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Abstract
An iron-catalyzed direct coupling of cycloalkanes and N-sulfonyl ketimines enabled by photoinduced ligand-to-
metal charge transfer (LMCT) and energy transfer has been developed. This reaction demonstrates high atom 
economy and operates under eco-friendly, mild conditions with a good substrate scope. A notable aspect of this 
study is the proposal of a potential radical-radical coupling mechanism, involving a cycloalkyl radical and a cation 
radical intermediate, which may lead to C–C bond formation. This discovery significantly enhances our 
comprehension of reaction mechanisms in this domain.
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INTRODUCTION
Carbon-centered radicals are fascinating and highly active neutral intermediates that have been extensively 
used in organic chemistry and medical chemistry[1]. Particularly, mild conditions for the generation of 
unstable alkyl radicals and the precise control for ensuing reaction are highly sought in organic synthesis. 
Over the last few decades, advances in photocatalysis have enabled novel radical synthetic methodologies 
for molecular skeleton construction. Among these excellent transformations, diverse alkyl radicals can be 
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efficiently generated upon visible light irradiation. For instance, alkyl carboxylic acids and their 
derivatives[2-5], alkyl halides[6], alkyl silicates[7], alkyltrifluoroborates[8,9], α-silyl amines[10], cycloketone oxime 
esters[11], Katritzky pyridinium salts[12,13] could serve as effective alkyl radical precursors to give the alkyl 
radicals under single-electron-transfer by photocatalysis [Figure 1A]. Though significant progress has been 
made in this area, hydrocarbons were regarded as the most appealing and economical alkyl source for 
alkylation reactions. However, challenges remain due to the inert nature of C(sp3)–H of alkanes and 
unpredictable chemoselectivity of alkyl radicals, necessitating the development of greener and more efficient 
catalytic systems.

Alkylated heteroarenes are commonly found in pharmaceuticals, natural products, and ligand scaffolds. 
They are widely distributed in various bioactive compounds, drugs, and molecular frameworks, making 
them a prevalent and essential motif in the field of chemistry and drug discovery[14,15]. Significant attention 
has been devoted to the alkylation of valuable heteroarenes, reflecting its importance in various synthetic 
and pharmaceutical applications[16-27]. In particular, N-sulfonyl ketimines are widely found in bioactive 
molecules and pharmaceuticals [Figure 1B][28,29]. Owing to their unique properties, C4-alkylation of sulfonyl 
ketimines has attracted widespread attention. In 2021, Wang et al. carried out groundbreaking work on the 
first silver-catalyzed N-sulfonyl ketimine alkylation reaction using carboxylic acid as an alkyl radical 
precursor[30]. Subsequently, methods for alkylating N-sulfonyl ketimines with cycloalkanols[31], 
alkylaldehydes[32], and alkylboronic acids[33] were successfully developed [Figure 1C]. However, these 
methods have limitations, such as the necessity for noble metal catalysis, excessive oxidants, high 
temperatures, and pre-activated substrates, which restrict the widespread application of this reaction. The 
cross-dehydrogenative coupling (CDC) reaction has proven to be a powerful tool for constructing a variety 
of structures, including those accessed via Csp2−Csp3 cross-coupling. However, the research on the direct 
CDC reaction of N-sulfonyl ketimines with alkanes has been limited. In 2023, Song et al. reported the visible 
light-induced alkylation of N-sulfonyl ketimine with alkanes as an alkyl precursor in the presence of H2O2 as 
the oxidant[34]. Therefore, developing a sustainable and practical methodology for the synthesis of 4-
alkylated N-sulfonyl ketimines using simple alkanes as an alkyl source is highly desired.

The radical-radical coupling reaction, in contrast to the classical radical addition pathway restricted to 
unsaturated bonds and requiring high activation energy, has an activation energy close to zero[35]. This 
enables the reaction to occur under mild conditions. Therefore, we hypothesized that, under photoredox 
conditions, alkanes could generate alkyl radicals via a ligand-to-metal charge transfer (LMCT) process. 
Additionally, the single-electron transfer (SET) process could generate N-sulfonyl ketimine cation radicals, 
which could facilitate the direct radical-radical coupling to construct alkylated N-sulfonyl ketimines. 
Building upon the principles of sustainable chemistry, we report a photoinduced Fe-catalyzed C-H 
alkylation of N-sulfonyl ketimines with simple alkanes by using air as an oxidant via a novel radical-radical 
coupling process. This reaction is simple to operate, conducted at ambient temperature, and relies solely on 
atmospheric oxygen as the oxidizing agent. Furthermore, Fe is an abundant metal and much cheaper than 
traditional metal photocatalysts such as Ir and Ru, making it a practical and cost-effective choice for large-
scale synthesis[36]. Meanwhile, photoinduced Fe catalysis has been proven to be a powerful tool in radical 
chemistry; generally, the types of reactions undergo a process of radical addition[37-46]. However, in this work, 
we proposed a novel pathway for radical-radical coupling between cycloalkyl radical and cation radical 
intermediate of heteroarene, which complemented the classic reaction mechanism well [Figure 1D].

EXPERIMENTAL
A 10 mL oven-dried Schlenk tube, fitted with a magnetic stirring bar, was charged with 1 (0.2 mmol, 
1.0 equiv.), 2 (4.0 mmol, 20.0 equiv.), FeCl3 (3.2 mg, 0.02 mmol), tetrabutylammonium chloride (TBACl, 
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Figure 1. (A) Common alkyl radical precursors; (B) Selected examples of N-sulfonyl ketimines; (C) Prior art; (D) This work.
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0.4 mmol, 2.0 equiv.), and dichloromethane (DCM, 2.0 mL). The vessel was positioned 2 cm from a 385 nm 
light-emitting diode (LED, 6 W), and the reaction mixture was exposed to light for 13 h under an air 
atmosphere. Following irradiation, the mixture was transferred to a 50 mL round-bottom flask, and the 
solvent was removed under reduced pressure. The desired product 3 was isolated using flash column 
chromatography on silica gel.

RESULTS AND DISCUSSION
The initial optimization of the reaction was performed using N-sulfonyl ketimine 1a and cyclohexane 2a as 
model substrates [Table 1]. Various Fe(III) and Fe(II) salts were screened under irradiation with a 6 W, 
395 nm LED in an acetonitrile (MeCN) solvent under an air atmosphere (entries 1-4), though the results 
showed no significant difference in efficiency. Control experiments using Fe(NO3)3·9H2O and FeSO4 
without a halide source showed only trace amounts of product 3a, underscoring the essential role of halide 
radicals in facilitating the hydrogen atom transfer (HAT) process and enabling product formation. When 
the additive was changed from TBACl to LiCl, the yield dropped markedly to 9% (entry 5). The effect of 
TBACl equivalents was also examined, with 2.0 equivalents yielding 23% (entry 6), while 3.0 equivalents led 
to a slightly lower yield of 18% (entry 7). Next, we evaluated the impact of different solvents, including 
MeCN, DCM, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and dioxane. Among these, 
DCM proved to be the most effective, delivering the highest yield (entries 6, 8-11). Gratifyingly, the yield 
increased to 60% when 20 equivalents of cyclohexane 2a were used (entry 13). However, further increasing 
the amount of 2a led to a decrease in yield (entry 14). Switching the light source to a 385 nm LED 
significantly enhanced the C(sp3)–H activation efficiency, resulting in an improved yield of 73% (entries 15-
17). Based on this optimization, the optimal conditions were identified as follows: 1a (0.2 mmol), 2a 
(20.0 mmol), 2.0 equivalents of TBACl, and 10 mol% FeCl3 as a photocatalyst in DCM under 385 nm LED 
irradiation for 13 h in an air atmosphere.

With the optimized reaction conditions in hand, the scope of N-sulfonyl ketimines 1 and alkanes 2 was 
explored [Figure 2]. Various N-sulfonyl ketimines bearing different substituents were compatible with the 
reaction system, affording the corresponding products in moderate to good yields. Reaction progress was 
monitored by thin-layer chromatography (TLC), which confirmed near-complete consumption of the 
starting materials. Both electron-donating (-Me) and electron-withdrawing groups (EWGs) (-F, -Cl, -Br, 
-CO2Me, -NO2) on the aromatic ring were well-tolerated. The reactivity of substrates bearing electron-
donating groups (EDGs) and EWGs exhibited relatively modest variations, except for the nitro group 
(-NO2), which resulted in a substantial reduction in yield (3a-3o). Moreover, the position of the substituent 
on the benzene ring had no significant impact on the reaction outcome. Next, the scope of cycloalkanes in 
the reaction was examined. Regardless of ring size, N-sulfonyl imines were smoothly converted into their 
corresponding 4-alkylated sulfonyl ketimines (3p and 3q).

To demonstrate the scalability and potential practicality of this Fe-catalyzed photoredox C(sp3)–H 
functionalization protocol, a gram-scale reaction was conducted to produce 3a in a 54% yield [Figure 3A]. 
Despite the use of excess alkanes, both the solvent and reagent (alkanes) can be easily recovered for 
subsequent use, highlighting the potential of this protocol for industrial applications.

To further elucidate the reaction mechanism, several control experiments were conducted [Supplementary 
Materials]. A light/dark experiment demonstrated that the reaction was completely halted in the absence of 
light, confirming that light is crucial for the transformation [Figure 3B]. Additionally, when 2,2,6,6-
tetramethylpiperidinyloxy (TEMPO), a well-known radical quencher, was introduced into the reaction, 
product formation was significantly suppressed. Notably, a radical adduct was detected by electrospray 
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Table 1. Reaction optimizationa

Entry Fe catalyst 2a (equiv.) Solvent Light Yield [%]b

1c FeCl3·6H2O 5 MeCN 395 nm 16

2c FeCl3 5 MeCN 395 nm 17

3c Fe(NO3)3·9H2O 5 MeCN 395 nm 15

4c FeSO4·7H2O 5 MeCN 395 nm 16

5d FeCl3 5 MeCN 395 nm 9

6 FeCl3 5 MeCN 395 nm 23

7e FeCl3 5 MeCN 395 nm 18

8 FeCl3 5 DCM 395 nm 45

9 FeCl3 5 DMF 395 nm ND

10 FeCl3 5 DMSO 395 nm ND

11 FeCl3 5 1,4-Dioxane 395 nm ND

12 FeCl3 10 DCM 395 nm 46

13 FeCl3 20 DCM 395 nm 60

14 FeCl3 30 DCM 395 nm 55

15 FeCl3 20 DCM Blue LEDs ND

16 FeCl3 20 DCM 385 nm 73

17 FeCl3 20 DCM 410-420 nm 60

aGeneral conditions: 1a (0.2 mmol), 2 (X equiv.), TBACl (2.0 equiv.) and FeCl3 (10 mol%) in 2.0 mL of solvent and irradiated under 6 W LEDs at 

room temperature for 13 h under air atmosphere. bIsolated yield. c1.0 equiv. TBACl was added. d1.0 equiv. LiCl instead of TBACl. e3.0 equiv. TBACl 
was added. MeCN: Acetonitrile; DCM: dichloromethane; DMF: N,N-dimethylformamide; ND: not detected; DMSO: dimethyl sulfoxide; LEDs: 
light-emitting diodes; TBACl: tetrabutylammonium chloride.

ionization high-resolution mass spectrometry (ESI-HRMS), providing further evidence for the involvement 
of cyclohexane radicals [Figure 3C]. On performing the template reaction with 5 equiv. 1,4-
diazabicyclo[2.2.2]octane (DABCO) or benzoquinone, the reaction was completely inhibited, which 
indicated that singlet oxygen and superoxide radicals might be formed in the reaction [Figure 3D and E]. 
We assumed that singlet oxygen and superoxide radicals may both be generated by compound 1a. To 
investigate the origin of 1O2 and O2

•-, electron paramagnetic resonance (EPR) test was also conducted to 
verify our hypothesis [Supplementary Materials]. The EPR spectrum of a mixture of 1a and 2,2,6,6-
tetramethylpiperidine (TEMP) in DCM under irradiation showed strong signal of TEMPO (αN = 15.91 and 
g = 2.006), which could verify the source of 1O2 [Figure 4A left]. Besides, a strong signal peak of an O2

•- 
adduct with 5,5-dimethylpyrroline N-oxide (DMPO) was detected (αN = 12.78, αH = 7.9 and g = 2.006), 
when the solution of 1a was irradiated with 385 nm LEDs [Figure 4A right], which further implies the 
generation of an N-sulfonyl ketimine radical cation intermediate. The results suggest that both singlet 
oxygen (1O2) and superoxide radicals (O2

•-) play critical roles in the transformation. To gain deeper insights 
into the reaction mechanism, fluorescence quenching experiments were conducted between excited Fe(III) 
and various components of the reaction system [Supplementary Materials], including TBACl, cyclohexane, 
and N-sulfonyl ketimine [Figure 4B]. Of the reagents present in the reaction, only Cl- was able to quench the 
fluorescence of Fe(III) excited at 385 nm, indicating that a LMCT process occurs between Fe(III) and Cl-.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202506/cs40101-SupplementaryMaterials.pdf
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Figure 2. Scope of reaction. aReaction conditions: 1 (0.2 mmol), 2 (4.0 mmol), TBACl (2.0 equiv.) and FeCl3 (10 mol%) in 2.0 mL of 
DCM and irradiated under 6 W 385 nm LEDs at room temperature for 13 h under air atmosphere. b1 equiv. TFA was added. TBACl: 
Tetrabutylammonium chloride; DCM: dichloromethane; LEDs: light-emitting diodes; TFA: trifluoroacetic acid.

Figure 3. Gram-scale experiment and control experiments.
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Figure 4. Mechanistic studies.

Based on the abovementioned studies and previous work, a detailed description of our proposed catalytic 
mechanism is outlined in Figure 5. Under light irradiation, the Fe(III) complex turns into its excited state 
and subsequently the process of LMCT generates Fe(II) complex with a highly active chlorine radical (Cl•). 
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Figure 5. Mechanistic proposal.

Then, a HAT from cyclohexane to Cl• leads to the formation of cyclohexyl radical (Cy•) and aerobic 
oxidation of the Fe(II) complex regenerates the Fe(III) complex. In the meantime, the excited-state species 
of substrate 1 is produced by irradiation, which undergoes an energy-transfer process with 3O2 to deliver 
1O2. The 1O2 with high oxidation potential (E = 2.2 V)[47] could oxidize N-sulfonyl ketimines (E = 1.76V)[48] to 
give N-sulfonyl ketimine cation radical intermediate I, which is also confirmed by EPR experiments. Finally, 
a radical-radical coupling between the cyclohexyl radical (Cy•) and radical intermediate I occurs, followed 
by a deprotonation process facilitated by superoxide radicals or superoxide anions abstracting a hydrogen 
atom, leading to the formation of the target product 3a (path a). Despite the proposed radical coupling 
mechanism outlined above, we cannot exclude the possibility of a radical addition process. In this 
alternative pathway (path b), the cyclohexyl radical could directly attack the C4 position of the sulfonyl 
ketimine 1a to generate an N-centered radical. This intermediate then undergoes a 1,2-hydrogen shift to 
form radical intermediate III, which is subsequently converted into the desired product 3a through a HAT 
process with superoxide (O2

•-).

CONCLUSIONS
In conclusion, this study presents an efficient and direct system for C−H alkylation by iron photocatalysis 
using hydrocarbons as an alkyl source. The detailed mechanistic studies support that Fe(III)–Cl LMCT 
process and energy transfer process are involved in this transformation. Notably, a novel pathway of 
radical-radical coupling was proposed, a process not previously reported for photoinduced C-C formation 
between cycloalkyl radical and cation radical intermediate of heteroarene. This sustainable method offers a 
new synthetic strategy for functionalizing sulfonyl ketimines, and it is expected to have wide utility in both 
medicinal and synthetic chemistry. We are currently working on developing additional photochemical 
transformations in our laboratory by utilizing this approach.
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