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Abstract
Reliability engineering and management are becoming more important as systems evolve in functionality and 
complexity. Given various dynamic factors influencing reliability, static one-time decision frameworks can no 
longer offer optimal reliability decisions. In the paper, we discuss the recent trends in reliability decision-making 
methods across three stages of reliability issues: reliability testing and optimization, reliability modeling and 
evaluation, and post-service design. We can find a growing interest in time-dependent dynamic methods in 
research for all these three stages. Sequential decision modeling methods, such as the Markov decision process 
and its extensions, can be a resort to solve these problems, while modeling and problem-solving can be quite 
challenging under certain circumstances. Future research holds promising opportunities in related topics.
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1. INTRODUCTION
Reliability engineering and management are crucial for product quality and market competitiveness. 
Demand for high performance and reliability has made decision-making a key research focus in this field.

Traditional static models assume constant conditions, failing to capture dynamic factors such as production, 
usage, and environment[1-3]. For instance, lithium-ion battery (LiB) reliability in electric vehicles depends on 
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manufacturing, usage, and maintenance[4,5]. Therefore, dynamic reliability decision-making provides more 
adaptive solutions across three main stages: reliability testing and optimization, modeling and evaluation, 
and post-service design.

Reliability testing and optimization face challenges due to complex, long-lasting products[6]. Standard life 
tests under normal conditions are impractical for highly reliable consumer durables[7]. Accelerated reliability 
testing (ART) uses stresses such as higher temperatures or humidity to expedite failure[8]. Reliability 
optimization, once limited to the design phase, now requires ongoing adjustments due to dynamic usage 
and environments[9,10], involving complex programming and algorithm development[11].

Traditional lifetime prediction methods lack today’s needed precision, driving data-driven model growth[12]. 
The complexity of dynamic environments and varied usage further complicates model development. 
Peng et al. highlight the role of dynamic conditions in reliability modeling[13].

Reliability engineering includes testing, modeling, optimization, and post-service design, linked to 
degradation and operational environments[14]. For example, Gan et al. propose a maintenance optimization 
strategy for multi-state systems in dynamic environments[15].

The shift towards dynamic decision-making frameworks is driven by the practical needs of industries such 
as aerospace, automotive, and energy, where systems operate under highly variable conditions. This paper 
explores trends in dynamic reliability decision-making, addressing challenges and highlighting future 
research directions for adaptive and responsive management.

2. RELIABILITY TESTING AND OPTIMIZATION
Reliability testing and optimization are typically conducted during product design. However, modern 
systems' complexity makes system-level testing challenging[16]. Reliability is often assessed by testing the 
basic units, sometimes performed by suppliers rather than manufacturers. A key challenge in reliability 
testing is the extrapolation needed for predictions. Long-lasting consumer durables render traditional life 
tests impractical, making accelerated tests (ARTs) a preferred framework[17,18].

ARTs are typically categorized into accelerated life tests (ALTs) and accelerated degradation tests (ADTs), 
with some studies combining these methods[19]. Both methods shorten testing time and yield valuable 
reliability data. ALTs apply higher stress levels to accelerate failure[20], while ADTs track performance 
degradation over time[21,22]. In ALTs, unit failures and failure times are recorded, whereas ADTs measure 
periodic degradation. Planning is the first crucial step in ART for reliability assessment. Most existing 
studies follow a scheme that hinges on large-sample approximation to design ARTs, in which the optimality 
criteria are established via a function of the Fisher information and other selected variables. Figure 1 shows 
some key elements to be considered during the planning phase. The scheme is statistically sound, flexible, 
and adaptable to various scenarios.

Recent literature regarding related topics has implied several possible future directions.  First, there are 
numerous research gaps in formulating new optimality criteria. Classical criteria such as D-, A-, and V-
optimality, while statistically robust, often lack practical relevance. Bayesian optimization has been 
effectively applied to reliability-based design optimization, particularly in estimating design points with high 
accuracy[23]. Song et al. employ the constrained Bayesian optimization method and its variant to adaptively 
learn design points[24]. Emerging studies have increasingly concentrated on the connections between 
statistical criteria and the decision-maker’s objectives[25,26]. Etemadi and Fotuhi-Firuzabad[27] propose 
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Figure 1. Important aspects in ART plan optimization.

optimizing protection system design by balancing costs and relay failure losses, integrating economic 
aspects into reliability. Incorporating maintenance and warranty perspectives into these criteria is 
promising. Second, the enrichment of the ART model and reliability model is always an outlet. Specifically, 
enhancing the interpretability of such models presents a significant challenge[28]. Last but not least, dynamic 
methods in ART planning are limited. Most extant works treat the test planning as a static design of 
experiment problem, yet in practice, tests can be planned and conducted in a dynamic, sequential 
manner[29,30]. Dynamic decision-making methods such as the Markov decision process (MDP) and 
reinforcement learning (RL) can be promising tools to tackle such planning problems[31].

Adding redundancy is a traditional yet effective way to boost system reliability, commonly seen in high-
safety engineering systems such as airliners and automobiles. Reliability optimization covers various design 
problems, such as the redundancy allocation problem (RAP)[32], the reliability allocation problem and the 
reliability RAP (RRAP)[11]. Simply speaking, the problem is selecting the optimal components and quantities 
to ensure system operation. The uncertainty embedded in the reliability of units can make the problem 
quite onerous to solve. Risk-aware decision-makers often seek worst-case reliability solutions[33,34], leveraging 
distributionally robust methods. Nevertheless, the problem usually falls into the category of hard-to-solve 
mixed integer linear or nonlinear programs. Efficient algorithms remain a research priority, with specific 
system structures guiding algorithm improvements. Reihaneh et al. propose an exact branch-and-price (BP) 
algorithm for RAP with heterogeneous components under a mixed redundancy strategy[35].

Traditionally, reliability optimization was viewed as a static design-phase problem. However, with modern 
systems experiencing diverse usage and dynamic environments, system design now spans the entire 
lifecycle. Peiravi et al. introduced a novel Universal Redundancy Strategy (URS) aimed at improving system 
reliability by dynamically adjusting the configuration of redundant components during system operation[36]. 
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Planning for redundancy upgrades and maintenance interactions is a time-dependent problem that classic 
methods may not handle effectively. Sequential decision models present a promising approach for tackling 
such dynamic challenges.

3. RELIABILITY MODELING AND EVALUATION
Data-driven reliability modeling methods have significantly evolved[37], but conventional lifetime-based 
methods, such as Weibull and Poisson models, remain popular in both research and applications[38]. 
Meanwhile, degradation modeling that utilizes the health characteristics of products for reliability analysis 
plays an increasingly important part in related fields[39]. This approach has been used to study reliability 
through performance loss in batteries, wear in machine tools, and crack growth in turbine blades. Reliability 
modeling and evaluation is not inherently a decision-making problem, but it provides crucial input for 
reliability-focused decision-making frameworks.

Dynamic factors can significantly affect system reliability during operation, as most systems function in 
time-varying environments. Changes in external conditions, such as higher temperatures, can negatively 
impact electronic products such as batteries and chipsets. Singpurwalla[40] and Eryilmaz and Rıza Bozbulut[41] 
have explored these effects on reliability modeling. Luo et al. propose a statistical model that accounts for 
both correlated component lifetimes and lifetime ordering constraints under dynamic conditions to show 
direct impacts on reliability[42]. Dynamic environments are generally modeled as time-varying covariates 
linked to reliability parameters[1,43]. Zhang et al. use a Wiener process for system degradation, treating the 
dynamic environment as a covariate[44].

Hybrid models have emerged as a transformative approach by integrating the strengths of physics-based 
models and data-driven techniques to address key challenges in reliability modeling. One such challenge is 
managing the heterogeneous usage patterns of products, which introduce complex operational variances 
and significantly affect system reliability. Accurately managing high-dimensional, often correlated, 
covariates is crucial. Machine learning-based methods can be a resort, yet incorporating the physical 
principles of reliability into these models can be complex. For a comprehensive review, refer to the study by 
Xu and Saleh[45]. Physics-informed machine learning methods need more in-depth investigation.

Dependent and Competing Failure Processes (DCFP) are increasingly important in reliability modeling, 
especially for systems facing multiple, interacting failure mechanisms such as wear, corrosion, and 
fatigue[46]. In DCFP, one failure process can influence the likelihood of others. This is particularly relevant 
for industrial applications such as LiB systems[47] and micro-electro-mechanical systems (MEMS)[48]. 
Additionally, Wu and Ding[49] explore how Markov environments influence systems with DCFP, 
highlighting dynamic environmental factors. Zhou and Li[50] study interactions between minor and major 
failures. Future research could integrate DCFP into dynamic decision-making frameworks for a deeper 
understanding of system reliability in changing conditions.

Reliability modeling for complex multi-component systems is another challenging task especially with 
component dependencies. Complex systems can be onerous to characterize using classical block diagrams. 
Network or graph-based characterizations are far more flexible and informative[51]. Combining stochastic 
models with regression-based methods can enhance the efficiency and accuracy of reliability models.

4. POST-SALE SERVICE DESIGN VIA RELIABILITY MODELS
Maintenance modeling and optimization are crucial post-sale strategies for manufacturers and consumers, 
with dynamic methods widely studied. MDP-based maintenance optimization dates back to the 1950s when 
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reliability engineering first emerged. Early research discussed system deterioration without explicitly 
mentioning “condition-based maintenance”, favoring the term “preventive maintenance”. In recent 
decades, condition-based maintenance (CBM) has garnered huge attention[52]. As shown in Figure 2, 
maintenance schemes often rely on different key state thresholds, which may lead to over-maintenance or 
unexpected failures. CBM dynamically adjusts maintenance decisions by continuously monitoring the 
system’s degradation state.

Maintenance optimization via MDP and its variants has been studied intensely[53-55]. MDP is a framework for 
decision-making under uncertainty, representing a system where an agent chooses actions that lead to 
different states with specific rewards[56,57].

Unlike traditional CBM methods that set a constant threshold, MDP-based approaches use dynamic criteria 
linked to long-term utility for optimal policies. Semi-MDP (SMDP) and partially observed MDP (POMDP) 
are among the most commonly used variants of MDP in such problems[58,59]. The decisions are planned as 
illustrated in Figure 3. Under the MDP framework, system states (S1 to S5) are fully observable, while the 
POMDP framework addresses situations where system states are not directly observable. Instead, the 
decision-maker relies on observations to update belief states, which serve as probabilistic representations of 
the system's underlying condition. Mahmoodi et al. explore SMDP-based maintenance for parallel unit 
systems in dynamic environments[60], while Arcieri et al. propose a framework for inferring POMDP 
parameters using Markov Chain Monte Carlo (MCMC) to and address model uncertainty through domain 
randomization in RL training[61].

Warranty management stands at the interfaces of various engineering and management perspectives, 
including reliability, quality, marketing, design, etc.[62]. Maintenance and warranty policies for sold systems 
can be optimized jointly using MDP. Developing adaptive, tailored strategies in this context shows great 
potential.

Maintenance modeling can be expanded by incorporating system dynamics and varied maintenance actions 
to suit different scenarios. One intriguing direction is to incorporate time-varying dynamic covariates into 
degradation models, enabling decisions based on both system state and external factors. For example, 
Zheng et al. use an SMDP integrated with lot sizing and maintenance scheduling[63], while Luo et al. model 
the dynamic environment as a time-varying covariate affecting the degradation drift via a Markov 
process[64]. Joint policies combining maintenance with other decisions, such as production planning and 
inventory management[65,66], offer significant benefits. Paraschos et al. study a stochastic production and 
inventory system that accounts for multiple deterioration failures and product quality[67]. Zheng et al. 
consider the quality of spare parts supplied by vendors as a critical factor in their model[68]. MDP can 
facilitate the joint optimization of maintenance and warranty policies, particularly by exploring adaptive 
and customized  strategies, incorporating  adaptive approaches and risk-aware criteria, as shown  by 
Xu et al.[69].

To tackle sequential decision problems, especially in larger-scale scenarios, algorithms can leverage system 
reliability characteristics. For example, modern electricity distribution systems consist of intricate networks 
with interdependent subsystems, presenting significant maintenance challenges due to their scale. RL-
driven CBM policies are increasingly popular for their adaptability to dynamic, uncertain systems[70]. 
However, the dependencies among these subsystems can be limited, allowing for factored MDP modeling to 
simplify the problem and make the computation of optimal policies more feasible. Furthermore, current RL 
methodologies applied in CBM optimization primarily focus on determining optimal policies through 
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Figure 2. Different maintenance planning schemes.

Figure 3. MDP and POMDP in maintenance planning.

numerical approaches. There is a notable gap in research regarding the convergence of regrets, a promising 
area for exploring CBM policy structures within the RL framework.

5. CONCLUSIONS
The paper highlights progress and future directions in dynamic decision-making for reliability. 
Advancements in operations research, computer science, and statistics offer valuable tools for modeling and 
solving dynamic optimization problems. Integrating domain expertise from mechanical and systems 
engineering enhances applicability. Future research should prioritize physics-informed machine learning to 
merge physical principles with data-driven reliability models. Transitioning to dynamic ART can yield more 
realistic simulations, while ensuring model interpretability and computational efficiency is critical as 
complexity rises. Tailored algorithms for specific systems will enable real-time applications. In CBM, RL can 
improve policy decisions, addressing challenges such as regret convergence. Developing adaptive 
maintenance and warranty strategies and new optimality criteria that balance statistical and practical aspects 
will be essential for practical deployment. The focus on these dynamic approaches signals a promising path 
for future research across system life cycles.
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