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Abstract
Polyimides (PIs) are widely used in industries for their exceptional mechanical properties and thermal resilience. 
Despite their benefits, the traditional development process for PIs is time-consuming, often lagging behind the 
increasing demand for materials with tailored properties. In this study, we introduce a machine learning-based 
approach to predict and optimize the mechanical properties of PI materials and their composites. We developed six 
predictive models to assess PI structures under various conditions, aiming to enhance our understanding of PI 
mechanical behavior and facilitate the discovery of high-performance PI structures. By analyzing the substructures 
within top-performing PIs, we identified key structural motifs that contribute to improved tensile strength, 
modulus, and elongation at break. Furthermore, we examined the influence of fillers on PI composites, revealing 
that rigid fillers such as SiO2 and graphene oxide (GO) significantly improve mechanical properties, with GO 
showing versatile enhancement across multiple mechanical properties. We then screened 800,000 virtual PI 
structures by using our predictive models, identifying several candidates with targeted mechanical properties. 
These findings provide a basis for the future experimental validation of optimal PI structures and fillers, offering an 
efficient pathway to accelerate the design of PI materials with targeted mechanical properties. Our study can also 
be extended to other materials research, serving as a valuable paradigm for the design of polymers and their 
composites.
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INTRODUCTION
Polyimides (PIs) are a versatile class of high-performance polymers that find applications across diverse 
fields due to their remarkable mechanical strength, thermal stability, and resistance to chemicals. In 
aerospace, PIs are widely used as matrix resins and adhesives in composite materials, providing the strength 
and resilience required for demanding operational environments[1-5]. In the electronics industry, PI films 
serve as flexible substrates in flexible circuit boards and displays due to their robustness and durability 
under stress[6-9]. The thermal stability of PIs also makes it indispensable in battery technologies, where high 
mechanical resistance is essential for maintaining safety during multiple recharging cycles[10-13]. These 
applications address the significance of mechanical properties, such as tensile strength, modulus, and 
elongation at break, which are fundamental to the long-term functionality of PI materials.

The development of PI composites has broadened the application spectrum of PIs even further. By 
incorporating various fillers, such as graphene oxide (GO), carbon nanotubes, or glass fibers, the 
mechanical properties of PIs have been greatly enhanced, allowing for tailored performance in specific use 
cases[14-16]. For instance, flexural strength can be improved by optimizing filler content, and tensile strength 
and modulus are enhanced through the addition of carbon-based fillers. These efforts have resulted in a 
diverse array of PI materials, each with unique combinations of properties tailored to particular demands. 
However, the diversity and complexity of filler systems pose considerable challenges for reliably establishing 
structure-property relationships, especially when mechanical performance is involved. This complexity 
highlights the need for systematic approaches to predict and optimize the mechanical properties of PIs and 
their composites.

Despite substantial progress through empirical methods, the synthesis and optimization of PI materials with 
different chemical structures and fillers are often time-consuming due to the extensive range of possible 
chemical modifications and various filler types. The traditional trial-and-error approach to material design 
is labor-intensive, resource-heavy, and slow to adapt to the evolving demands of modern applications[17-24]. 
As the demand for high-performance materials increases, there is a pressing need for more efficient 
discovery and development.

The integration of artificial intelligence (AI) and machine learning (ML) offers promising solutions to these 
challenges by enabling data-driven material discovery through the establishment of quantitative structure-
property relationships (QSPRs) for targeted properties. Recent advances in ML have led to extensive 
research on PI properties, mainly focusing on thermal and dielectric characteristics rather than mechanical 
properties[25-30]. For example, Zhang et al. created a QSPR model by using ML to predict glass transition 
temperature (Tg), a thermal property critical to many PI applications[31]. In addition, Uddin et al. employed 
molecular descriptors and fingerprinting techniques to predict Tg

[32]. Our previous work also utilized graph 
neural networks to predict properties containing both thermal and dielectric characteristics[33]. Dong et al. 
further developed predictive models for PI composites that exhibit high thermal conductivity and low 
dielectric constants[34].

However, studies addressing mechanical properties using ML remain limited. Mechanical performance, 
such as tensile strength and modulus, is critical for the applicability of PIs in engineering applications, and 
understanding these properties becomes even more essential when fillers are incorporated into the polymer 
matrix. Most ML-based studies have focused on the structural information of the polymer itself, neglecting 
the influence of fillers[33,35-39]. This simplification fails to capture the practical complexity of PI composites, 
where fillers play a key role in determining mechanical performance. As a result, a significant gap exists 
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between ML predictions and experimental practices, especially when addressing the intricate interplay 
between PI structures and filler systems.

In response to these gaps, this study develops a ML-based framework specifically aimed at predicting the 
mechanical properties of PI polymers and composites with various fillers. We constructed two datasets: one 
for PI polymers and one for PI composites with diverse fillers. These datasets enable ML predictions for 
tensile strength, modulus, and other key mechanical properties for both PI polymers and their composites. 
Our framework, which screens over 800,000 virtual PI structures, identifies promising candidates with 
target mechanical performance. We also compare the contributions of PI substructures and filler types on 
the mechanical properties, and propose several candidates with targeted mechanical properties. Our work 
offers a scalable approach that can be applied to other polymer systems[40], providing a valuable tool for 
screening polymer materials and polymer nanocomposites.

MATERIALS AND METHODS
The workflow of our work is shown in Figure 1. We first collected data on PI materials from various 
literature sources, focusing on four mechanical properties: elastic modulus (E), elongation at break (ε), 
tensile strength (σ), and tensile modulus (Et). Based on this, we created two datasets: one for PI polymers 
(PI-H) and the other for PI composites with fillers (PI-F). This allowed us to conduct a more targeted 
analysis, utilizing multiple ML models to predict mechanical properties and selecting the model with the 
best predictive performance. To evaluate the importance of features, we employed SHapley Additive 
exPlanations (SHAP) analysis, which identified the key factors influencing each mechanical property. We 
analyzed PI structures with superior mechanical properties in both datasets, investigating the contributions 
of substructures and filler types on the mechanical properties. We then applied the ML model to a database 
of 800,000 virtual PI structures, identifying six structures with high values of mechanical properties. Finally, 
we compared the mechanical properties of these six PIs with those of PI with fillers.

Data collection and processing
We manually extracted 1,172 data points from literature sources, observing that a significant portion of the 
PIs contained fillers, prompting us to include detailed filler information. Consequently, we compiled two 
datasets: the PI-H dataset, which includes data on PI structures with one or more mechanical properties (E, 
ε, σ, and Et), and the PI-F dataset, which contains filler types, filler loadings, and processing conditions such 
as temperature and duration. Comprehensive details on the data sources, distribution, and pairwise 
comparisons for these properties can be found in Supplementary Tables 1 and 2. As the data points of E in 
both datasets are limited (e.g., 15 data points in PI-H and 66 data points in PI-F), we will not build models 
for these properties as they are insufficient for reliable training. In this work, we only focus on ε, σ, and Et. 
To illustrate the diversity of PI structures in our dataset, we have visualized their chemical space using the t-
SNE method [Supplementary Figure 1]. The results demonstrate a diverse range of molecular structures in 
both PI-H and PI-F datasets, indicating the reliability of our datasets for ML. Moreover, the PI-F dataset 
covers a broader chemical space due to its larger size. Supplementary Figures 2 and 3 show the original and 
normalized data distributions for all six datasets, revealing a nearly normal distribution after normalization. 
This suggests that the datasets are well-suited for predictive modeling. In addition, we observed changes in 
mechanical property ranges with the addition of fillers, such as increased Et and σ and decreased ε, 
consistent with expected trends.

To further understand the relationships among mechanical properties, we visualized the pairwise 
distributions for both PI datasets in Supplementary Figure 4. It is shown that there is a lack of significant 
correlations between each pair of mechanical properties, suggesting complex, non-linear interactions 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4059-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4059-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4059-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4059-SupplementaryMaterials.pdf
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Figure 1. Workflow used in this work. (A) Data collection and feature engineering; (B) ML modeling and feature importance; (C) analysis 
on the substructures and filler types. ML: Machine learning.

among them. This underscores the challenge of designing PI materials with targeted mechanical profiles, as 
modifying one property may not directly predict or correlate with changes in others.

Feature engineering and model building
We evaluated 11 common ML models to predict mechanical properties, including random forest regression 
(RFR), linear regression (LR), support vector regression (SVR), ridge regression (RR), Gaussian process 
regression (GPR), AdaBoost regression (ABR), gradient boosting regression (GBR), bagging regression 
(BR), extra trees regression (ETR), decision tree regression (DTR), and multi-layer perceptron (MLP). To 
identify the top-performing models, we compared a total of 66 models using R2 as performance metrics. 
RFR, ETR, GBR, and BR consistently performed better, so we selected these four for further analysis. Model 
prediction results and detailed comparisons are available in Supplementary Table 3.

For the feature selection in the PI-H dataset, we first converted the repeating units of PI into SMILES based 
on the IMG2SMI method developed by Campos et al.[41], an approach that has demonstrated strong 
predictive performance in recent literature[42-45]. These SMILES were then translated into 1,813 descriptors 
using RDKit and Mordred packages. In the PI-F dataset, we included additional descriptors for filler type, 
processing temperature, and processing time. Given a large number of features, we applied three screening 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4059-SupplementaryMaterials.pdf
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Figure 2. Model performance comparisons across different optimization stages. (A) Heatmap showing prediction accuracy for various 
models under multiple descriptor filtering methods; (B) Performance metrics for the PI-H dataset after descriptor selection using the F-
test and initial HPO with GS; (C) Performance metrics for the PI-F dataset following descriptor selection with VS and GS-based HPO; 
(D) Enhanced model performance for the PI-H dataset after extensive HPO using Optuna; (E) Improved model performance for the PI-F 
dataset with Optuna optimization. HPO: Hyperparameter optimization; GS: grid search; VS: variance screening.

methods: variance screening (VS)[46], F-test[47], and mutual information (MI)[48], to improve prediction 
accuracy by filtering out irrelevant features. The best screening method for each dataset was determined 
based on performance results. For PI-H, the F-test yielded optimal results by retaining descriptors with an 
F-value greater than 0.05, reflecting a strong linear correlation with target outcomes. For PI-F, VS was the 
most effective, likely due to the diverse filler types in the dataset, which MI and the F-test may overlook, 
thereby affecting accuracy. These screening results are depicted in Figure 2.

We applied hyperparameter optimization (HPO) using grid search (GS) and Optuna[49]. GS provided an 
initial model refinement, while Optuna, with its Bayesian optimization approach, offered precise and 
reliable results. This combined approach helped us select the six best-performing models. Detailed 
information on the GS process is available in Supplementary Table 4.

For the PI-H dataset [Figure 2B], BR consistently underperformed compared to RFR, ETR, and GBR, 
leading us to focus on these three models for further optimization with Optuna. For the PI-F dataset 
[Figure 2C], all four models (RFR, ETR, GBR, and BR) demonstrated similar performance, so we included 
them in the Optuna optimization phase. Final optimized results are presented as bar charts in Figure 2D 
and E, with additional data provided in Supplementary Table 5.

To ensure model reliability, we randomly divided the dataset into training and testing sets (8:2 ratio) and 
repeated experiments with varying random seeds to create different splits. The models consistently achieved 
similar predictive performance, as summarized in Supplementary Table 6.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4059-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4059-SupplementaryMaterials.pdf
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RESULTS AND DISCUSSION
Model training results
We evaluated the performance of our ML models on both training and testing sets for the PI-H and PI-F 
datasets, with the results illustrated in Figure 3. Blue and red symbols represent predicted values for the 
training and testing sets, respectively. To assess model performance, we calculated coefficient of 
determination (R2), mean absolute error (MAE), mean squared error (MSE), root mean square error 
(RMSE) and mean absolute percentage error (MAPE) on the test set. The specific results for these metrics 
are provided in Supplementary Table 7. In addition, Supplementary Table 8 provides details of the six final 
models, including training time, prediction speed, and hyperparameters. These data provide additional 
dimensions for evaluating model performance.

In the PI-H dataset, the RFR model yielded the highest predictive accuracy for ε, achieving an R2 value of 
0.68. For σ and Et the GBR model performed best, with R2 values of 0.83 and 0.78 respectively. This pattern 
indicates that highly correlated mechanical properties (σ and Et) within the same dataset are often well 
predicted by the same model. Meanwhile, for the PI-F datasetthe GBR model consistently outperformed 
other models across all mechanical properties, attaining R2 values of 0.79 for ε, 0.85 for σ and 0.83 for Et. 
This high accuracy emphasizes the importance of incorporating filler type and processing conditions when 
predicting the mechanical properties of PI composites.

Physical insights from ML
Following model construction, we conducted SHAP analysis to evaluate feature importance and uncover 
the primary factors affecting the mechanical properties of PIs in both datasets. Figures 4 and 5 present the 
top ten most influential features for each property across the PI-H and PI-F datasets.

In the PI-H dataset, ε is predominantly influenced by the molecular distance edge between tertiary carbon 
atoms (MDEC-33), suggesting that interatomic distances within the molecular structure significantly 
influence the flexibility of materials. Other key features include MDEN-33 and TIC-4, representing distance 
edges between tertiary nitrogen atoms and higher-order molecular neighborhood information content, 
respectively. This highlights the importance of both local and extended molecular connectivity in 
determining the elasticity of PI materials.

For σ the most critical features identified are GATS5d and AATSC2d, which relate to the valence electrons 
and Moreau-Broto autocorrelation of atomic sigma electron contributions. This result, long with similar 
descriptors such as ATSC6d and AATS6, underscores the significance of electronic characteristics and 
structural information on the tensile performance of PIs. These features indicate that tensile strength in PI 
materials is not only structure-dependent but also influenced by electronic distribution, suggesting a 
coupling between the mechanical strength of a polymer and its atomic-level electronic interactions.

In terms of tensile modulus Et similar electronic and structural descriptors also play a major role, especially 
for those associated with Moreau-Broto autocorrelation. In addition, the ratio of rotatable bonds (RotRatio) 
also contributes to the modulus. The prevalence of features such as AATSC2d and AATSC6Z suggests that 
the tensile modulus depends on both electronic properties and atomic connectivity. The correlations among 
mechanical properties, evidenced by the recurrence of shared features such as AATSC2d, indicate that 
certain intrinsic structural characteristics of PI materials simultaneously influence similar mechanical 
properties such as tensile strength and tensile modulus.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4059-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/jmi4059-SupplementaryMaterials.pdf
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Figure 3. Predictive performance of the best model for each mechanical property across the PI-H and PI-F datasets: (A) ε for the PI-H
dataset using RFR; (B) σ for the PI-H dataset using the GBR; (C) Et for the PI-H dataset using GBR; (D) ε for the PI-F dataset using GBR;
(E) σ for the PI-F dataset using GBR; (F) Et for the PI-F dataset using GBR. RFR: Random forest regression; GBR: gradient boosting
regression.

The PI-F dataset, which includes filler types and processing conditions, revealed additional insights. For 
elongation at break (ε), descriptors such as AATSC6dv emphasize the role of electronic interactions 
weighted by valence electrons. The presence of fillers appears to influence the elasticity of polymers by 
introducing variability in electronic and molecular structure. In analyzing tensile strength (σ) and tensile 
modulus (Et) within the PI-F dataset, many descriptors were related to fillers, with adjacency matrix-based 
features such as VR1_A playing a crucial role. The impact of filler types on these properties suggests that the 
interaction between the polymer matrix and filler particles directly affects the composite’s mechanical 
performance, likely due to variations in bonding strength and filler distribution within the matrix.

Note that filler size, dispersion, and composite microstructure significantly affect the mechanical properties 
of polymer composites[50,51]. While such data were not consistently available in our sources, we included two 
important processing parameters, mixing time (t_p) and mixing temperature (T_p), that influence filler 
dispersion in the PI matrix. These parameters were collected as descriptors and shown to have strong 
feature importance for tensile modulus and tensile strength, as illustrated in Figure 5.

The identified descriptors, such as GATS8dv and AATSC6dv, primarily capture the contributions of atomic 
σ-electrons and Moreau-Broto autocorrelation, which are indicative of the number of σ-bonds in PI 
structures. A higher proportion of σ-bonds, coupled with fewer π-bonds, reduces molecular conjugation and 
rigidity, resulting in more flexible structures. This flexibility positively correlates with elongation at break, as 
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Figure 4. Feature importance analysis of the best model in the PI-H dataset showing (A) SHAP values for ε; (B) SHAP values for σ; (C) 
SHAP values for Et. SHAP: SHapley Additive exPlanations.

Figure 5. Feature importance analysis of the best model in the PI-F dataset showing (A) SHAP values for ε; (B) SHAP values for σ; and 
(C) SHAP values for Et. SHAP: SHapley Additive exPlanations.
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confirmed by the positive relationship of these descriptors with ε in Figures 4A and 5B. These findings 
highlight how ML-derived descriptors provide meaningful insights into the molecular factors influencing PI 
mechanical properties. Across both datasets, ε, σ, and Et exhibit interrelationships, as demonstrated by those 
shared descriptors. This analysis suggests that while the intrinsic properties of PI determine certain 
mechanical behaviors, composite structures rely on additional factors such as filler types and processing 
conditions, leading to complex and property-specific influences.

Influence of substructures on mechanical properties of PI
To explore the role of substructures in determining PI mechanical properties, we analyzed the top one-third 
of high-performing PI structures from each dataset. We identified their most common substructures and 
focused on the ten most frequent ones, calculating the proportion of these substructures among high-
performance PIs. The results are shown in Figure 6, illustrating the structural features contributing to the 
mechanical properties of PIs.

To clearly compare the contribution of substructures on different mechanical properties, we highlighted 
some substructures with potential functional significance (marked in red in Figure 6). Specifically, 
Figure 6A and B reveals that substructures I and II appear among the top ten most influential substructures 
only for the PI-H dataset, while substructure III is uniquely influential in the PI-F dataset. This suggests a 
distinction in the structural characteristics associated with mechanical properties between PI materials and 
PI composites with fillers. For example, structures I and II may contribute to increased elongation at break 
due to their intrinsic flexibility, while substructure III, containing trifluoromethyl groups, may enhance 
fracture elongation through hydrogen bonding interactions with fillers or by modifying interfacial 
compatibility within the composite.

The similarities between Figure 6C and D and 6E and F imply that the substructures influencing σ and Et 
share commonalities, possibly due to a high correlation between these properties. For instance, 
substructures IV appear in both Figure 6C and E, while substructure VI is exclusive to Figure 6D and F. 
This suggests that distinct substructural motifs are associated with σ and Et for PI materials and composites. 
The hydroxyl groups in substructure VI may improve interfacial compatibility with fillers, thereby 
enhancing these mechanical properties in PI composites.

Impact of filler types on mechanical properties of PI-F
In PI composites, fillers are essential in enhancing their mechanical properties. We then analyzed the types 
of fillers associated with the top one-third of high-performing PI composites in terms of mechanical 
properties, and we identified three commonly used fillers: SiO2, GO, and TiO2. Then, we calculated the 
average enhancement of mechanical properties due to filler incorporation, expressed as the ratio of each 
property in PI-F composites to those in PI-H polymers. These enhancement ratios for ε, σ and Et are shown 
in Figure 7.

The type and content of fillers significantly influence the performance of PI composites. As shown in 
Figure 7A, ε is primarily influenced by the intrinsic structure of PI itself, and the filler addition sometimes 
decreases ε (most ratios are less than 1.0), likely due to changes in polymer-polymer interactions. In 
contrast, the presence of fillers substantially improves σ and Et. For example, SiO2 significantly increases 
both σ and Et, with enhancement ratios reaching as high as 17.5 and 16.5, respectively. GO fillers also 
enhance σ, with ratios ranging from approximately 2.5 to 9.0, and Et from 3.0 to 15.0. TiO2 provides a 
moderate improvement, with enhancement ratios of up to 5.0 for σ and 13.0 for Et. These results indicate 
that the incorporation of fillers such as SiO2, GO, and TiO2 generally increases tensile strength and modulus 
while decreasing elongation at break. Interestingly, certain GO-filled composites demonstrate a higher 
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Figure 6. Comparison of PI substructures in the PI-H and PI-F datasets based on mechanical properties. (A), (C), and (E) show the 
substructures present in PI-H dataset exhibiting high performance for ε, σ, and Et, respectively. (B), (D), and (F) show the substructures 
found in PI-F dataset exhibiting high performance for ε, σ, and Et, respectively. PI: Polyimide.

elongation at break compared to pure PI when the GO content is low (ratio > 1). Conversely, higher GO 
content significantly enhances tensile strength and modulus. This behavior likely arises from the π-π 
stacking interactions between GO and the benzyl groups in PI molecules, which enhance stiffness at higher 
filler concentrations while maintaining flexibility at lower concentrations.

Discovery of high-performance PIs via model predictions
To provide experimental direction for synthesizing high-performance PI materials, we created a virtual 
dataset of 800,000 PI structures, randomly sampled from an initial dataset of 8,000,000 structures. Using a 



Page 11 of Hu et al. J. Mater. Inf. 2025, 5, 1 https://dx.doi.org/10.20517/jmi.2024.59 15

Figure 7. Box plots of the PI-F dataset illustrating the impact of filler types on (A) ε, (B) σ, and (C) Et. Ratios of each property in PI-F 
composites to those in PI-H polymers are used to represent the influence of fillers on each mechanical property. PI: Polyimide.

model trained on the PI-H dataset, we predicted mechanical properties for these virtual structures, with full 
results available at https://github.com/Weilong-Hu/PI. Based on the prediction results of the model and our 
experience, we screened some PIs with single excellent mechanical properties and some with excellent 
combined mechanical properties.

Figure 8A presents 10,000 randomly selected data points along with the six representative high-performance 
PIs. Figure 8B provides structural depictions of these six top-performing PIs. Structures #1, #2, and #3 
correspond to the high values for ε, σ, and Et, respectively, and structures #4, #5, and #6 show balanced 
mechanical properties across multiple metrics. For selecting PIs with high performance in a single property, 
we ranked all 800,000 structures based on their predicted values for ε, σ, or Et and identified the top ten 
structures for each property. From these, we randomly selected a representative structure to illustrate in 
Figure 8B. For the selection of PIs with balanced mechanical performance, we normalized all predicted 
properties using the maximum values of ε, σ, and Et in the PI-H dataset. A comprehensive performance 
score was then calculated by multiplying these normalized values, enabling the identification of structures 
with well-balanced mechanical properties. We further evaluated the potential benefits of adding fillers to 
these structures, utilizing a model trained on the PI-F dataset to predict mechanical property enhancements 
with various fillers.

https://github.com/Weilong-Hu/PI
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Figure 8. Prediction and evaluation of 800,000 virtual PI structures to identify high-performance candidates with enhanced mechanical 
properties for PI materials. Six PI structures were selected, in which three based on their outstanding individual mechanical properties 
and three chosen for their overall balanced performance. (A) 3D scatter plots showing 10,000 random PI data points (red color) and the 
six high-performance PI structures, each marked with distinct symbols: triangles for the structure with high ε, circles for high σ, squares 
for high Et, and stars for structures with balanced mechanical properties. Each high-performance structure is projected onto three 2D 
planes, shown in color, for better visualization and comparison with the general distribution (gray shadow) of random PI data; (B) 
Structures of six PI candidates and the corresponding mechanical properties for both PI materials and PI composites. PI: Polyimide.

The data in Figure 8B indicate that while filler addition generally reduces ε, certain fillers can minimize this 
impact. For structure #1, we selected fillers that minimize the performance reduction. For structures #2 and 
#3, fillers were chosen to maximize σ and Et, respectively. Structures #4, #5, and #6 were optimized with 
fillers that enhance the balanced mechanical properties. Interestingly, GO was consistently selected for 
structures #4, #5, and #6, implying its effectiveness in significantly enhancing PI composites. This result also 
aligns with the findings on filler performance in the PI-F dataset.

Our studies suggest an essential role of ML and data analysis in elucidating key structural and compositional 
factors that govern the mechanical properties of PI materials. By tailoring both molecular structure and 
filler composition, it may be possible to achieve PI materials with superior and targeted mechanical 
properties. This predictive approach provides a promising framework for advancing materials design and 
guiding experimental work in the development of PI and its composites.

CONCLUSIONS
In this study, we present an effective ML-based approach for predicting and optimizing the mechanical 
properties of PIs and their composites. We developed six predictive models to evaluate various PI structures 
under different conditions, enabling the identification of several high-performance virtual PI structures and 
optimal filler types. By examining the substructures associated with high-performing PI materials, we 
highlighted key structural motifs that contribute significantly to tensile strength, modulus, and elongation at 
break. Note that the relationships between structure and property in polymer systems are relatively 
complex, and therefore, deep learning models, such as neural networks, may also be used to describe these 
complex relationships, which will be the focus of our future work.
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Our findings show that the incorporation of fillers can greatly enhance the tensile strength and modulus of 
PIs, with particularly strong effects observed for fillers such as SiO2 and GO. Notably, GO emerged as a 
versatile filler capable of simultaneously improving multiple mechanical properties, suggesting its potential 
for broader applications in PI composite design. Through our predictive model, we screened 800,000 virtual 
PI structures, identifying promising candidates with targeted mechanical properties. These virtual 
predictions may offer a roadmap for experimental synthesis and testing, potentially reducing the cost and 
time involved in PI material design.

Our current research focuses specifically on PI materials. Given the complexity and diversity of polymers, 
the model is not yet directly applicable to predicting the mechanical properties of all polymer types. 
However, with the inclusion of sufficient data points for other polymers, the framework can be readily 
extended to a broader range of materials. Another limitation of this study is the lack of experimental 
validation for the predicted structures, primarily due to challenges in synthesis and testing. To address this, 
the model and predicted structures are publicly available at https://github.com/Weilong-Hu/PI, enabling 
experimentalists to validate and refine the proposed candidates. Future efforts will focus on expanding the 
dataset, enhancing the generalizability of the model, and bridging the gap between computational 
predictions and experimental verification.
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