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Abstract
Resistance to anticancer agents and apoptosis results in cancer relapse and is associated with cancer mortality. 
Substantial data have provided convincing evidence establishing that human cancers emerge from cancer stem 
cells (CSCs), which display self-renewal and are resistant to anticancer drugs, radiation, and apoptosis, and 
express enhanced epithelial to mesenchymal progression. CSCs represent a heterogeneous tumor cell population 
and lack specific cellular targets, which makes it a great challenge to target and eradicate them. Similarly, their 
close relationship with the tumor microenvironment creates greater complexity in developing novel treatment 
strategies targeting CSCs. Several mechanisms participate in the drug and apoptosis resistance phenotype in CSCs 
in various cancers. These include enhanced expression of ATP-binding cassette membrane transporters, activation 
of various cytoprotective and survival signaling pathways, dysregulation of stemness signaling pathways, aberrant 
DNA repair mechanisms, increased quiescence, autophagy, increased immune evasion, deficiency of 
mitochondrial-mediated apoptosis, upregulation of anti-apoptotic proteins including c-FLIP [cellular FLICE (FADD-
like IL-1β-converting enzyme)-inhibitory protein], Bcl-2 family members, inhibitors of apoptosis proteins, and 
PI3K/AKT signaling. Studying such mechanisms not only provides mechanistic insights into these cells that are 
unresponsive to drugs, but may lead to the development of targeted and effective therapeutics to eradicate CSCs. 
Several studies have identified promising strategies to target CSCs. These emerging strategies may help target 
CSC-associated drug resistance and metastasis in clinical settings. This article will review the CSCs drug and 
apoptosis resistance mechanisms and how to target CSCs.
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INTRODUCTION
The cancer stem cell (CSC) paradigm emerged from investigating a subpopulation of less-differentiated 
CD34+/CD38- cells possessing stem cell-like renewal ability and robust malignant-initiating capacity in 
acute myeloid leukemia (AML)[1]. Cancer cells from various types of cancers with these characteristics have 
since been identified in nearly all solid tumors, including cancers of the brain, breast, colon, pancreas, 
prostate, liver, lung, ovary, head and neck, stomach, thyroid, and melanomas[2]. The biological importance 
of activation targets of Nanog, Oct4, SOX-2, and c-Myc in CSCs, which are more frequently overexpressed 
in poorly differentiated tumors than in well-differentiated tumors, has been shown by correlating signature 
characteristics of these cells and poor survival[3]. Interestingly, specific dysregulated signaling pathways 
maintain CSCs renewal capacity with unique patterns among various tumor types. For instance, CSC 
maintenance in glioblastoma, colon cancer, gastric cancer, and prostate cancer is regulated by CD133-
mediated AKT, leucine-rich G-protein-coupled receptor 5 (LGR5)-mediated Wnt/β-catenin and speckle-
type POZ protein (SPOP)-mediated Nanog pathways[4-8]. Moreover, Wnt signaling cascades cross-talk with 
the FGF, Notch, Hedgehog (Hg), and TGFβ/BMP signaling pathways and regulate the expression of CSC 
markers, such as CD44, CD133 (PROM1), EPCAM, and LGR5 (GPR49) in these tumors[9]. In contrast, 
regulation of breast cancer CSCs (BCSCs) occurs by CD44 standard splice isoform (CD44s)-activated 
platelet-derived growth factor receptor b (PDGFRb)/signal transducer and activator of transcription 3 
(STAT3), forkhead box C1 (FOXC1)-activated sonic hedgehog (SHH), and sphingosine-1-phosphate 
(S1P)/S1PR3-activated NOTCH pathways[10-13]. Therefore, these specific patterns of stemness regulation in 
various cancers have created significant complexity and specificity in various tumor types, which, in turn, 
may create a complicated situation with respect to therapeutic interventions aimed at eradicating CSCs 
from different tumor types.

Substantial data have provided evidence that tumors contain heterogeneous clones of CSCs and these cells 
are essential for tumor growth and survival[14]. Based on the CSC model, tumor heterogeneity due to clonal 
evolution of CSCs[15,16] is defined as cells with self-renewal capacity which are able to generate a progeny cell 
population [Figure 1]. As a result, the bulk of the tumor mass is differentiated and expanded progeny 
capable of rapid proliferation potential and harboring minor populations of various CSCs with particular 
properties, including their drug resistance phenotype [Figure 2]. Therefore, the major obstacle to curing 
tumors remains the presence of heterogeneous CSC clones resistant to chemotherapy and apoptosis[17-22]. 
Previous reports have proposed that targeting CSC subpopulations may result in tumor eradication and 
inhibition of tumor relapse[9,17-19]. However, tumors are curable when the heterogeneous CSC populations, as 
well as the rest of the tumor mass, including the progenitor cells and differentiated malignant cells, are 
targeted and eliminated[9,18,19].

The progression and heterogeneity of tumor cell populations may be explained by the CSC or cancer-
initiating cell model[14-18] or by the clonal evolutionary model[14]. The CSC model, which is also referred to as 
the hierarchical model, states that tumors arise from a small percentage of CSCs that are derived from 
normal stem cells (NSC) that generate the bulk of tumor cell population[14,15] [Figure 2]. In the clonal 
evolution model, genetic and epigenetic changes happen over time in individual cells, and these alterations 
persist and provide a selective advantage; the clonal CSCs will outgrow other clones and result in a 
heterogeneous tumor population[14-18]. Interestingly, in the clonal evolutionary model, each cancer cell 
within the tumor is endowed with the potential to generate tumors having various degrees of drug-resistant 



Page 852Safa. Cancer Drug Resist 2022;5:850-72 https://dx.doi.org/10.20517/cdr.2022.20

Figure 1. Heterogeneity of CSCs in tumors. Development of drug-resistance phenotype, metastatic tumor formation, and a potential 
strategy for eradicating tumors using CSC-specific drugs. CSC: Cancer stem cell.

Figure 2. CSCs role in tumor development and progression. CSCs are originated from the NSCs through the tumorigenic transformation 
of several potential pathways including Hg, epithelial-to-mesenchymal transition (EMT), and the reverse process mesenchymal-to-
epithelial transition (MET). CSCs and drug-induced CSCs (Di-CSCs) can be enriched following conventional chemotherapy treatment. 
CSC: Cancer stem cell; NSCs: normal stem cells.
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subpopulations [Figure 1]. Another complexity of cancer treatment is that CSCs can be generated during
cancer therapy by epigenetic plasticity due to drug-induced dedifferentiation and conversion of non-CSCs
to CSCs[9,17,18] [Figure 2].

Tumor recurrence due to unresponsiveness to chemotherapy is the major cause of death in patients with
incurable cancers and is due to treatment-resistant CSCs in the primary tumor [Figure 1]. CSCs are a low
percentage of the cell population within a tumor and express specific molecular markers in a variety of
cancers[14,15,17]. Understanding the molecular network of CSC populations may lead to the identification and
development of targeted agents that can trigger CSCs cell death, thus enhancing the opportunity to design
more effective treatment strategies to eradicate cancer.  CSCs in various types of tumors are responsible for
the initiation, progression, metastasis, drug resistance, and recurrence of cancer[9,14,15,17]. These quiescent and
pluripotent cells form CSCs niches, resulting in particular microenvironments that protect CSCs from cell
death, chemotherapy, and radiotherapy[9,18,19]. Additionally, tumors bear a hierarchy of cells initiated from
the CSC population. Tumors exhibit stemness (self-renewal and multilineage differentiation) because of
CSCs. These cells are capable of recapitulating xenografts similar to the original tumor[9,18,19]. The CSCs self-
renewal and differentiation programming lead to the generation of several cancer cell types within tumors,
creating tumor heterogeneity[9,18,19,23] with gradients of resistance to different therapeutics.

Drug resistance is a major impediment to the successful treatment of tumors with conventional
chemotherapeutic agents[8,18,19]. One major contributor to drug resistance is the heterogeneity of cells with
various degrees of sensitivity to drugs within a tumor[9,23]. A significant amount of data has proven that
within solid tumors, there are distinct populations of cancer cells contributing to the complexity of cancer
treatment[9,18,19,24-29]. Additionally, the lack of or refractoriness to apoptosis due to intrinsic resistance to cell
death has been another primary limitation in cancer therapy (e.g., pancreatic cancer, colon cancer,
glioblastoma, and prostate cancer are typically refractory to cancer chemotherapy mainly due to aberrant
apoptotic machinery) along with acquired resistance (e.g., after breast cancer chemotherapy, tumor cells
become resistant to multiple drugs)[18,28]. Based on substantial data, it is now believed that major
contributors to intratumoral heterogeneity are CSCs, cellular genotype, genomic instability, cell plasticity
epigenetic variation, and stochastic processes[9,18,19,29]. Additionally, the microenvironmental factors including
distinct subpopulations of cancer-associated fibroblasts and cancer-associated macrophages[9,18,29], regulate
various events in cancer cells and contribute to the heterogeneity of the tumor cell population. Therefore,
while CSCs participate in drug and apoptosis resistance in tumors, the therapy resistance phenotypes in
various cancers are very complex.

Various molecular and biochemical mechanisms participate in triggering resistance to chemotherapeutic
drugs in cancer cells, and characterizing these mechanisms is critically important for the development and
design of more effective and successful approaches to reverse or circumvent drug resistance in cancer cells
and tumors. Upregulation of drug transporter proteins, deregulation of apoptotic signaling pathways, and
upregulation of the cytoprotective and survival mechanisms in cancer cells, particularly in CSCs, confer
resistance to various drugs in a wide variety of cancers[28,30-34]. Since several levels of drug resistance
phenotype may be present in the bulk of tumor cell population, for effective and successful cancer therapy,
it is essential to eliminate the entire CSC population, differentiated cancer cells, and progenitor cells in the
entire tumor mass.

Drug resistance in CSCs
Several major signaling pathways have been shown to play essential roles in the regulatory capacity of CSC
self-renewal, survival, proliferation, differentiation, and stemness maintenance.  These pathways include
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Janus-activated kinase/signal transducer and activator of transcription, Hh, Wnt, Notch, 
phosphatidylinositol 3-kinase/phosphatase and tensin homolog, and NF-κB signaling pathways[7-9]. It is also 
well documented that these critical signaling pathways are also dysregulated in various cancers[7-9,17,18]. Much 
evidence suggests that the dysregulation of these signaling pathways may also contribute to the survival and 
drug resistance of CSCs[18,19].

It is well documented that CSCs are highly resistant to conventional chemotherapies[11,26-32] and target 
specific anticancer agents. Figure 3 shows that various drug resistance mechanisms have been reported in 
CSCs including increased anti-apoptotic proteins such as Bcl-2 Bcl-X, and c-FLIP[11,26], high expression of 
ATP-binding cassette (ABC) transporter proteins and detoxifying enzymes[26-28], cell cycle quiescence[29,30], 
increased DNA repair ability[26,27], elevated aldehyde dehydrogenase (ALDH) activity[31], activation of key 
prosurvival signaling molecules such as Notch, Wnt/β-catenin, and NF-κB[32-34], increased activities of the 
phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and maternal 
embryonic leucine zipper kinase (MELK), aberrant stemness signaling pathways, increased quiescence, and 
increased autophagy[11,35].

Accumulating data show that CSCs are quiescent, which is the resting stage of the cell cycle, and quiescence 
is associated with resistance to chemotherapeutic agents since most of these drugs target actively 
proliferating cells[36,37]. DNA repair proteins are upregulated in CSCs, and their increased expression 
correlates with rapid DNA repair, which also triggers drug and radiation resistance[27,39,40]. Much evidence 
shows that the cancer microenvironment (niche) critically protects CSCs from cancer therapy[27,41], and 
CSCs mutually contribute to the niche in a feedback loop[32,41]. Furthermore, the extracellular matrix (ECM), 
a component of the niche, is known to facilitate and maintain CSCs and drug resistance[42]. Therefore, 
delineating molecular and biochemical mechanisms of drug resistance as well as understanding the cross-
talk between CSCs and their niche is critical for devising strategies to overcome resistance to anticancer 
drugs and cell death.

This review article discusses the contribution of numerous drug resistance mechanisms and signaling 
pathways in controlling CSC maintenance and unresponsiveness to drugs and apoptosis. Understanding 
and delineating these mechanisms are critically important and essential for overcoming drug resistance in 
these cells[13-15,23,34]. To appreciate the complex signature network that controls unresponsiveness to drugs, 
the major mechanisms of chemotherapeutic and apoptotic resistance in CSCs are summarized in Figure 3. 
These mechanisms are interchangeable in controlling resistance to chemotherapy and apoptosis evasion in 
CSCs.

Signaling pathways in cancer stem cells
Significant evidence has documented that tumors are initiated from CSCs, and these cells maintain patient 
resistance to therapies[11,43-49]. Moreover, due to the heterogeneity, high diversity, and plasticity of CSCs, 
developing efficient and useful therapeutics to target these cells has been difficult. Accumulating data also 
suggests the possibility of non-CSC reprogramming and dedifferentiation of the progenitor cells or 
differentiated cancer cells to CSCs [Figure 1], resulting in increased complexity and diversity of drug-
unresponsive cells with various drug resistance mechanisms in tumors. Therefore, because of this 
complexity, an ideally potent and effective anticancer drug must eradicate both CSCs and the bulk of the 
heterogeneous tumor cell population, and avoid triggering tumor cell dedifferentiation of non-CSCs to 
CSCs or cancer stem-like cells.
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Figure 3. Schematic presentation of CSC-mediated therapy resistance to cancer. Activation of cell survival pathways, quiescence, 
increased drug efflux, impairment of the apoptotic pathway, increased DNA damage repair, increased detoxifying activity, and 
increased scavenging of free radicals are possible contributors to the therapy resistance of CSCs. TRADD: Tumor necrosis factor 
receptor 1 (TNFR1)-associated death domain protein.

A complex signature network including the Notch, Hg, Wnt/β-catenin, the NF-κB signaling pathways, 
PI3K/Akt/mTOR (mTORC1 and mTORC2), MELK, TGF-β, STAT, and Hippo-YAP/TAZ among others 
are activated and participate in the maintenance, self-renewal, proliferation, and drug resistance 
characteristics of CSCs[11,43-50]. These pathways and the cancer stem cell markers including CD133, CD44, 
Oct4, SOX-2, Nanog, and ALDH1A1 maintain distinct CSC properties[17,18,28,43-63] [Figure 4].

Accumulating evidence indicates that another important factor, epigenetic modification of CSCs, could 
result in phenotypic and functional heterogeneity among the cell populations within solid tumors which 
arise from different tissues of origin[9, 21, 23]. Emerging data suggest that epigenetic factors regulate CSC 
properties. For instance, the catalytic subunit of Polycomb repressive complex 2 (PRC2), known as the 
enhancer of zeste homolog 2 (EZH2), has histone methyltransferase activity, is upregulated in CSCs, and 
has a critical function in their proliferation and maintenance[61,64]. Furthermore, histone deacetylases 
(HDACs) 1, 6, 7, 8 and 6, known to deacetylate transcription factors and other cellular proteins, are 
overexpressed in CSCs and function in various maintenance activities of these cells[65,66].

It has been shown that hypoxia plays a crucial role in triggering resistance to chemotherapeutic agents[67-69]. 
Hypoxia-driven CSC enrichment results from a dedifferentiation process in breast cancer, and hypoxia-
inducible factors (HIFs) are required for chemotherapy resistance in CSCs from various tumors including 
breast CSCs (BCSCs)[67], glioblastoma CSCs[68] and other solid tumors[57]. Interestingly, the dedifferentiated 
CSCs display multidrug resistance (MDR) via the PERK (protein kinase R-like endoplasmic reticulum 
kinase)-Nrf2 signaling pathway[70]. Moreover, Lee et al.[68] have found that temozolomide (TMZ)-triggered 
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Figure 4. Apoptosis signaling pathways. Overview of the intrinsic (mitochondrial), extrinsic or death receptor (DR), and ER-stress 
(ERS)-mediated apoptosis pathways in response to the molecular action of anticancer agents, as well as the TRADD/NF-κB survival 
pathway, the growth factor (GF) receptors, and PI3K/Akt prosurvival signaling axis in CSCs. FADD: Fas-associated death domain; c-
FLIP: cellular FLICE-like inhibitory protein; TRAF: tumor necrosis factor receptor associated factor; NF-κB: nuclear factor kappa B; IkB: 
inhibitor kappa B; IKK: inhibitor kappa B kinase; XIAP: X-linked inhibitor of apoptosis; Apaf-1: apoptotic Protease Activating Factor-1; 
Cyt. C: cytochrome c; PI3kinase: phosphoinositide 3-kinase; AKT: protein kinase B (PKB); PUMA: p53upregulated modulator of 
apoptosis; Bcl-2: B cell Lymphoma 2; Bax: Bcl-2-associated X protein; BID: BH3 interacting domain death agonist; Mcl-1: myeloid cell 
leukemia sequence 1; Bak: BCL-2-anatagonist/killer1; CHOP: C/EBP homologous protein; Noxa: encodes a Bcl-2 homology 3 (BH3) 
member of the Bcl-2 family of proteins; ATF: activating transcription factor; ER: endoplasmic reticulum; PERK: endoplasmic reticulum 
stress kinase; IRE1: inositol-requiring enzyme 1; RYR: ryanodine receptors Ca2+ release channels; IP3R: inositol 1,4,5-trisphosphate (IP3) 
regulated channels; BIP: binding immunoglobulin protein.

HIF1α/HIF2α upregulation plays a major role in converting non-stem glioma cells to stem-like cells, and 
that knockdown of HIF1α/HIF2α inhibited the conversion of non-stem glioma cells to glioma stem cells 
(GSCs) post-therapy[68].

Another critical signaling protein, MELK, a serine/threonine kinase, is upregulated in human cancers and 
CSCs[71-73], and evidence suggests that this protein plays a major role in the survival and other known 
properties of CSCs including drug and apoptosis resistance as well as tumor recurrence. Kim et al.[72] has 
shown that MELK phosphorylates the oncogenic transcription factor Forkhead Box M1 (FOXM1) and that 
the MELK/FOXM1 complex targets EZH2, which in turn promotes CSC resistance to drugs and 
radiation[18, 61], and that an inhibitor of MELK OTS167 robustly eliminates CSCs from small cell lung cancer 
(SCLC)[73,74].
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Resistance to apoptosis in CSCs
While chemotherapeutic agents promote apoptosis in malignant cells and reduce tumor mass, the disease 
often relapses or progresses due to the repopulation of the cells unresponsive to anticancer therapy[75-77]. 
Moreover, cancer cells may acquire more stemness, metastatic properties, and drug resistance during 
treatment[78-80]. Therefore, this scenario suggests that therapy itself triggers tumor progression. Such 
unwanted effects of the therapies may be due to the selective survival of the particular subset of cancer cells 
having very aggressive mutations, allowing the cells to escape apoptosis[78], which may trigger tumor 
aggressiveness.  However, this concept is challenged by data indicating a more complex scenario[81-86]. In 
fact, cancer tissues treated with cytotoxic agents work by aberrant responses through epigenetic 
mechanisms, activating signaling pathways directed towards tissue repair and cell repopulation. Such 
pathways also act by increasing tumor immune escape, metastasis, genetic instability, and acquired 
resistance to anticancer agents and apoptosis[87,88]. It is also possible that therapy-induced apoptotic cells 
produce paracrine signals, promoting proliferation capacity among surviving cells[89-93]. Therefore, the active 
role in a compensatory contradicting manner is played by the dying cells, which increase tumor tissue 
repopulation.  In such a scenario, apoptotic cells activate the “Phoenix Rising” pathway to promote wound 
healing tissue regeneration (the term “Phoenix Rising” means to emerge from a catastrophe stronger and 
more powerful[89].

Unresponsiveness to chemotherapeutic agents, dysregulation of apoptosis pathways, apoptosis resistance, 
and overexpression of anti-apoptotic proteins are necessary for CSC survival. To discuss the mechanisms of 
resistance to apoptosis and cancer-related chemotherapeutic drug, apoptosis signaling pathways are first 
described. Cancer cells and CSCs avoid apoptosis, but apoptosis in these cells is carried out through several 
signaling pathways in response to chemotherapeutic agents and various apoptotic stimuli[28,95]. Mutations 
that occur in normal stem cells (NSCs) lead to the generation of CSCs [Figure 1], enabling them to evade 
apoptosis and leading to tumor formation[28,80].

A large amount of data has described three major apoptosis pathways: the extrinsic or cell surface death 
receptors pathway, the intrinsic or mitochondrion-initiated pathway, and endoplasmic reticulum (ER) 
stress-mediated pathway control of apoptosis [Figure 4][28,96-107]. Extrinsic or the death-receptor mediated 
apoptotic pathway is initiated by the binding of death receptors (DRs) with their ligands [interaction of 
Fas/Fas ligand, tumor necrosis factor-α (TNF-α)/TNF receptor 1 (TNFR1), TRAIL (TNF-related apoptosis-
inducing ligand)/DR4, or TRAIL/DR5] [Figure 4]. Ligand and DR interaction induces recruitment of Fas-
associated protein with death domain (FADD), also called MORT1, and procaspases-8 or -10 to form the 
death-inducing signaling complex (DISC), which by an autocatalytic process leads to activation of these 
procaspases to caspases-8 and -10. These initiator caspases subsequently activate the effector caspases-3, -6, 
and -7. Active forms of these caspases then trigger degradation of the downstream proteins leading to 
apoptosis. Caspase-8 or -10 cleaves the pro-apoptotic Bcl-2 family member Bid to truncated tBid, thereby 
linking the extrinsic apoptosis pathway to the intrinsic or mitochondrial pathway and inducing cytochrome 
c release from mitochondria[28,96,100]. The DR-initiated apoptosis pathway is suppressed by the anti-apoptotic 
protein cellular FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein (c-FLIP), which inhibits 
DISC formation and activation of caspases-8 and -10 and blocks apoptosis[34,103,104].

In the intrinsic apoptosis pathway, various apoptotic stimuli (e.g., conventional chemotherapeutic drugs, 
DNA damaging agents, radiation, and small molecule anticancer compounds) induce mitochondrial outer 
membrane permeabilization (MOMP). MOMP induction is initiated by the activation of two groups of pro-
apoptotic proteins: (1) the Bcl‐2 homologous pro-apoptotic proteins (e.g., Bax, Bak, and Bad) and (2) the 
Bcl-2 homology domain-3 (BH3)-only family of proteins including Bid, Bim, and Puma[96-102]. Therefore, 
these proteins provide an interactive protein network with mitochondria, which leads to the release of 
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apoptosis triggering factors. The apoptosis-inducing factors (AIFs) include certain caspases, Smac/DIABLO, 
and other factors from the mitochondrial intramembrane space to the cytosol. Following release from 
mitochondria, cytochrome c and dATP bind to apoptotic proteinase-activating factor-1 (Apaf-1) to form 
the apoptosome, and this complex triggers procaspase-9 autoactivation. The active caspase-9 can activate 
caspases-2, -3, -6, -7, -8, and -10, leading to degradation of cellular proteins and resulting in apoptosis 
induction[28,102,103].

The third main apoptosis pathway is the endoplasmic reticulum (ER)-mediated apoptosis pathway 
[Figure 4]. One of the functions of the ER is to promote the correct folding of proteins. It also mediates ER-
associated degradation of unfolded or misfolded proteins. Dysregulation of ER functions triggers an 
accumulation of unfolded or misfolded proteins in the ER lumen, resulting in ER stress (ERS), which 
triggers the unfolded protein response (UPR) or the ERS response (ERSR), leading to restored homeostasis 
or apoptosis[105-107].

Another mechanism by which CSCs display resistance to apoptosis is by upregulating the expression of 
anti-apoptotic proteins including the cellular FLICE-inhibitory protein (c-F1LIP), the Bcl-2 family of 
proteins, and inhibitor of apoptosis proteins (IAPs)[28,108,109]. CSCs upregulation of c-FLIP expression 
regulates resistance to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis[110]. 
Overexpression of IAPs also plays a crucial role in resistance to TRAIL and chemotherapeutic agents, as 
well as unresponsiveness to apoptosis[28,111].

Mechanisms of CSCs drug resistance
While CSCs are significantly resistant to drugs, there are several characteristics of these cells that may 
potentially help in the development of anti-CSC therapies. These characteristics include drug transporters, 
DNA repair machinery, specific cell surface markers, particular networks of transcription factor signaling, 
aberrant signaling pathways, epigenetic alterations, reprogramming and plasticity, interaction of CSCs with 
the microenvironment and CSC niche, and using specific metabolic pathways that regulate CSCs[55,71-73,93-95].

Several mechanisms trigger drug resistance and make CSCs refractory to apoptosis. Characterizing the 
mechanisms that evade apoptosis and identifying therapeutic targets to increase apoptosis in CSCs are 
particularly significant for successful cancer therapy. These mechanisms are discussed in detail in the 
following sections.

Multidrug resistance transporters in CSCs
Several ATP binding cassette protein transporters, including P-glycoprotein (P-gp, MDR1, ABCB1), 
multidrug resistance protein 1 (MRP1, ABCC1), breast cancer resistance protein (BCRP, ABCG2), and 
MRP5/ABCC5[14-120], have been extensively investigated as multidrug resistance transporters in various 
tumors. Overexpression of these proteins in several solid tumor types, AML, and myeloma leads to ATP-
dependent efflux of a wide range of conventional chemotherapeutic agents.  Overexpression of these 
proteins in the multidrug-resistant cells results in lower drug levels in the resistant cells, below the amount 
required to induce cell death[112-115]. Consistent with these observations, conclusive evidence shows that CSCs 
in various solid tumors and hematological malignancies upregulate these ABC transporters, resulting in 
drug resistance in these cells[116,117]. For example, Wang et al.[118] reported that Panc-1 pancreatic CSCs 
displayed resistance to gemcitabine, upregulated expression of CD133/CD44/Oct4/Nestin compared to the 
parental Panc-1 cells, and overexpressed P-gp and anti-apoptotic proteins. Moreover, in glioblastoma CSCs, 
epigallocatechin gallate (EGCG) treatment downregulated P-gp overexpression but not that of ABCG2 or 
O6-methylguanine-DNA methyltransferase (MGMT) and increased the cytotoxic effect of TM[118]. 
Additionally, Wilson et al.[116] demonstrated that ABCG5 in melanoma cancer stem cells (MCSCs) maintains 
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drug resistance and stemness in these cells. Therefore, the ABC multidrug transporter proteins are surface
markers for CSC identification as well as their ability to transport drugs and enable CSCs to be resistant to
drugs.

PI3K/Akt/mTOR signaling pathway plays a crucial role in CSCs
This is a critical pathway that functions in many important cellular activities and contributes to drug
resistance in cancer. Several studies have clearly shown that upregulation of PI3K/Akt/mTOR plays a
central role in the maintenance of CSCs[121-123]. Furthermore, emerging data suggest that this signaling
pathway is a rational and promising target for developing anti-CSC drugs[119-125]. Indeed, some promising
compounds targeting this pathway, including salinomycin, metformin, silibinin E1201, rottlerin, and torin,
have been shown to be promising anti-CSCs therapeutics[120]. Additionally, the antidiabetic drug metformin,
an inhibitor of PI3K/Akt/mTOR signaling, was shown to effectively reduce temozolomide (TMZ) resistance
in CSCs[123]. Furthermore, the combination of metformin with the RAF inhibitor sorafenib also significantly
decreased CSCs oxidative stress and drug efflux pump activity and synergistically killed these cells[124]. It is
well known that CSCs heavily rely on mitochondrial oxidative phosphorylation[124]. Interestingly, metformin
has been shown to use this metabolic weakness and increase CSCs sensitivity to many cancer
chemotherapies, modulate drug resistance, and increase treatment efficacy[125].

Dysregulated anti-apoptotic Bcl-2 family proteins in CSCs
Distinct hallmarks of malignancies are apoptosis evasion due to dysregulation of signaling pathways and
apoptotic proteins[28] and the ability of CSCs to self-replicate, proliferate, and metastasize[28,126]. While
emerging data indicate that in various cancers, several steps within the extrinsic and intrinsic apoptotic
pathways in CSCs may be dysregulated[28,126], the abnormal expression levels, as well as levels and ratios of
pro-apoptotic and anti-apoptotic proteins and their contribution to drug resistance in CSCs have not been
well described. Bcl-2 family proteins are well characterized and consist of the anti-apoptotic molecules Bcl-
2, Bcl-XL, and Mcl-1 and the pro-apoptotic proteins Bax, Bak, Bid, Bim, Bik, Noxa, and Puma[128,129].
Increased levels of Bcl-2 family proteins were shown in CSCs, and high levels of these proteins have been
shown to be associated with the apoptosis and drug resistance of CSCs[139,131]. This resistance is partly due to
the ratio of anti- to pro-apoptotic protein levels, triggering the unresponsiveness of cancer cells to drugs and
apoptosis, which enhances cell survival[28,130,131]. It has been shown that aberrantly overexpressed nuclear
factor erythroid 2-related factor 2 (Nrf2), which is the redux-sensing transcription factor, promotes CSC
survival by elevating transcription of the genes for drug transporters and the anti-apoptotic Bcl-2
proteins[132]. Due to the significance of expression of the Bcl-2 family of anti-apoptotic proteins for cell
survival and resistance to apoptosis and drugs in CSCs[28,130-132], therapeutic interventions to eliminate CSCs
using inhibitors are potentially an important strategy.

Role of NF-κB in CSCs resistance to apoptosis and drugs
Cancer cells and CSCs often display constitutively activated NF-κB expression that promotes levels of
apoptosis inhibitory proteins and drug-resistant proteins, resulting in enhanced survival and resistance to
therapies in cancer cells[134-137]. It is documented that the tumor necrosis factor receptor 1 (TNFR1)-
associated death domain protein (TRADD) is an adaptor protein in TNFR1 signaling and participates in
NF-κB activation as well as survival signaling in CSCs[136] downstream of DR4, DR5 [Figure 2]. Moreover,
tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) promotes the formation of the
intracellular Complex II composed of FADD, TRADD, caspases-8 and -10, RIP1, TRAF2 and IKK-γ[133].
Upregulated expression of TRADD activates NF-κB in glioblastoma (GBM) cancer stem cells (GSCs)[134].
Moreover, cytoplasmic TRADD is significantly associated with worse progression-free survival (PFS) in
GBM patients[134]. Interestingly, knockdown of TRADD by shRNA in GSCs reduced NF-κB activity and
triggered cell death in these cells, revealing that TRADD is required for the maintenance of CSCs
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populations[134]. NF-κB signaling plays a pivotal role in the maintenance of CSCs[135] [Figure 4]. In ovarian
cancer, INF-κB signaling supported by the RelB transcription factor directly regulates the CSC-associated
enzyme aldehyde dehydrogenase (ALDH)[135]. Furthermore, the NF-κB signaling pathway plays a critical
role in the drug resistance phenotype of gastric CSCs[135]. The NF-κB activity supports CSCs maintenance
and reduces sensitivity to NF-κB inhibitors, indicating that high activity of NF-κB plays a critical role in the
survival and drug resistance of CSCs[136,137].

Role of the anti-apoptotic IAP family in CSC drug and apoptosis resistance
The IAP family consists of survivin, IAP1, cIAP2, X-linked inhibitors of apoptosis (XIAP), ML-IAP, NAIP,
and ILP-2[138-141]. IAPs suppress the activity of caspases-3, -7, and -9 and help cancer cells evade
apoptosis[138,139]. Upregulation of IAP family proteins has been shown in various tumors and hematological
malignancies and causes resistance to apoptosis, anticancer agents, and radiation therapy, as well as causing
poor prognoses[148,139]. These proteins function through interactions of their BIR baculoviral IAP repeat (BiR)
protein domains, and these interactions are antagonized by Smac/Diablo, a negative regulator for the
inhibitors of IAPs and induction of apoptosis[138,139]. Intriguingly, survivin plays a role in CD133+ cell
resistance of colon CSCs to 5-fluorouracil (5-FU), and a survivin inhibitor can be a potential new targeted
agent against CD133+ colon CSCs[138].

The pivotal role of IAPs in maintaining medulloblastoma (MB) CSCs has been shown[139,140]. Therefore, the
importance of IAP inhibitors with a preference for CD133+ positive MB CSCs has been demonstrated[139].
Evans et al.[141] has shown that XIAP drove constitutive NF-κB transcriptional activity in inflammatory
breast cancer and maintained CSCs. Furthermore, Ji et al.[142] have found that XIAP has a critical role in
maintaining CSCs in nasopharyngeal carcinoma (NPC) stem cells. These authors demonstrated that XIAP
regulates SOX-2 stability of the CSC, which is important for the maintenance and self-renewal of NPC
CSCs. Furthermore, Janzen et al.[143] showed the important role of IAPs in CSCs by demonstrating that the
cIAP inhibitor B (Birinapant) overcomes platinum resistance in CSCs of ovarian cancer in vivo, revealing
that IAPs may play a significant role in cancer drug resistance and recurrence.

c-FLIP regulates resistance to apoptosis and drugs in CSCs
The master regulator of the death receptor (DR) networks is c-FLIP. Besides its key role as an anti-apoptosis
factor, c-FLIP may control necroptosis, pyroptosis, autophagy, nuclear factor κB (NF-κB) activation, and
tumorigenesis[143-144]. c-FLIP is a catalytically inactive caspase-8/-10 homolog and a critical anti-apoptotic
protein that suppresses cytokine- and chemotherapy-induced apoptosis and causes resistance to these
agents[143]. c-FLIP is expressed as long (c-FLIPL), short (c-FLIPS), and c-FLIPR splice variants, which bind to
FADD and/or caspases-8/-10 and TRAIL receptor 5 (DR5) and prevent DISC formation. Moreover, c-FLIPL

and c-FLIPS are also known to have multifunctional roles in various signaling pathways, as well as activating
and/or upregulating several cytoprotective and prosurvival signaling proteins including protein kinase B
(PKB) or Akt, extracellular signal-regulated kinase (ERK), and NF-κB. Furthermore, the upregulation of c-
FLIP is also induced by several kinases, including phosphatidylinositol-3 kinase (PI3K)/Akt, mitogen-
activated protein kinase (MAPK), and Ca2+/calmodulin-dependent protein kinase II (CaMKII)[34,143]. Several
reports have shown that c-FLIP isoforms maintain the survival and resistance of CSCs to apoptosis and
anticancer therapeutics[110,145,146]. CD133, a CSC marker that plays a role in CSC tumorigenesis, metastasis,
and chemoresistance, can also upregulate the expression of c-FLIP in CD133+ cells, thus inhibiting
apoptosis[147,148].

Aldehyde dehydrogenase activity
ALDH isoforms detoxify a variety of endogenous and exogenous aldehydes, and high ALDH activity has
been frequently used as a selectable marker for CSCs[149,150]. Much evidence suggests that ALDH may be used
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as a marker for CSC self-renewal, proliferation, differentiation, and resistance to drugs[149-151]. It is well 
documented that the ALDH protein family is a signature of CSCs and ALDH1A1 is the most studied ALDH 
isoform[121-122]. The expression of ALDH1 protein in CSCs is a negative prognostic indicator and predictor of 
poor clinical outcomes in cancer patients, and high ALDH activity has been attributed to chemoresistant 
CSCs in different tumor types[150-152]. In summary, substantial data indicate a critical role of ALDH, 
particularly ALDH1, in CSC biology and therapy resistance[149-152]. Therefore, inhibition of ALDH activity 
may be a rational and potentially useful therapeutic strategy for targeting CSCs with the aim of increasing 
the efficacy of cancer therapies.

Enhanced DNA damage response and ROS scavenging in CSCs
Much evidence has shown that CSCs are resistant to DNA damaging therapies by regulating the cell cycle, 
increasing DNA repair capacity, and effectively scavenging reactive oxygen species (ROS)[155-159]. DNA-
damage response (DDR) is considered a significant source of resistance to DNA-damaging treatments and 
CSCs, and checkpoint inhibitors that sensitize CSCs to DNA-damaging treatments have been 
developed[158,159]. Interestingly, DDR appears as a relevant target to sensitize cancer cells and CSCs to 
conventional radio- and chemotherapies, as well as to overcome resistance[158,159]. Fang et al.[160] reported that 
in NSCLC, chemotherapy targeting DNA damage checkpoint (CHK1) signaling in CSCs was p53-
independent and caused cell cycle arrest, more efficient DNA damage repair, and enhanced cell survival 
compared to the bulk of the tumor cell population. Moreover, targeting CHK1 and PARP1 may provide an 
effective anti-CSC strategy[157].

Autophagy as a cytoprotective and drug resistance mechanism in CSCs
Autophagy is a catabolic pathway that is characterized by autophagosome formation and triggers tumor cell 
survival and drug resistance[160-165]. Autophagy is critical as a survival mechanism in tumors with defects in 
apoptotic signaling pathways, and CSCs show a high level of autophagy which contributes to their survival 
and therapy resistance[131-133]. Autophagy also determines cell fate by targeting the degradation of key 
transcription factors, including p53 and FoxO3A, or by enforcing quiescent growth arrest[163]. Apart from 
promoting resistance to chemotherapy, high levels of autophagy in CSCs maintain their pluripotency, allow 
them to cope with low nutrients and hypoxia in the tumor microenvironment, regulate CSCs migration and 
invasion, and help them escape immunosurveillance[163]. Beclin 1, a Bcl-2 homology 3 (BH3) domain only 
protein, is an essential initiator of autophagy and a critical determinant of whether cells undergo autophagy 
or apoptosis[165]. The BH3 domain of Beclin 1 interacts with Bcl-2 family members. Therefore, the role of 
Bcl-2 in inhibiting apoptosis and autophagic cell death makes the Bcl-2 protein and autophagy 
manipulation excellent targets and strategies to inhibit drug, anti-apoptotic, and autophagy-related 
resistance mechanisms.

CSC dormancy, plasticity and drug resistance 
Cellular dormancy refers to the phenomenon that cells are recruited into the G0-phase of the cell cycle but 
can enter cell division in response to mitotic stimulation[166-170]. Emerging data show that CSCs can mediate 
therapy resistance through dormancy[169]. Chemotherapy and radiation therapy are mainly effective against 
proliferating cells. Dormant tumor cells may be comprised of both CSCs and non-CSCs[170]. It has also been 
demonstrated that dormant cells express the transcription factor SOX-2, which is essential for their survival 
and resistance to therapy[171].

CSCs niche, TME and drug resistance
It is well-documented that the tumor microenvironment (TME) contains several components, including 
stromal cells, immune cells, cytokines, chemokines and growth factors, hypoxic regions, and ECM[18,172,173]. 
Tumor-associated macrophages (TAMs) play major roles in stimulating CSC self-renewal, angiogenesis, 
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and remodeling immunity, and creating a niche for CSC tumor invasion, metastasis, as well as plasticity and 
dynamic changes[174-177]. Additionally, the CSC niche modulates several signaling pathways leading to drug 
and apoptosis resistance including the Wnt/β-catenin, Notch, and Hh signaling pathways[176,177]. Moreover, 
TAM may control the main transcriptional regulators like Nanog, Oct4, and SOX-2 to maintain CSCs 
stemness[177,178].

Current evidence shows the complex interplay between the genes, epigenetic modifications, TME, and the 
EMT in CSCs plasticity. The CSCs plasticity results in the generation of different subpopulations of CSCs 
with varying molecular and biochemical traits leading to varied dissemination and drug-resistance 
phenotypes[18,179]. Adding to this complexity is the capacity of CSCs to dynamically switch to non-CSCs or to 
different subsets of CSCs, exhibiting significant metabolic plasticity[179]. Due to certain microenvironmental 
stimuli, some cancer cells may exhibit plasticity which results in resuming proliferation[175]. The CSC niche 
and reciprocal communications between the CSCs and the TME play a pivotal role in the initiation and 
development of the tumor[175]. The TME, in reality, brings together factors to trigger and amplify resistance 
mechanisms in CSCs. The TME is continuously exposed to nutritional, metabolic, and oxygen deprivation, 
which promotes CSC adaptation[44], leading to drug resistance. Drug resistance due to physical barriers to 
treatment and cell adhesion-associated drug resistance has been associated with the TME and CSC 
niche[177]. Novel treatment strategies targeting CSC niche-microenvironmental factors have been developed.

Targeting CSCs to overcome therapy resistance
Due to their drug and apoptosis resistance, as well as tumors and metastasis, CSCs significantly contribute 
to the unresponsiveness to cancer therapies, relapse, and adverse outcomes in cancer patients[18]. To reduce 
or eliminate CSCs and improve the patients’ genes and prognosis, new therapies that target key signaling 
molecules targeting stem-associated proteins, inhibitors of the drug transporters, and transcription factors 
participating in CSC maintenance have been used or proposed[179].

Target deregulated CSCs signaling
Much evidence shows that the oncogenic functional role of CSCs is regulated by the dysregulation of several 
developmental signaling pathways in normal stem cells[18,46,180,181]. Since these dysregulated pathways 
participate in self-renewal, metastasis, and resistance to drugs and apoptosis in CSCs, targeting particular 
proteins in these pathways by small molecule inhibitors offers a novel approach for treating cancers 
displaying high rates of recurrence and therapy resistance[28,182]. Among strategies used to target CSCs, there 
are several compounds that target CSCs specific surface markers, the CSC microenvironment niche, and 
CSC signaling pathways, which are already undergoing clinical trials [Table 1]. In addition, some new anti-
CSC immunotherapeutic approaches, such as chimeric antigen receptor T-cell (CAR-T) therapy, are 
expected to be an important method of eliminating CSCs[182]. Emerging data show that novel strategies 
targeting the CSCs-specific pathways are being pursued[183]. The small molecule inhibitors of such pathways 
alone and in combination with different therapeutic agents are in clinical trials[182-184]. For instance, 
combined treatment with cisplatin and the PI3K/Akt/mTOR pathway inhibitor BEZ235 compared with 
cisplatin alone significantly disrupted colony formation ability, triggered higher ROS levels, and induced 
higher levels of apoptosis in resistant ovarian cancer cells[185]. Additionally, this combination robustly 
inhibited the PI3K/Akt/mTOR signaling pathway, reversed EMT, and reduced CSC marker expression[185]. It 
has been demonstrated that the inhibition of ALDH activity by all-trans retinoic acid (ATRA) or the specific 
ALDH inhibitor diethylaminobenzaldehyde in breast CSCs (BCSCs) significantly increases the efficacy of 
doxorubicin, paclitaxel, and radiotherapy on triple-negative breast cancer (TNBC) cells[186]. Salinomycin 
(SLM), an ionophore antibiotic, has been shown to selectively kill BCSCs in various breast cancer subtypes 
by altering the expression of genes involved in metastasis-free survival, overall survival, decreasing 
tumorsphere formation, and EMT[187-190]. The combination of HA (hyaluronic acid)-coated SLM 
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Table 1. New drugs targeting CSCs in clinical trialsa

CSC targets Drug Reference

BCL2 Venetoclax 
AT101

[202,203]

Notch MK-0752 
RF-03084014 
Demcizumab

[204-206]

WNT PRI-724 [207]

Hedgehog Glasdegib [208]

Vismodegib [209]

JAK Roxolitib [210]

PI3K BYL719 [211]

EGFR Bevacizcizumab [212]

CXCR4 Plerixafor [213]

FAK Defactinib/VX-6063 [214]

MDR1 Dofequidar/MS-209 [215]

ABCG2

EpCAM Catumaxomab [216]

aTo locate the clinical trials using these drugs, refer to the reference numbers in this table.

nanoparticles and PTX nanoparticles showed the highest cytotoxicity against CD44+ cells[187]. Hence, 
combination therapy using a conventional chemotherapeutic drug and a cancer stem cell inhibitor could be 
a promising approach to overcoming cancer recurrence due to the resistant cell population[191]. CD44 has 
been shown to function as a hyaluronan receptor, and HA has been used to specifically direct drugs to the 
CSCs[192]. One study demonstrated that the use of hyaluronan-conjugated liposomes encapsulating 
gemcitabine significantly enhanced the efficacy of the drug against BCSCs and decreased the systemic 
toxicity of gemcitabine alone on normal tissue[194]. Another strategy used against CD44 is using antibodies 
that block the HA-binding site of CD44[194].

Dietary polyphenol compounds have been shown to act on self-renewal and survival pathways of CSCs. For 
instance, we have reported that sulforaphane (SFN) from cruciferous vegetables robustly inhibited the 
growth of GBM CSCs and was particularly effective in eliminating GSCs, which play a major role in drug 
resistance and disease recurrence[195]. SFN also has been shown to be strongly effective against CSCs from 
other types of cancer[196]. Other dietary compounds used to target and eliminate CSCs are epigallocatechin-
3-gallate, catechin in green tea[102,103], resveratrol from red grapes and blueberries[196-198], curcumin[198], and 
piperine[200]. While these compounds and sulforaphane are very effective in eradicating CSCs, they are 
harmless to normal cells at the concentrations affecting CSCs, indicating that these compounds are 
appropriate candidates to be used in combination with conventional anticancer agents to robustly eliminate 
drug-resistant CSCs.

A list of the new drugs targeting CSCs in clinical Trials is shown in Table 1. The FDA has approved three 
new drugs that can target CSCs. These include (1) vismodegib, a Hg inhibitor that targets a subset of CSCs 
in basal cell carcinoma[201] and other solid tumors, such as esophageal cancer[202]; (2) the BCL-2 inhibitor 
venetoclax, which selectively eradicates AML stem cells and demonstrated that 60% of patients receiving it 
with other chemotherapy drugs had complete clinical responses[202]; and (3) AT101, another pan-Bcl-2 
inhibitor [Table 1], targets CSCs and is effective in esophageal and gastric cancer patients[203]. Furthermore, 
in addition to the drugs listed in Table 1[202-216], a variety of FDA-approved repurposed drugs, which have 
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been used for various diseases, also target CSCs and improve treatment with current chemotherapeutic 
drugs[217]. These repurposed drugs include ones approved to treat diabetes (metformin and 
thiazolidinediones), parasitic diseases (chloroquine, niclosamide, mebendazole, and pyrvinium), psychotic 
disorders (thioridazine, clomipramine, and phenothiazines), alcoholism (disulfiram), lipid disorder 
(statins), inflammatory diseases (tranilast, auranofin, acetaminophen, and celecoxib), antibiotics 
(azithromycin), and other disorders. These drugs provide beneficial effects from combined use with 
conventional cancer therapies[217]

.

CONCLUSION
The foregoing discussion clearly demonstrates that CSCs are endowed with the signature properties of 
malignancy: self-renewal and replicative immortality; resistance to chemotherapeutic agents and apoptosis; 
EMT; invasiveness; metastasis; and tumor recurrence. The CSCs niche, multiple mechanisms of drug and 
apoptosis resistance in these cells, intra/inter tumor heterogeneity, and the complex interaction of CSCs 
with the TME render therapy very ineffective. Therefore, a greater understanding of these factors is needed 
for the emergence of novel and effective therapies which target CSCs as well as the bulk of tumor cell 
population. CSC-related drug and apoptosis resistance mechanisms may be important for predicting patient 
response to therapies and guiding treatment selection with contemporary anticancer drugs targeting CSCs 
and robustly eliminating the entire tumor mass in various tumors originating from different tissues. While a 
number of CSC-targeting drugs have been identified for cancer treatment, it is still too soon to determine 
the true usefulness of these agents in the clinical setting. A challenging task for the development of CSC-
specific therapeutics is identifying and detecting specific biomarkers of CSCs, which can be used to analyze 
their population during tumor treatment. As discussed in detail, CSCs can contribute to tumor resistance to 
chemotherapeutic agents and apoptosis. However, studying them may provide a better understanding of the 
molecular mechanisms underlying CSC unresponsiveness to therapies and may lead to the identification of 
specific targeted therapeutics and novel strategies to increase the sensitivity of CSCs to cancer therapeutics. 
Such agents may be capable of eradicating CSCs and eliminating the bulk of tumor mass by themselves or in 
combination with other contemporary anticancer drugs.
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