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Abstract
Risk prediction modelling for hepatocellular carcinoma (HCC) has been the focus of research in the last decade. 
The prediction models would help HCC risk stratification, so that patients at high risk of HCC would be able to 
receive more appropriate management and HCC surveillance. These models were mostly developed in treatment-
naïve chronic hepatitis B patients in the early days. In recent years, more prediction models were derived and 
validated in patients who have received antiviral treatment, which account for the majority of patients who are at 
increased risk of HCC. Various statistical tests are adopted in developing and validating a risk prediction model - 
commonly Cox proportional hazards regression, time-dependent receiver operating characteristic (ROC) curve  
and area under the ROC curve. Even in well-validated models, there may be some pitfalls, e.g., generalizability and 
clinical applicability. The future direction of prediction model development should be directed towards a more 
personalised approach. Continuous optimisation of the predictive accuracy of the models would be achieved by 
involving more serial and dynamic parameters.
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INTRODUCTION
Development and validation of hepatocellular carcinoma (HCC) risk prediction models remain a hot area 
of liver research. Its importance is not just at the academic level, but also at the practical level. The burning 
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need of some accurate as well as applicable HCC risk prediction models is intensified by the World Health 
Organization’s goal of eliminating hepatitis B virus (HBV) infection by 2030. This initiative calls for actions 
to reduce chronic viral hepatitis incidence and mortality to 80% and 65% respectively[1]. As the majority of 
the mortality from chronic hepatitis B (CHB) is secondary to HCC[2,3], accurate HCC risk prediction is the 
key component of secondary prevention of HCC[4].

HCC is one of the top killers as it carries a high mortality rate, despite advances in HCC treatments[5]. 
HCC represents the third most frequent cause of cancer death globally (782,000 deaths in 2018)[2]. Chronic 
HBV infection is a key risk factor for HCC development, which accounts for approximately 50% of cases 
worldwide and as high as 70%-80% of cases in regions where HBV is highly endemic[6]. HCC surveillance 
facilitates early HCC diagnosis and makes curative treatments possible[7]. Regular surveillance with 
transabdominal ultrasound scanning with or without tumour markers every 6 months in all CHB patients 
would be a significant burden on healthcare resources[8]. This is especially true in the Asia-Pacific region, 
as the majority of HCC disease burden (85%) locates in low- and middle-income countries with high 
prevalence of HBV in the region[9]. Accurate HCC models enable risk-stratification for the huge number of 
CHB patients, so that healthcare resources can be targeted to patients who are at risk. 

There are more than a dozen well-validated HCC predication models; some were developed mainly in 
untreated CHB patients, whereas some intended for nucleos(t)ide analogues (NA)-treated patients[4,10]. 
In this review article, we present a focused discussion on the key statistical strategies adopted in the 
development and validation of HCC prediction models.

COMMON STATISTICAL TESTS ADOPTED WHEN DEVELOPING AND VALIDATING A RISK 

PREDICTION MODEL 
Although a semi-parametric Cox proportional hazards (PH) regression is widely used for developing a 
prediction model of a time-to-event outcome, the sample size requirements and follow-up durations for 
derivation and validation datasets of risk prediction models must be carefully considered. Of note, the 
effective sample size is defined by the number of events in Cox models. A rule of thumb is to have at least 
10 events per variable at an initial stage (i.e., Total number of candidate variables. More accurately, it refers 
to the number of parameters to be estimated) for deriving a model and a minimum of 100 outcome events 
for validation cohorts[11]. Candidate prognostic factors should be chosen a priori on the basis of clinical 
knowledge, literature review, data quality and availability, and cost constraints. Often, a univariate analysis, 
using either the log-rank test or Cox regression, is applied to all predictors and then those potential 
variables with a P-value less than a pre-specified significant level (say, P < 0.2) are entered to multivariable 
Cox PH model with (backward) stepwise approach to further reduce the model complexity. Although 
pre-filtering by univariate selection seems attractive, it should be avoided where possible[12]. Moreover, 
a stepwise selection method is unstable especially with a low effective sample size. In such cases, model 
selection procedure by backward stepwise or elimination with a significance level of 0.157 [i.e., Akaike’s 
information criterion selection as a default stopping criterion] is recommended[13].

To assess model fit, martingale residuals can be examined for checking the assumption of linear effect 
of covariates on log hazard rate for continuous predictors. If linearity assumption is violated, nonlinear 
relationships can be investigated using fractional polynomials or restricted cubic splines. In contrast, 
Schoenfeld residuals are used to test the assumption of proportional hazards, either by graphical or 
analytical methods. A risk score (linear combination of model predictors with regression coefficients 
offering weights) is calculated for each subject, followed by determining an optimal cut-off value to 
stratifying individuals into risk categories based on a pre-defined decision rule. The sensitivity and 
specificity at optimal cut point are subsequently estimated, together with Kaplan-Meier curves and the log-
rank test can be used to evaluate the different risk profiles.
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In addition, the time-dependent receiver operating characteristic curve ROC(t) and area under the 
ROC curve AUC(t) analyses for survival data can be employed at some specific times of interest to 
assess predictive power of the model[14]. Other performance metrics of model discrimination can also 
be computed including, among others, Harrell’s concordance index (C-index) and Uno’s concordance 
statistic. It may be preferable to report Uno’s concordance statistic as C-index is affected by censoring[15]. 
For calibration, which seems to be often neglected, a measure proposed by Grønnesby and Borgan can be 
readily carried out by comparing the observed and predicted number of events based on dividing predicted 
risk scores into G different groups {where G = integer of [max(2, min(10, number of failures/40))]} to assess 
the overall goodness-of-fit in particular to the Cox model[16,17]. A calibration slope should also be presented 
routinely for both internal and external validation, of which a value close to 1 indicates good calibration. 
Conducting internal validation is crucial, preferably by bootstrap resampling[18]. This technique can not 
only evaluate the stability of selected predictors in a multivariable model, but also correct prognostic 
index obtained from the original sample for optimism. For external validation, the ‘final’ model derived 
from derivation cohort is utilized to a new population to judge generalizability and transportability (some 
executable STATA codes can be found in the Supplementary Material).

STATISTICAL STRATEGIES FOR HCC RISK SCORES IN UNTREATED PATIENTS 
Examples: CU-HCC and LSM-HCC scores 
CU-HCC and liver stiffness measurement (LSM)-HCC scores [Table 1] are clinical scoring systems derived 
from the hospital cohorts for the prediction of HCC in CHB patients[19,20]. The LSM-HCC score is a refined 
version of the CU-HCC score, which assigns a heavy weight to cirrhosis[20]. As the diagnosis of cirrhosis 
in CU-HCC score based on ultrasonography may be incorrect in some patients, cirrhosis is replaced by 
LSM, a more objective and accurate assessment for advanced liver fibrosis and cirrhosis[21]. Both CU-HCC 
and LSM-HCC scores have applied similar statistical strategies, namely Cox proportional hazard model for 
determining the relationship between HCC and clinical variables with the development of HCC (e.g., HBV 
DNA level, LSM), and various discrimination methods for HCC risk group classification (i.e., Youden’s 
Index in LSM-HCC and linear trend χ2 test in CU-HCC). 

The development of both the CU-HCC and LSM-HCC scores started with identifying significant risk 
factors of HCC. One approach is to include all categorized risk factors such as age, gender, and albumin (i.e., 
≤ 35 g/L, or > 35 g/L) into a multivariate Cox model first, followed by stepwise regression which selects an 
independent variable automatically in order to form the highest precision and most informative model. 
The resultant regression coefficient and standard errors would give rise to the Wald statistic that evaluates 
whether a model parameter is significant. After that, a simple scoring system is developed as the weighted 
sum of those significant risk factors, of which the new weights were defined as the quotient (rounded to 
the nearest integer) of corresponding χ2 score from the stepwise selection process divided by the smallest 

Table 1. Statistical strategies for HCC risk scores

Scores Formulae Statistical strategies
Untreated patients

CU-HCC Age > 50 (+3) + serum album ≤ 35 g/dL (+20) + serum total bilirubin > 18 
umol/L (+1.5) + HBV DNA 4-6 log10 IU/mL (+1) OR > 6 log10 IU/mL (+4) + 
cirrhosis (+15)

Cox proportional hazard model
Linear trend χ2 test

LSM-HCC Age > 50 (+10) + serum album ≤ 35 g/dL (+1) HBV DNA 4 log10 IU/mL (+5) 
+ liver stiffness measurement 8-12 kPa (+8) OR > 12 kPa (+12)

Cox proportional hazard model
Youden’s Index 

Untreated patients
PAGE-B Age ≥ 30 (+2 to +10) + Male (+6) + Platelet < 200 (+6 to +9) Cox proportional hazard model

Points system
mPAGE-B Age ≥ 30 (+3 to +11) + Male (+2) + Platelet < 250 (+2 to +5) + Albumin < 

40 g/dL (+1 to +3)
Cox proportional hazard model
Points system

HCC: hepatocellular carcinoma; LSM: liver stiffness measurement; HBV: hepatitis B virus 
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χ2 score among all those factors. The χ2 score for a given variable is the value of the likelihood score test 
for testing the significance of the variable. The weights can then be interpreted as a prioritization of all 
significant risk factors. In the CU-HCC score, albumin (+20 points) and cirrhosis (+15 points) are two 
heavily-weighted components; whereas in the LSM-HCC score, age (+10 points) and LSM (+8 points if 
8-12 kPa, +14 points if > 12 kPa) contribute the most[19,20].

There are several summary measures for determining the optimal cut-off values of a risk score, including 
cost analysis, likelihood ratios, and receiver operating characteristic (ROC) analysis. The use of different 
cut-off methods depends greatly on the medical condition. The LSM-HCC score was categorized into low 
risk and high risk groups with a cut-off value of highest sum of sensitivity and specificity value, which is 
similar to the Youden’s index (i.e., Youden’s J statistic = sensitivity + specificity - 1). There is a trade-off 
relationship between sensitivity and specificity- as one increases, the other decreases. In the two HCC risk 
scores we discussed, selecting a cut-point by maximizing true positive and negative rates is preferred over 
merely optimizing the sensitivity. The Youden’s index is less sensitive than the one associated with only the 
sensitivity, which would not inflate the false positive rate too much and therefore avoid patients with low 
HCC risk suffering from unnecessary HCC treatment. Hence the health care resources would be more 
efficiently allocated and utilized in the medium- or high-risk group. One can define cut-points by χ2 test for 
monotonicity like the CU-HCC score, as the multivariate Cox proportion hazard model can be written as a 
linear model. The procedure for HCC risk scoring development is summarized in Table 2[22].

STATISTICAL STRATEGIES FOR HCC RISK SCORES IN TREATED PATIENTS
Examples: PAGE-B and mPAGE-B scores 
Current first-line oral HBV antiviral treatment suppresses HBV DNA replication effectively and prevents 
disease progression in CHB patients, yet does not completely eliminate the risk of HCC development[23,24]. 
Motivated by the modest performance of untreated-derived risk scores on treated patients, especially 
among the Caucasian population[23], the PAGE-B score [Table 1] was developed to specifically predict the 
risk of HCC in NA-treated CHB patients[25,26]. Subsequently, Korean investigators modified the PAGE-B 
score by adding serum albumin for accurate prediction in the Asian treated CHB population[25]. These 
two scores have been externally validated in several independent cohorts and achieve good prediction 
performance[10,27,28]. Likewise, other HCC risk scores have been derived and validated for treated CHB 
patients[25,29-31].

The PAGE-B score is calculated by summing up integer points that correspond to particular categories 
of the included risk factors. Based on multivariable Cox proportional hazards model, the authors 
demonstrated that advanced age, male gender, and low platelet counts are the three key risk factors to 
predict HCC development in the coming five years[26]. Instead of relying on a complex Cox model-based 
equation, they adopted the method described by Sullivan et al.[32] on simplifying the equation to a so-
called “points system”, which aims at easy calculation without aid of a calculator. This method is done by 
organizing every significant covariate into meaningful categories by cut-offs, followed by determining 

Table 2. Procedure for HCC risk scoring development

Step Description
1 Categorizing all continuous risk factors into clinically meaningful categorical variables
2 Implementing Fine-Gray subdistribution hazard model to model the cumulative incidence of the event of interest as the Cox 

proportional hazard model overestimates the risk rate
3 Assigning zero weights for reference levels of the categorical variable
4 Defining weights by estimated regression coefficients which are multiplied by 10 and rounded to the nearest integer
5 Deriving the optimal cut-off values of a HCC risk score by maximizing the Youden’s index

HCC: hepatocellular carcinoma
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reference value of each category. These cut-offs are predefined based on previous literature and clinical 
knowledge, or driven by data. For a category of continuous covariates like age or platelet counts, reference 
value is chosen as the mid-point of that category, e.g., 34.5 is the reference value of the age group of 30-
39 years. For an open-ended category of continuous covariates, usually the first and last categories such as 
platelet < 100,000/mm3 and ≥ 200,000/mm3, respectively, the 1st and the 99th percentile of platelet counts 
of all patients are used as the lower bound and upper bound for calculating mid-point for the first and 
last category, respectively, to minimize the influence of outliers. The reference value is set to be 0 for the 
reference group of categorical covariate, which is female gender in PAGE-B score; any other categories of 
the categorical covariate, i.e., male gender, are assigned with reference value of 1. 

After assigning all reference values, a base category is selected as the reference category for each risk factor. 
Usually the category with the lowest risk is chosen as the base category. The base category has 0 points 
in the points system. Following that, it is to determine how far each category is from the base category in 
terms of regression coefficient estimated by the original multivariable Cox regression. For each category of 
a continuous covariate, the distance is calculated as the product of the regression coefficient, i.e., natural 
logarithm of the adjusted hazard ratio, and the numerical difference of the reference value of that category 
from the reference value of the base category. The distance of each category of categorical covariate from 
the base category is exactly the estimated regression coefficient of that category. After that, a constant 
that represents the number of regression units that will correspond to one point in the points system is 
chosen. Then the point of each category of each risk factor is equal to its calculated distance divided by 
the constant, rounded to the nearest integer. Finally, the HCC risk score is calculated as the sum of integer 
point of each category that a patient falls into.

COMMON PITFALL IN THE DEVELOPMENT AND VALIDATION OF HCC RISK SCORES
Existing HCC risk scores were mostly developed using traditional regression methods, or to be specific, 
the Cox proportional hazards regression. A point system is usually adopted by giving integer points to 
categories of each risk factor. In the old days, it was reasonable to reduce the complex regression equation 
into discrete scoring system so that clinicians can use the score with ease. Yet, as a trade-off, continuous 
covariates have to be divided into categories. Statistically speaking, part of the information carried by the 
covariates can be lost through categorization. Also, the overall performance of the risk score will rely on 
the choice of cut-offs. Sometimes, the value of the covariates themselves, for example platelet counts, is 
more objective than the cut-off, especially if the cut-off may be estimated using your own data. Data-driven 
cut-offs for covariates may not be generalizable to other patient populations if there is some unmeasured 
difference between populations. With the advancement of technology, nowadays even complex equations 
can be easily calculated with the help of a computer next to the clinicians when they see their patients. All 
they need to do would be to input the value of every covariate to the computer, if not the computer does 
that for them automatically. It is expected that in the future, instead of a point system, complex equations 
that can achieve even higher accuracy derived by big data approaches including machine learning or deep 
learning algorithms would play a more important role in prediction of HCC. 

After calculating the HCC risk score, researchers have to explain to clinicians and patients the meaning of 
the value. To deal with that, traditionally cut-offs for HCC risk score are determined based on diagnostic 
accuracy to classify patients into low, intermediate, and high risk of HCC development. The cumulative 
incidence of HCC in each risk stratum would then be estimated by survival analysis. A drawback of the 
current way of determining cut-off is that the criteria used do not suit the target, hence the limited use 
of HCC risk score in clinical practice. Indeed, most of the determined low cut-offs of existing HCC risk 
scores achieve a high NPV to exclude a meaningful proportion of patients with low HCC risk[32]. HCC risk 
scores have the potential to guide HCC surveillance in the clinical setting, especially among non-cirrhotic 
patients, by identifying patients who have a low HCC risk in the near future[10]. HCC risk scores can be 
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more useful if a low cut-off is selected based on the low annual incidence of HCC in the low risk group, for 
instance, less than the suggested threshold by the American Association for the Study of Liver Diseases for 
cost-effective HCC surveillance for CHB patients, i.e., 0.2%[33]. 

Missing data is perhaps another important issue in developing a risk score. Many HCC risk scores involve 
laboratory measurements that may be missed in some of the patients. If ignored, a risk score developed 
based on solely complete cases can introduce selection bias and affect the precision of the effect estimates. 
Missing data should be probably handled by statistical methods such as multiple imputation to avoid 
bias. It is worth noting that apart from the PAGE-B score, existing HCC risk scores usually did not state 
explicitly on how missing data are handled, which can potentially affect their generalizability.

CONCLUSIONS AND FUTURE PERSPECTIVE 
With the knowledge of common statistical tests and strategies which have been adopted in the various 
HCC prediction models, the future is directed towards a more personalised approach. Continuous 
optimisation of the predictive accuracy of the models will be achieved by involving more serial parameters, 
as well as on-treatment data in NA-treated patients. HCC risk levels may change over time, as patients are 
getting older, at the same time the natural history has been modified by NA treatment, which leads to viral 
suppression, improvement in liver biochemistry, as well as regression of cirrhosis. Hence, accurate models 
should be able to identify such bidirectional changes of HCC risk over time. Whilst accuracy remains the 
most important aspect of an ideal prediction model, applicability and usability is just and important in 
order to translate HCC risk into clinical practice. Prediction models may be built into the computer systems 
for patient management with automated retrieval of relevant clinical parameters. The most-updated HCC 
risk level would be able to guide the optimal HCC surveillance intervals or modalities, by providing timely 
alerts in the computer system.
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