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Abstract
Hepatitis C virus (HCV) is still considered as a major public health problem because in 2015 around 71 million 
people were chronically infected worldwide. It is important to note that chronic HCV infection is a systemic disease 
that is associated with diverse extrahepatic disorders including insulin resistance and type 2 diabetes mellitus. The 
discovery of new direct-acting antiviral agents (DAAs) has become a huge advance in the treatment of HCV 
infection. The complex interplay between HCV and glucose metabolic pathways remains to be fully elucidated, but 
it is becoming clearer that elimination of chronic HCV infection halts the progression of liver disease, but more 
evidence is still needed to better understand how successful antiviral treatment influences insulin resistance and 
other abnormalities of glucose metabolism linked to HCV infection. This review provides a comprehensive 
overview of the glucose metabolism disturbances related to chronic HCV infection, highlighting the new insights 
into the molecular basis of insulin resistance induced by HCV and the mechanisms underlying the reversion of this 
metabolic disorder by DAAs.
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INTRODUCTION
Hepatitis C virus (HCV) infection is a systemic disease which is associated with diverse extrahepatic 
disorders including atherosclerosis, lipid metabolic disturbances, lymphoproliferative diseases, and glucose 
metabolic alterations leading to insulin resistance and type 2 diabetes mellitus (T2DM). A great body of 
clinical and experimental evidence indicating a close relationship between insulin resistance and chronic 
HCV infection exists, and it is well known that insulin resistance-associated fatty liver disease contributes to 
the progression of HCV-induced liver disease by enhancing the virulence of HCV and inducing cellular and 
molecular mechanisms involved in hepatic fibrogenesis. The complex interplay between HCV and glucose 
metabolism remains to be fully elucidated, but it is becoming clearer that elimination of chronic HCV 
infection after direct-acting antiviral (DAA)-based therapy halts the progression of liver disease. In this 
review, besides a comprehensive overview of the glucose metabolism disturbances related to chronic HCV 
infection, we want to highlight the new insights into the molecular basis of insulin resistance induced by 
HCV and the mechanisms underlying the reversion of this metabolic disorder by DAAs.

EVOLVING EPIDEMIOLOGY OF HEPATITIS C INFECTION: FROM THE ERA OF 
INTERFERON ALPHA TO DIRECT-ACTING ANTIVIRALS
According to the most recent and accurate study on the prevalence of HCV chronic infection, which was 
promoted by the World Health Organization (WHO) Hepatitis Report and published in 2018, HCV 
infection was estimated to affect 71 million individuals worldwide in 2015, more than 1% of the world’s 
population[1]. The countries with the highest prevalence are China, Pakistan, India, Egypt, and Russia. In 
fact, these countries alone sum up more than 45% of infected patients. The European continent has an 
estimated 14 million infected individuals. The reported incidence of HCV infection in 2015 was 1.75 million 
new cases, and the number of deaths attributed to HCV alone is 400,000 per year[1].

Hepatitis C virus is a single-stranded RNA virus that belongs to the Hepacivirus genus and the Flaviviridae 
family. Currently, there are eight genotypes of HCV[2]. The prevalence of the different genotypes varies from 
one geographical region to another: Genotype 1 is the most prevalent (46%) and predominates in North 
America, Europe, and Australia, followed by Genotype 3 (30%) mainly distributed in South Asia. Genotypes 
2, 4, and 6 encompass approximately 23% of cases. Finally, Genotypes 5, 7, and 8 comprise less than 1%[2,3]. 
The first treatment for HCV infection was approved in 1991. Interferon alpha (IFN) 2b, administered at a 
dose of 3 million units three times per week for 6-12 months, provided a sustained viral response (SVR) of 
around 15%-20% with relevant and sometimes limiting side effects. In the late 1990s, the addition of daily 
oral ribavirin rose the SVR to 38%[4], and, in the early 2000s, the introduction of weekly pegylated (PEG)-
IFN 2a or 2b increased the SVR rate to over 50%[5]. After many years without relevant changes in HCV 
therapy, in 2011, DAAs were approved for the treatment of chronic HCV infection. The first generation of 
DAAs included the NS3/NS4A protease inhibitors telaprevir and boceprevir, which together with PEG-IFN 
and ribavirin, achieved an SVR of 75% in patients with Genotype 1 HCV infection[6]. Up to this point, the 
addition of more medications to the therapy to increase SVR was followed by a progressive increase of 
significant side effects. The second generation appeared in 2014: protease inhibitors or NS5A or NS5B 
polymerase inhibitors were the first IFN-free regimens, entailing a turning point in HCV therapy[7]. The 
most remarkable breakthrough was the introduction of sofosbuvir (SOF), an NS5B polymerase inhibitor[8,9]. 
This DAA used in combination with PEG-INF and ribavirin showed a high rate of SVR up to 90% in non-
treated patients with Genotype 1 or 4 after 12 weeks of treatment with no additional adverse effects such as 
fatigue, headache, nausea, and anemia compared to PEG-IFN and ribavirin regimen (NEUTRINO Trial[10]). 
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Moreover, 12 weeks of SOF and ribavirin treatment was as effective as PEG-IFN and ribavirin treatment in 
non-treated patients with Genotype 2 or 3 (SVR of 67%)[10]. The results from PHOTON-1 study reveal that 
treatment with SOF and ribavirin was effective in improving SRV rates in HIV/HCV co-infected patients[11].

At this point, there were several specific regimens effective for each genotype. More recently, a third 
generation of pan-genotypic DAAs, effective for all HCV genotypes, has appeared[12]. SVR is achieved with 
modern DAAs in 90%-98% of infected patients. However, around 3%-4% of patients develop resistant 
variants. These variants are developed in most cases in previously treated individuals, but some cases might 
also occur in treatment-naïve patients.

DISRUPTION OF GLUCOSE METABOLISM ASSOCIATED WITH CHRONIC HEPATITIS C 
VIRUS INFECTION
Even though its main target is the liver, HCV infection is considered a systemic disease. Indeed, over 70% of 
HCV infected patients develop at least one extrahepatic manifestation. Many of these manifestations have 
been described, but the strength of the data proving a correlation with HCV varies. In this review, we focus 
on the metabolic manifestations associated with HCV, particularly on those affecting glucose metabolism.

Firstly, it has been described that cirrhotic patients with HCV were more likely to have T2DM than those 
with cirrhosis due to other causes[13,14]. Then, several clinical studies have shown a higher prevalence of 
T2DM in patients with HCV compared to healthy controls[15-18]. The odds ratio of T2DM among HCV-
infected subjects is about 1.2-1.7 times than that of healthy subjects[18]. A systematic review and meta-
analysis of the existing data done in 2018 showed that the pooled prevalence of T2DM among HCV-
infected patients globally was 19.67% (95%CI: 17.25-22.09), while the global prevalence of T2DM (8.5%) 
among the general population was much lower. The prevalence rate of T2DM in HCV patients ranges from 
15% to 28%, with the highest prevalence rate in Africa and Asia, while the lowest prevalence rate is in 
Europe[19]. Noteworthy, the prevalence of insulin resistance and T2DM is significantly higher in HCV-
infected patients compared to other chronic liver diseases such as HBV infection, alcoholic liver disease, and 
primary biliary cirrhosis[20,21]. Moreover, several studies have demonstrated that HCV-associated hepatic 
insulin resistance can negatively affect the treatment response with IFN-based therapies[22-24].

It is important to note that a significant improvement was observed in the systemic insulin response in 
HCV patients after virus eradication, regardless of the treatment. A decrease in insulin resistance, as 
estimated by homeostasis model assessment (HOMA-IR), has been described and seems to be associated 
with viral clearance after IFN-based regimens [Table 1]. Overall, several studies have demonstrated that 
HCV patients who achieved SVR showed a reduction of HOMA-IR index during and after treatment 
compared to non-responder patients regardless of HCV genotype[24-26]. Similar results were reported using 
other homeostasis model assessments such as the HOMA2-IR[27]. However, Thompson et al.[28] only 
observed a decrease of HOMA-IR in sustained responders with HCV Genotype 1 but not in those with 
Genotype 2 or 3. Other studies reported that HOMA-IR levels decreased only in insulin-resistant patients 
but were unrelated to treatment outcomes[29,30] or even remained unchanged[31]. One possible explanation for 
these conflicting results is the different population characteristics, viral factors, and/or the duration of the 
follow-up period. Notably, the incidence of T2DM and/or the development of glucose abnormalities such as 
impaired fasting glucose significantly decreased in those HCV patients who eradicated the virus after 
treatment with IFN-based regimens[32-34].
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Table 1. Principal clinical studies examining the impact of sustained virological response by IFN-based antiviral therapy on glucose metabolism

Study Study population Demographics 
Age/Sex/Race Study design Primary 

endpoints Clinical outcomes

Romero-Gómez et al.[24] 
2005

50 HCV non-diabetic 
patients

43 ± 10 years/male > 
female/N.A.

Prospective observational 
longitudinal study

HOMA-IR Significant reduction (P < 0.05) of HOMA-IR values in SVR patients

Simó et al.[34] 2006 96 HCV non-diabetic 
patients

42 ± 10 years/male > 
female/N.A.

Prospective observational 
longitudinal study

Incidence of 
T2DM

T2DM incidence was significantly reduced (P < 0.05) in SVR patients

Kawaguchi et al.[25] 2007 89 HCV non-diabetic 
patients

60 ± 9 years/male > 
female/N.A.

Prospective observational 
longitudinal study

HOMA-IR Significant reduction (P < 0.05) of HOMA-IR values in SVR patients

Lo Iacono et al.[30] 2007 48 HCV non-diabetic 
patients

50 ± 12 years/male > 
female/N.A.

Prospective observational 
longitudinal study

HOMA-IR HOMA-IR values significantly decreased (P < 0.05) but unrelated to 
treatment outcomes

Romero-Gómez et al.[33] 
2008

734 HCV non-diabetic 
patients

53 ± 10 years/male > 
female/N.A.

Prospective observational 
longitudinal study

Incidence of 
T2DM/IFG

T2DM/IFG incidence was significantly reduced (p < 0.05) in SVR patients

Arase et al.[32] 2009 2842 non-diabetic 
HCV patients

52 ± 9 years/male > female/N.A. Prospective observational 
longitudinal study

Incidence of 
T2DM

T2DM incidence was significantly reduced (P < 0.05) in SVR patients

Delgado-Borrego et al.[27] 
2010

96 HCV non-diabetic 
patients

49 ± 11 years/male > 
female/White predominant

Prospective observational 
longitudinal study

HOMA2-IR Significant reduction (P < 0.05) of HOMA2-IR values in SVR patients

Thompson et al.[28] 2012 1038 non-diabetic 
HCV patients

46 ± 9 years/male > 
female/White predominant

Prospective observational 
longitudinal study

HOMA-IR Significant reduction (P < 0.05) of HOMA-IR values only in SVR genotype 1 
patients

Aghemo et al.[31] 2012 309 non-diabetic 
HCV patients

52 ± 12 years/male > 
female/N.A.

Prospective observational 
longitudinal study

HOMA-IR No significant variations of HOMA-IR values (P > 0.05)

Khattab et al.[26] 2012 107 non-diabetic HCV 
patients

41 ± 6 years/male > female/N.A. Prospective observational 
longitudinal study

HOMA-IR Significant reduction (P < 0.05) of HOMA-IR values in SVR patients

Chien et al.[29] 2015 78 HCV non-diabetic 
patients

54 ± 12 years/female > 
male/N.A.

Prospective observational 
longitudinal study

HOMA-IR Significant reduction (P < 0.05) of HOMA-IR values only in patients with 
pretreatment insulin resistance, but unrelated to treatment outcomes

Significance was considered at a value of P < 0.05. IFN: Interferon; IFG: impaired fasting glucose; HCV: hepatitis C virus; SVR: sustained virological response; HOMA-IR: homeostatic model assessment for insulin 
resistance; T2DM: type 2 diabetes mellitus; N.A.: not available.

On the other hand, several reports have demonstrated that antiviral therapy with DAAs, including SOF, improved systemic insulin resistance and glucose 
homeostasis in patients who cleared HCV [Table 2]. DAA-based eradication of HCV is associated with improved glycemic control in patients with established 
T2DM, as demonstrated by the reduction of fasting glucose and HbA1c levels[35-38]. In this line, we recently published that SOF-based treatments effectively 
improve the insulin-resistant status of patients with chronic HCV infection, regardless of HCV genotype or degree of liver fibrosis. Interestingly, the 
significant reduction of post-treatment HOMA-IR index observed was maintained one year later[39].
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Table 2. Principal clinical studies examining the impact of HCV clearance by DAAs on glucose metabolism

Study Study population Demographics 
Age/Sex/Race Study design Primary endpoints Clinical outcomes

Hum et al.[37] 2017 2435 HCV diabetic 
patients

62 ± 5 years/male > female/Black 
predominant

Prospective observational 
longitudinal study

HbA1c Significant reduction (P < 0.05) of HbA1c values in SVR patients

Ciancio et al.[36] 2018 122 HCV diabetic 
patients

61 ± 11 years/male > female/N.A. Prospective observational 
longitudinal study

Fasting glucose and 
HbA1c

Significant reduction (P < 0.05) of fasting glucose and HbA1c 
values in SVR patients

Tada et al.[41] 2018 198 HCV non-diabetic 
patients

72 ± 5 years/female > male/N.A. Prospective observational 
longitudinal study

HOMA-IR Significant reduction (P < 0.05) of HOMA-IR values in SVR 
patients

Carvalho et al.[43] 2018 105 HCV non-diabetic 
patients

53 ± 9 years/male > female/N.A. Prospective observational 
longitudinal study

HOMA-IR and fasting 
glucose

Significant reduction (P < 0.05) of HOMA-IR, but not of fasting 
glucose values in SVR patients

Boraie et al.[35] 2019 120 HCV diabetic 
patients

52 ± 8 years/N.A./N.A. Prospective observational 
longitudinal study

Fasting glucose, HbA1c 
and HOMA-IR

Significant reduction (P < 0.05) of fasting glucose, HbA1c, and 
HOMA-IR values in SVR patients

Zied et al.[38] 2020 100 HCV diabetic 
patients

53 ± 10 years /N.A./N.A. Prospective observational 
longitudinal study

Fasting glucose and 
HbA1c

Significant reduction (P < 0.05) of fasting glucose and HbA1c 
values in SVR patients

Ribaldone et al.[45] 2020 66,769 HCV non-
diabetic patients

N.A./N.A./N.A. Systematic review and meta-
analysis

Incidence of T2DM T2DM incidence was significantly reduced (P < 0.05)

Adinolfi et al.[40] 2020 2564 HCV non-diabetic 
patients

68 ± 9 years/female > male/N.A. Prospective observational 
longitudinal study

Incidence of T2DM T2DM incidence was significantly reduced (P < 0.05)

Adinolfi et al.[40] 2020 384 HCV non-diabetic 
patients

66 ± 8 years/female > male/N.A. Prospective observational 
longitudinal study

HOMA-IR Significant reduction (P < 0.05) of HOMA-IR values in SVR 
patients

Russo et al.[44] 2020 138 HCV non-diabetic 
patients

58 ± 10 years/male > female/N.A. Prospective observational 
longitudinal study

Fasting glucose, HbA1c 
and HOMA-IR

Significant reduction (P < 0.05) of HOMA-IR, but not of fasting 
glucose and HbA1c values in SVR patients

Nevola et al.[42] 2020 269 HCV non-diabetic 
patients

68 ± 7 years/female > male/N.A. Prospective observational 
longitudinal study

HOMA-IR and fasting 
glucose

Significant reduction (P < 0.05) of fasting glucose and HOMA-
IR values in SVR patients

Sacco et al.[46] 2021 68,096 HCV non-
diabetic patients

N.A./N.A./N.A. Systematic review and meta-
analysis

Incidence of T2DM T2DM incidence was significantly reduced (P < 0.05)

Rey et al.[39] 2021 42 HCV insulin-resistant 
patients

54 ± 10 years/male > 
female/N.A.

Prospective observational 
longitudinal study

HOMA-IR and fasting 
glucose

Significant reduction (P < 0.05) of fasting glucose and HOMA-
IR values in SVR patients

Significance was considered at a value of P < 0.05. HCV: Hepatitis C virus; DAAs: direct-acting antivirals; SVR: sustained virological response; HbA1c: glycated hemoglobin; HOMA-IR: homeostatic model 
assessment for insulin resistance; T2DM: type 2 diabetes mellitus; N.A.: not available.

Several studies have reported that clearance of HCV by DAAs resulted in a decrease in insulin resistance index, as assessed by HOMA-IR[40,41], and improved 
glucose abnormalities such as elevated levels of fasting glucose and HbA1c in non-diabetic patients[35,42]; conversely, some studies have observed only a 
reduction of HOMA-IR values in HCV patients after DDA therapy but without changes in other clinical outcomes related with glycemic control[43,44]. The latter 
studies had a shorter post-treatment follow-up period than the previous ones, which could explain the discrepancies observed because a longer observation 
time is required to properly evaluate the effects of HCV elimination on glucose homeostasis.
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To highlight, two recent systematic reviews have revealed a significant reduction in the incidence of T2DM 
in non-diabetic HCV patients achieving SVR after DAA treatment, and the metabolic control significantly 
improved in diabetic HCV patients who eradicate the virus after DAAs therapy[45,46].

MOLECULAR MECHANISMS INVOLVED IN THE HEPATIC INSULIN RESISTANCE 
INDUCED BY CHRONIC HEPATITIS C VIRUS INFECTION
The increased prevalence of T2DM in HCV-infected patients may be due not only to the development of 
insulin resistance because of the disruption of insulin signaling but also to beta-cell failure and altered 
microRNAs, which are closely linked to the development of T2DM and other metabolic diseases[47].

MicroRNAs (miRNAs) play an important role in HCV replication, and host miRNA expression is altered 
during HCV infection. Differential expression of 108 miRNAs has been identified in hepatocytes after acute 
HCV infection. HCV increases the expression of miR-27 family members, which are involved in the 
regulation of lipid metabolism and contribute to the development of liver steatosis. HCV also increases 
circulating miR-122 content. The elevated levels of this miRNA have been closely related to the risk of 
developing metabolic syndrome and T2DM in the general population[47,48].

Among the peripheral tissues involved in the control of glucose homeostasis, the liver plays a major role 
because this organ has the ability to consume and produce glucose[49]. In this regard, besides the liver, both 
skeletal muscle and adipose tissue are the major sites of insulin resistance in HCV infections; however, in 
this review, we focus on the molecular mechanisms responsible for hepatic insulin resistance mediated by 
HCV.

The molecular mechanism underlying hepatic insulin resistance involves the impairment of the insulin 
receptor (IR) signaling network. The cascade begins when the IR is activated by autophosphorylation on 
several tyrosine residues leading to the recruitment and tyrosine phosphorylation of insulin receptor 
substrate (IRS) proteins such as IRS1 and IRS2[50].

It is well known that HCV interferes with the early steps of the insulin signaling cascade, particularly by 
reducing the expression of IRS proteins, IRS1 and IRS2. These docking proteins are key mediators of insulin 
and insulin-like growth factor 1 (IGF1) signaling, integrating essential signals from the IR and IGF1 
receptor that regulate a variety of processes including metabolism, cellular growth, development, and 
survival[50], since there are two main pathways emerging from the activated IRS proteins: the 
phosphatidylinositol 3 kinase/AKT and mitogen-activated protein kinase pathways[51]. Inactivation of these 
proteins by different mechanisms, such as proteasome-mediated degradation, has been highly associated 
with insulin resistance[52]. In this regard, it is well established that HCV core protein induces serine 
phosphorylation of IRS1 blocking its tyrosine phosphorylation and targets IRS1 for proteosomal 
degradation. The activation of both c-jun kinase and mTOR/S6K axes has been found to be involved in 
IRS1 serine phosphorylation prompted by HCV[53]. Besides IRS1, degradation of IRS2 has been described in 
livers of patients with HCV infection[54]. Indeed, upregulation of SOCS-3 protein has also been implicated in 
the degradation of IRSs induced by HCV[55] and could be the link between insulin resistance and poor 
response to antiviral therapy due to the modulation of IFN signaling[56].

As IRSs are critical molecules involved in the transduction of insulin signal downstream IR, their 
degradation impairs the downstream AKT signaling pathway, a key effector of insulin action in the liver, 
leading to insulin resistance[53]. Indeed, this Ser/Thr kinase phosphorylates Foxo1, precluding its entry into 
the nucleus and, consequently, the transcription of gluconeogenic genes such as glucose 6 phosphatase 
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(G6P) and phosphoenolpyruvate carboxykinase (PEPCK)[57]. In this manner, insulin negatively regulates 
hepatic glucose production. Accordingly, the negative modulation in the AKT-driven insulin signaling 
induced by HCV infection triggers the upregulation of gluconeogenic enzymes, G6P, and PEPCK, 
increasing hepatic glucose production[58]. On the other hand, activated AKT induces the phosphorylation of 
glycogen synthase kinase 3 (GSK3), inactivating its kinase activity, which subsequently leads to an activation 
of glycogen synthase, promoting glycogen synthesis[59]. Thus, insulin-induced GSK3 phosphorylation was 
reversed by the expression of HCV in hepatocytes, followed by the inhibition of glycogen synthesis, favoring 
the exacerbated hepatic glucose production observed upon HCV infection[60].

Likewise, HCV induces the expression of negative modulators of the insulin signaling pathway such as the 
protein tyrosine phosphatase 1B[61], the phosphatase and tensin homolog[62], and the protein phosphatase 
2A[63,64]. Eventually, these phosphatases also impair the AKT pathway, negatively regulating insulin’s 
metabolic signaling[50].

Regarding the direct effects of the different treatments on HCV-induced impairment of insulin signaling 
cascade, Kawaguchi et al.[25] first demonstrated that clearance of HCV improved hepatic expression of both 
IRS1 and IRS2 and systemic insulin resistance in biopsy-proven HCV-infected patients after antiviral 
therapy based on IFN. Moreover, experimental data show that curing infected cells with IFN treatment 
partly modified surrogate markers of insulin resistance such as the upregulated gluconeogenesis. In this 
regard, while one study only has described that IFN blocked G6P-increase in HCV cells[65], another study 
went further, showing that the elevation of PEPCK and G6P expression as well as the enhanced glucose 
production were canceled upon IFN treatment in infected hepatocytes[58].

Noteworthy, we recently reported the reversion of the impaired IR/IRS1/AKT signaling pathway in HCV-
infected hepatocytes cured by SOF [Figure 1]. In particular, besides the recovery of IRS1 expression, we 
observed that the insulin responsiveness, measured by IR tyrosine phosphorylation and AKT 
phosphorylation, was greatly improved in HCV-cured hepatocytes after SOF treatment compared to 
untreated HCV-infected cells. In addition, downstream from AKT, the SOF challenge also enhanced the 
phosphorylation of both Foxo1 and GSK3 upon insulin stimulation and, accordingly, triggered a decrease in 
gluconeogenesis and a recovery of glycogen synthesis[39].

Regarding clinical data, only one study has convincingly demonstrated, by using a two-step 
hyperinsulinemic euglycemic clamp, that hepatic insulin sensitivity improved significantly in HCV patients 
who achieved an SVR with either IFN-based or IFN-free DAAs regimens[66].

EFFECT OF HEPATITIS C VIRUS ON PANCREATIC BETA CELLS
The liver is the primary organ affected by HCV infection, but the presence of HCV has also been identified 
in the pancreas. The pancreatic beta cell function is consistently decreased in HCV patients[67]. Indeed, HCV 
infection impairs pancreatic beta cell function by its replication in islets and reduces insulin secretion by 
inhibiting exocytosis of insulin secretion. In HCV-infected cells, HCV proteins increase endoplasmic 
reticulum stress and activate apoptotic protease 3, inducing pancreatic beta cell death via a caspase 3-
dependent pathway, leading to a decrease in beta-cell islets mass[47,68]. On the other hand, there is a general 
distortion of the Golgi compartment and alteration of protein kinase D activation, affecting insulin 
secretion in HCV-infected beta cells[67].
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Figure 1. Molecular effects of SOF on impaired insulin response induced by HCV infection. Schematic diagram showing how SOF 
improves HCV-induced insulin resistance in infected hepatocytes. (A) Critical nodes of insulin signaling implicated in insulin metabolic 
actions in healthy hepatocytes. (B) HCV induces serine phosphorylation of IRS1, blocking its tyrosine phosphorylation and targets IRS1 
for proteosomal degradation. As IRS1 is a critical molecule involved in the transduction of insulin signal from the insulin receptor (IR), its 
degradation impairs the downstream AKT signalling pathway leading to insulin resistance. (C) SOF reduces IRS1 serine 
phosphorylation, avoiding its degradation, and further increases its protein content IRS1 in HCV-hepatocytes, recovering insulin 
signaling through IR/IRS1/PI3K/AKT. SOF: Sofosbuvir; HCV: hepatitis C virus; IRS: insulin receptor substrate.

CONCLUSION
Chronic HCV infection is a systemic disease causing a wide range of extrahepatic complications including 
glucose metabolism alterations such as insulin resistance and T2DM. Available clinical evidence indicates 
that these metabolic complications are associated with deleterious outcomes of chronic HCV infection, such 
as cirrhosis and hepatocarcinoma, and it is noteworthy that HCV eradication by DAA therapy improves not 
only liver disease but also insulin sensitivity and glucose homeostasis. As detailed above, HCV major 
proteins disrupt the insulin signaling pathway at different levels leading to insulin resistance. Interestingly, 
SOF, a well-known DAA, is able to reverse the HCV-induced insulin resistance and improve other glucose 
metabolic pathways as well, suggesting that DAAs per se may have beneficial effects on glucose homeostasis. 
Further studies, however, are needed to elucidate the complex network of molecular mechanisms 
underlying the glucose metabolism disturbances linked to chronic HCV infection and how therapy with 
DAAs influences metabolic outcomes in cured HCV patients.
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