11B. Herein, γ0_Al (0.01), HAl 
(500 MPa) and HAl2Cu (500 MPa) are maintained as fixed values.

Figure 11C displays the variation of Cecp with respect to HAl while γ0_Al (0.01), γ0_Al2Cu (0.001) and HAl2Cu (500 
MPa) are held constant. As HAl increases, an initial rise is followed by a decline in Cecp, and the peak value 
appears when γ0_Al is near 100 MPa. HAl is related to the hardening behavior of phase α-Al, and the hardening 
behavior of the material remains essentially unchanged under a given deformation condition (room 
temperature). Therefore, with the variation of the HAl parameter, an optimal point of HAl exists at which Cecp 
attains its maximum value. Similarly, regarding the HAl2Cu parameter, its correlation with the hardening 
behavior of phase θ-Al2Cu is noted, and a comparable trend between HAl2Cu and Cecp is observed, as shown in 
Figure 11D. Notably, the peak Cecp value is observed when HAl2Cu is around 300 MPa.
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From the analysis above, it can be concluded that the AL-based CP parameter optimization strategy has
effectively quantified the influence of CP input parameters on simulation reliability for Al-Cu eutectic
alloys. This strategy can be easily extended to the optimization of other CP parameters, in which the
parameters required to be optimized must lie within a certain range, and a quantitative indicator should be
employed to evaluate the deviation between CP simulation results and the experiments. For example, as
reported in Ref[2], the parameters g0

s, h, γ0 and m can also be determined by our proposed strategy.
Employing these parameters as inputs of the strategy and the discrepancies between simulations and
experiments as the output, one can rapidly determine the most optimal group of these parameters in several
iterations.

Comparative analysis between the AL strategy and the typical traditional methods
The traditional methods used for optimizing CP parameters mainly include trial-and-error and inverse
analysis. The former is the most common and the simplest method. It involves randomly selecting an initial
set of parameters to construct a CP model and evaluating the discrepancy between CP simulations and
experimental results. This process is repeated until either an acceptable discrepancy is achieved or
computing resources are excessively consumed[2,6,8,11-13]. Notably, the discrepancy is often qualitatively judged
by visual observation of stress-strain curves or other patterns. Additionally, the arbitrary nature of
determining when to stop CP computation can lead to excessive cost consumption[69,70]. Moreover, the
results of the trial-and-error method depend on the operator’s experience and intuition. When a large
number of parameters need to be determined, there is a significant risk of not quickly finding the optimal
solution. Reviewing the AL strategy proposed in Figure 2, we observe a distinct advantage: it quantifies the
discrepancy between simulated and experimental stress-strain curves by a simple index, Cecp, whose
reliability has been demonstrated in Figures 3 and 7. Notedly, Cecp is mathematically identical to R2. The
renaming to Cecp is to distinguish it from R2 for the performance evaluation of the machine learning
algorithms used in this study. The usage of Cecp enhances the comprehensibility of our methodology and
simultaneously ensures the ease of data handling. Moreover, Cecp provides a quantitative bridge that guides
the simulation process from experimental data. Furthermore, by using our strategy, as shown in Figures 5
and 6, and Table 3, intelligent searching of high-dimensional parameters has been realized, which
significantly reduces the computational overhead in terms of time and cost, requiring only six iterations.

The inverse analysis method begins by proposing a set of initial parameters, and then evaluates the
deviation between CP simulation and experimental results within the trust region by a trust-region policy
optimization algorithm[71,72]. If the deviation is large, the algorithm adjusts the trust region, repeating the
process until the deviation is minimized. The inverse analysis allows for a direct connection between
parameters and simulated results (e.g., mechanical behavior of materials), but it can lead to unnecessary
resource wastage[73]. Additionally, the mathematical modeling of the algorithm in the trust region is highly
complex, and the results significantly depend on the rationality of the initial guessed parameters[73].
Generally, optimization algorithms are also needed to ensure the uniqueness of the solution[73]. Unlike the
inverse analysis, our proposed strategy achieves optimization by maximizing the EI of candidate parameter
combinations. This approach balances “exploration” (improving data distribution) and “exploitation”
(approaching the optimal) within only a few iterations[20,23,25,26]. The search results are unaffected by the
initial dataset as the model input is updated from each iteration. Although we use a non-parametric model,
GPR, to ensure accuracy and efficiency, the choice of the surrogate models in our strategy is flexible,
including other ML algorithms and genetic algorithms.

We acknowledge that this search strategy has limitations and may only be suitable for some specific
scenarios, such as when the material’s deformation behavior is adequately represented by stress-strain
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curves or other one-dimensional discrete data. Note that the CP parameters in this study were optimized by
a single stress-strain curve from an experimental measurement. However, for higher accuracy, stress-strain
curves should be based on multiple replicate experiments. So, to better optimize the CP parameters, it is
necessary to optimize them using data from multiple replicate experiments in future work.

CONCLUSIONS
A search strategy for CP parameter optimization has been proposed with the assistance of AL and in-situ
experiments. The strategy has been applied to an Al-Cu eutectic material, with its mechanical behavior
simulated using the CP model with optimal parameters. The main conclusions are summarized as follows:

(1) A quantitative indicator, Cecp (renaming of R2), is used to describe the differences between CP
simulations and experiments. It has a simple mathematical form and can quantify simulation reliability.

(2) An adaptive CP parameter optimization strategy based on AL and in-situ experiment was proposed.
This strategy finds the optimal CP parameters through CP simulations of only 44 parameter combinations
and six iterations of learning for Al-Cu eutectics, which greatly reduces the computational overhead in time
and economy, and the selection of the surrogate models used in the strategy is flexible enough.

(3) GPR is the most appropriate model for correlating CP parameters and Cecp. The optimal CP parameters
are successfully identified through only six AL iterations. Validation with experiments shows that Cecp for
the optimal parameters exceeds 0.99. Using these parameters, a high-fidelity CP model is established.

(4) The deformation behavior of Al-Cu eutectics at room temperature was revealed. It is shown that the α-
Al phase is subjected to small stress with large plastic deformation, while the θ-Al2Cu phase is subjected to
high stress without plastic deformation.

The developed AL-based search strategy for CP parameter optimization in this study was solely employed to
determine four parameters for the Al-Cu eutectics at room temperature. Obviously, this strategy can be
easily extended to optimize CP parameters for different materials and deformation conditions. Using this
strategy, we have efficiently calibrated the CP parameters of the Al-Cu eutectic material at various
deformation temperatures, as shown in Supplementary Figure 4, and the associated research findings are
pending publication.
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