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Abstract
Aim: Depth information plays a key role in enhanced perception and interaction in image-guided surgery. However, 
it is di�icult to obtain depth information with monocular endoscopic surgery due to a lack of reliable cues for 
perceiving depth. Although there are reprojection loss-based self-supervised learning techniques to estimate depth 
and pose, the temporal information from the adjacent frames is not e�iciently utilized to handle occlusion in 
surgery.

Methods: We design long-term reprojection loss (LT-RL) self-supervised monocular depth estimation techniques 
by integrating longer temporal sequences into reprojection to learn better perception and to address occlusion 
artifacts in image-guided laparoscopic and robotic surgery. For this purpose, we exploit four temporally adjacent 
source frames before and after the target frame, where conventional reprojection loss uses two adjacent frames. 
The pixels that are visible in the target frame but occluded in the immediate two adjacent frames will produce the 
inaccurate depth but a higher chance to appear in the four adjacent frames during the calculation of minimum 
reprojection loss.

Results: We validate LT-RL on the benchmark surgical datasets of Stereo correspondence and reconstruction of 
endoscopic data (SCARED) and Hamlyn to compare the performance with other state-of-the-art depth estimation 
methods. The experimental results show that our proposed technique yields 2%-4% better root-mean-squared 
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error (RMSE) over the baselines of vanilla reprojection loss.

Conclusion: Our LT-RL self-supervised depth and pose estimation technique is a simple yet effective method to 
tackle occlusion artifacts in monocular surgical video. It does not add any training parameters, making it flexible for 
integration with any network architecture and improving the performance significantly.

Keywords: Monocular depth estimation, self-supervised learning, reprojection loss, robotic surgery

INTRODUCTION
Depth estimation in robotic surgery is vital for surgical field mapping, instrument tracking, 3D modeling for 
surgical training, and lesion inspection in virtual and augmented reality. However, traditional stereo 
cameras consist of better depth cues with stereo correspondences and multiview images, and monocular 
endoscopes are unable to obtain the depth information. However, in image-guided surgery, such as robotic 
and laparoscopic surgery, the monocular endoscope is more popular due to better accessibility and smaller 
incisions. Recently, there have been a couple of reprojection loss-based self-supervised depth estimation 
techniques using monocular videos for both computer vision and surgical vision[1-3]. Nevertheless, the small 
camera pose changes in the narrow surgical environment requires long-term dependency on the monocular 
video frames to address the occlusion artifacts during depth estimation in the surgical environment. In this 
work, we propose a long-term reprojection loss (LT-RL) by considering longer temporal adjacent frames 
before and after the target frame in self-supervised depth estimation.

There are several works in improving reprojection loss for self-supervised depth estimation. Garg et al. 
pioneered self-supervised depth estimation with the proxy task of stereo view synthesis based on a given 
camera model using an L1 loss[4]. Monodepth[2] refined this via differentiable bilinear synthesis[5] and a 
weight of SSIM and L1 loss[6]. SfM-Learner[7] proposed the first fully monocular self-supervised depth-pose 
framework by substituting the stereo transform (fixed stereo baseline) with another regression network to 
predict the ego-motion of the camera. Monodepth2[1] optimized this work through the introduction of a 
minimum reprojection loss and edge-aware smoothness loss. The minimum reprojection loss attempts to 
address the occlusion artifacts by selecting minimum reprojection loss or photometric error between the 
target frame and the first adjacent frames before and after it. However, we argue that selecting minimum 
loss by only comparing with the first adjacent frames is not sufficient in the surgical environment where 
changes in camera pose are very small.

In this work, we design a LT-RL by considering the second adjacent or four frames before and after the 
target frame to select the minimum reprojection loss. In the surgical domain, small camera pose changes 
limit the reprojection error to project the pixels that are visible in the target image and are not visible in the 
immediate source images before and after the target image. Hence, LT-RL with four adjacent temporally 
frames increases the chances of tackling the occlusion artifacts. Our contributions and findings can be 
summarized as:

- Design a LT-RL to address occlusion artifact integrating longer temporal information during self-
supervised depth estimation using monocular video in endoscopic surgery. 
- Demonstrate the flexibility of the proposed LT-RL by plugging into Monodepth2 network architecture. 
- Validate the proposed method with the benchmark surgical depth estimation dataset of Stereo 
correspondence and reconstruction of endoscopic data (SCARED) and compare it with state-of-the-art self-
supervised baselines. The results suggest the effectiveness of our LT-RL in both depth estimation and 3D 
reconstruction.
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METHODS
Preliminaries
Vanilla reprojection loss
Vanilla reprojection loss calculates the photometric errors between the target frame and two temporally 
adjacent frames (first adjacent) and finally chooses the minimum error between them. For example, if It is 
the target frame at time t, It-1 and It+1 the two source frames can be denoted as Is for simplicity, Dt depth 
estimation for target frame, pt the homogeneous coordinates and K intrinsic matrix, and then view synthesis 
from Is to It can be formulated as:

Figure 1 demonstrates the reprojection loss with source and target view synthesis in the point cloud and 
then projection back to synthesize the target frame from a source. In the view synthesis approach, back-
projection and reprojection are crucial steps. First, back-projection converts 2D source image pixels into a 
3D point cloud usingdepth information and camera intrinsics. This point cloud is then transformed into the 
target point cloud using thepredicted camera pose. Next, reprojection projects the 3D target point cloud 
back onto the 2D image plane of thetarget camera using its intrinsic parameters.

Smoothness loss
To mitigate the issue of smoothing over edges, we integrate an edge-aware smoothness loss, as employed 
in[8], into our approach. This loss function effectively reduces the weight in regions with strong intensity 
gradients, thereby promoting local smoothness in the predicted depth map. This enables our model to 
preserve sharp edges and fine details in the depth estimation process. The smoothness loss aims to optimize 
the predicted depth by considering image gradients. It encourages depth estimation to adhere to local 
smoothness patterns based on the intensity gradients present in the input images. By incorporating this loss 
function, the model can effectively capture and preserve the continuity and smoothness of depth variations 
across the image, resulting in more visually coherent and accurate depth predictions, which has 
demonstrated success in[7].

(1)

Then view synthesis ps→t can be used to obtain synthesized source frame of Is→t:

(2)

Finally, the pixel-wise Vanilla reprojection loss Lossrl from a source frame Is to target frame It can be 
calculated using synthesized target frame from source Is→t:

(3)

Where RL is the reprojection loss with combined SSIM and L1 losses. For the two source frames of It-1, It+1, 
the Vanilla reprojection loss can be formulated as:

(4)

(5)
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Figure 1. Demonstration of back-projection and reprojection serves as two crucial steps in the view synthesis approach for depth and 
pose estimation with monocular endoscopy. Given camera intrinsics, the source image is projected onto the target image using 
predicted depth and pose. The reprojection loss then quantifies the dissimilarity between the target image and the reprojected image 
using L1 and SSIM losses.

Proposed method
LT-RL
To tackle occlusion artifact, we design LT-RL by considering four adjacent source frames temporally for a 
target frame. In the surgical environment, due to small camera pose changes, two adjacent frames are not 
sufficient to avoid the occlusion artifact. The nature of rotations poses a significant challenge in the task of 
pose estimation, as they are well-suited for the purpose of motion in a car while driving along a baseline. 
However, when it comes to endoscopy, where the endoscope is inserted into the patient’s body through a 
small incision during surgery, it undergoes complex three-dimensional rotational movements with a 
restricted translation motion range. This intricate behavior of the endoscope makes the estimation of poses 
a more difficult and demanding task. Occlusion is no longer visible in long-span frames in comparison to 
the target picture as a result of the motions of the endoscope in a back-and-forth motion. This helps address 
inaccuracies in depth caused by occlusion artifacts, as pixels occluded in the immediate frames have a 
higher chance of appearing in the four adjacent frames during minimum reprojection loss calculation.

Thus, we train the network and calculate reprojection loss with scenes temporally a little further apart. In 
our proposed LT-RL approach, we choose individual frames from longer spans to use as the source pictures. 
Following Equation (4), we can consider 4 adjacent source frames of It-2, It-1, It+1, It+2 and a target frame of It at 
time t. Therefore, our LT-RL can be expressed as:

Tihkonov regularizer
To refine the generated depth map, Tihkonov regularizer is used in the AF-SfM learner[9]. It consists of three
losses of residual-based smoothness loss Lrs, auxiliary loss Lax, edge-aware smoothness loss Les. Overall,
Tihkonov Regularizer  R(p) can be formulated as:

(6)
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Overall network architecture
The structure of the depth estimation network and pose network is shown in Figure 2. It consists of a 
regression network for pose and an encoder-decoder network of depth estimation. By following 
Monodepth2, we adopt the depth estimation network of commonly used UNet architecture[10] with 
ResNet18[11] encoder and corresponding decoder blocks. On the other hand, the pose network is also 
another separate ResNet18 regressor network. Our goal is to demonstrate the effectiveness and flexibility of 
the proposed loss function utilizing existing networking architectures.

There are a total of five input frames during training, one target and four source frames. The self-supervised 
optimization is performed using a combined loss of our LT-RL and smoothness loss following the baseline 
model of Monodept2[1] and AF-SfM learner[9]. The combined loss can be expressed as:

Dataset
SCARED dataset
SCARED is the sub-challenge of the MICCAI EndoVis 2019 challenge[12]. It contains 7 endoscopic videos of 
seven different scenes, and each scene was captured from a stereo viewpoint, providing two perspectives for 
depth perception, but only the left view was used. The data were collected from the internal abdominal 
anatomy of fresh pig cadavers using a da Vinci Xi surgical system and a projector. We downscaled the 
images to 320 × 256 pixels (width × height), which was a quarter of their original size. Bi-linear interpolation 
was used during the down-sampling process to preserve as much visual information as possible. The depth 
capping (CAP) was set to 150 mm followed by[13], which means that the depth range was scaled within this 
threshold. The experiment was conducted with 15,351 images used for training, 1,705 images for validation, 
and 551 images for testing. Following previous work[13], our data split strategy follows established 
methodologies: training set (keyframe1 and keyframe2) from datasets 1-9 and keyframe 3-4 from dataset 8-
9, validation set (keyframe3) from datasets 2-7, and test set (keyframe4 from datasets 2-7 and keyframe3 
from dataset 1) with no overlap. This approach ensures a robust model evaluation across datasets, aligning 
with field practices.

Hamlyn dataset
Hamlyn (https://hamlyn.doc.ic.ac.uk/vision/) dataset consists of 21 videos from various surgical procedures 
and contains complex surgical scenes with deformations, reflections, and occlusions. All 21 videos are used 
for external validation to investigate the depth prediction with occlusion for the proposed method 
following[14].

Implementation details
We adopt the official implementation (https://github.com/ShuweiShao/AF-SfMLearner) of the AF-
SfMLearner[9] as our backbone network and base optimizer. The network is trained for 20 epochs, 
employing the Adam optimizer with a batch size of 40 and a learning rate of 10-4. The overall network and 
training script are implemented using the Pytorch framework. The optimization is performed in a self-
supervised manner using our proposed LT-RL loss formulated in the Equation (8). To compare the 

(7)

(8)

To enhance the depth map, we adopted Tihkonov regularizer  R(p) during training by following Equation
(6) as AFSfMLearner[9].

https://hamlyn.doc.ic.ac.uk/vision/
https://github.com/ShuweiShao/AF-SfMLearner
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Figure 2. Illustration of the pipeline of depth and pose estimation, from input, outputs to loss calculation.

performance, we choose baselines of AF-SfMLearner[9], Monodepth2[1], HR-Depth[3], AJ-Depth[15], Lite-
Mono[16] and MonoViT[17]. For a fair comparison, we retrain all the baselines following their official code 
repositories. Due to different versions of Python libraries and the graphics processing unit (GPU) settings, 
some of the baselines obtain different performances than the reported results in the corresponding papers. 
To tackle the issue of scale ambiguity in the predicted depth maps, wherein the depth values are subject to 
an unknown scaling factor, we utilized a single median scaling method following SfMLearner[7] as shown in 
Equation (9), similar to the baseline, enabling better comparison and analysis of the depth estimations. A 
range spanning from 0 to 150 mm is sufficiently broad to cover nearly all possible depth values.

RESULTS
Evaluation metrics
The model performance evaluation of the depth estimation method employed multiple indicators to assess 
its effectiveness. For measuring the quality of depth estimation, the square relative error (Sq Rel), the 
absolute relative error (Abs Rel), the root-mean-squared error (RMSE), the root-mean-square logarithmic 
error (RMSE Log) are utilized. Evaluations were conducted by capping (CAP) or restricting the depth values 
to 150 millimeters as described in Equation (9).

Quantitative results
The quantitative results of the experiments are presented in Table 1. The performance of our proposed 
method is compared against the state-of-the-art (SOTA) models of Monodepth2[1], HR-Depth[3], AJ-
Depth[15], Lite-Mono[16], MonoViT[17] and Depth anything[18]. Table 1 demonstrates the superior performance 
of our method with the metrics of Abs Rel and RMSE Log and obtains competitive metrics of Sq Rel and 
RMSE. Table 1 demonstrates the superior performance of our method with the metrics of Abs Rel and 
RMSE Log and obtains competitive metrics of Sq Rel and RMSE. We also investigate the generalization and 
robustness of our model by validating it on an external dataset of Hamlyn. For this external validation, we 
utilized the models trained on the SCARED dataset and validated them on Hamlyn. Table 2 shows the 
prediction results in comparison with SOTA models of AF-SfMLearner[9] and Endo-Depth-and-Motion[14].

(9)
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Table 1. Quantitative results with the SCARED dataset

CAP Abs Rel (% ↓) Sq Rel (% ↓) RMSE (mm ↓) RMSE Log (mm ↓)

HR-Depth[3] 0.080 0.938 7.943 0.104

MonoViT[17] 0.074 0.865 7.517 0.097

Lite-Mono[16] 0.073 0.803 11.684 0.107

AJ-Depth[15] 0.078 0.896 7.578 0.101

Monodepth2[1] 0.083 0.994 8.167 0.107

AF-SfMLearner[9] 0.062 0.513 5.289 0.087

Depth anything (Zero-shot)[18] 0.106 1.376 8.695 0.146

Ours

150

0.058 0.452 5.014 0.083

The unit of % and millimeter (mm) of each metric is indicated in the bracket. The best results are in bold. SCARED: Stereo correspondence and 
reconstruction of endoscopic data; CAP: the capping or restriction of the depth value; Abs Rel: absolute relative error; Sq Rel: square relative error; 
RMSE: root-mean-squared error; RMSE Log: root-mean-square logarithmic error.

Table 2. Quantitative results with the Hamlyn dataset

Abs Rel (% ↓) Sq Rel(% ↓) RMSE (↓) RMSE Log (↓)

Endo-Depth-and-Motion[14] 0.185 5.424 16.1 0.225

AF-SfMLearner[9] 0.175 4.589 14.21 0.209

Ours 0.165 4.081 13.497 0.201

The downward arrow represents the lower, the better, and the upward arrow represents the higher, the better. Each metric’s unit of % and 
millimeter (mm) is indicated in the bracket. The best results are in bold. Abs Rel: Absolute relative error; Sq Rel: square relative error; RMSE: root-
mean-squared error; RMSE Log: root-mean-square logarithmic error.

The superior performance of our model demonstrates the better generalization and robustness of the 
proposed LT-RL loss. Overall, our solution is simple yet effective, easy to integrate with conventional 
reprojection loss, and delivers superior performance in monocular depth estimation. Extending the method 
to four temporally adjacent frames improves the accuracy and robustness of depth estimation by providing 
more temporal context. This additional information helps better capture the motion and structural details 
of the scene, leading to more accurate and consistent depth maps. We have conducted an external 
evaluation on the Hamlyn dataset, where our method marginally outperformed existing methods in depth 
estimation in Table 1. While the improvement in depth estimation may seem small, such enhancements can 
be significant for subsequent reconstruction tasks. This demonstrates the robustness and practical value of 
our approach.

Qualitative results
The qualitative performance of the experiments is presented in Figures 3-5. The depth prediction of our 
method is compared with the closely related works Lite-Mono[16] and ground-truth in Figure 3. The 
quantitative results demonstrate the superiority of our model over all competing methods. It is worth noting 
that our model excels not only in generating more continuous depth values and performing better on 
anatomical structures, especially in less textured and reflective regions, but also in areas with complex 
structures and substantial depth variations.

Figure 4 plots the pose trajectory for a testing video. We compare the predicted trajectory of the Lite-Mono 
pose prediction over the ground-truth (GT) pose with ours. The ground-truth trajectory is represented by a 
grey dashed line, while the trajectory predicted by the model is shown as a black solid line. The trajectories 
demonstrate the accuracy of our model prediction, which is almost similar to GT, where Lite-Mono shows a 
large deviation.
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Figure 3. Qualitative comparison of predicted depth map on the SCARED dataset between our method with SOTA depth estimation 
methods. For visualization and evaluation purposes, the ground-truth depth values are scaled. SCARED: Stereo correspondence and 
reconstruction of endoscopic data; SOTA: state-of-the-art.

Figure 5 illustrates an example of 3D surface reconstruction using the predicted depth of our method over 
Lite-Mono and AF-SfMLearner. When analyzing the reconstruction in Figure 5, it is evident that visual 
distortions or errors exist at the edges of objects, making it challenging to accurately represent spatial 
relationships between objects. This difficulty is particularly pronounced at the edges or transitions between 
different regions, but in the depth map visualization shown in Figure 3, these interpolation artifacts may not 
be visible. Our model results provided a greatly superior surface prediction outcome, which is crucial 
because the reconstruction outcomes reflect a major true objective of monocular depth estimation.
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Figure 4. The predicted pose trajectory of a video from the SCARED dataset. The ground-truth trajectory is represented by a grey 
dashed line, while the trajectory predicted by the model is shown as a black solid line. SCARED: Stereo correspondence and 
reconstruction of endoscopic data.

Figure 5. An example of 3D reconstruction of our model compared to the SOTA models of Lite-Mono and AF-SfMLearner. SOTA: State-
of-the-art.

Influence in various frames number
To investigate the efficacy of the length of temporal information, we conducted an ablation study with 
different numbers of consecutive frames in Table 3. The total consecutive frame numbers of the source 
frame to calculate the reprojection loss are indicated in the column of “Frames”. For example, Frames of “2” 
means 2 consecutive frames (one forward and one backward) from the source frame are utilized in the 
training. Our experiments found that total consecutive frames of 4 (2 forward and 2 backward frames) 
yielded the best performance in estimating the depth while addressing occlusion challenges.

DISCUSSION
Our comprehensive analysis encompassed quantitative evaluations, qualitative assessments, and detailed 
ablation studies, all of which underscore the effectiveness and innovation of our method. The proposed 
method demonstrates significant improvements in monocular depth estimation within endoscopic surgery 
contexts. Quantitative results highlight superior performance compared to SOTA models, particularly in 
Abs Rel and RMSE Log metrics. While the improvement of 2%-4% in RMSE compared to baselines using 
the standard reprojection loss may seem modest, we believe it is significant in the context of our study. In 
the field of self-supervised depth estimation, even small improvements can be critical in transitioning a 
prototype into a viable technology. These enhancements can lead to meaningful differences in real-world 
applications, especially when considering the cumulative effect of multiple incremental improvements. 
Qualitative analysis reveals LT-RL’s ability to produce more continuous depth maps, excel in less textured 
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Table 3. Ablation study on less or more frames

Frames Abs Rel (% ↓) Sq Rel(% ↓) RMSE (↓) RMSE Log (↓)

2 0.062 0.513 5.289 0.094

4 0.058 0.452 5.014 0.083

6 0.611 0.448 5.209 0.091

Quantitative comparison with 2, 4 and 6 consecutive frames conducted on the SCARED dataset. The unit of % and millimeter (mm) of each 
metric is indicated in the bracket. The best results are in black bold. Abs Rel: Absolute relative error; Sq Rel: square relative error; RMSE: root-
mean-squared error; RMSE Log: root-mean-square logarithmic error; SCARED: stereo correspondence and reconstruction of endoscopic data.

regions, and handle complex anatomical structures. Ablation studies underscore the importance of utilizing 
an optimal number of consecutive frames (in this case, 4) to maximize depth estimation performance while 
mitigating occlusion. While LT-RL does not affect the inference phase, its requirement for additional frames 
during training increases the computational overhead. Additionally, although our method demonstrates 
excellent generalization on the Hamlyn dataset, the specificity of our validation datasets suggests that 
further research is needed to fully understand LT-RL’s performance across a broader range of endoscopic 
and surgical scenarios.

In conclusion, we present LT-RL by integrating longer temporal information to tackle occlusion artifacts in 
endoscopic surgery. Our extensive validation and comparison demonstrate the evidence that it is crucial to 
consider small camera pose changes in endoscopic surgery, and the proposed LT-RL addressed the issue 
successfully. The external validation of the Hamlyn dataset demonstrates the better robustness and 
generalization of the proposed method. Although LT-RL requires extra computation for the additional 
frames during training, there is no effect in the inference phase as there is no need for loss calculation in 
deployment. Our self-supervised loss is simple, flexible and easy to adapt to any network architecture of 
convolution and recent transformer-based models. The excellent 3D reconstruction reflects the better depth 
and pose learning and prediction of our LT-RL over other models. Future work should consider 
investigating the reliability of the LT-RL over vanilla reprojection loss. Computational efficiency can also be 
improved by using a shared encoder and an equal number of input frames for both depth and pose 
estimation tasks.
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