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Abstract
Animal models have great importance in the research of human neurodegenerative diseases due to their value in 
symptom mimicking, mechanism investigation, and preclinical tests. Although non-human primate and large 
animal models have good performance in disease modeling due to their high maintenance cost and critical ethical 
standards, rodent models are commonly used. Rodent models have been successfully applied in modeling many 
neurological diseases; however, their genetic background, neuroanatomical features, and nervous system 
development are different from those of humans. Moreover, the short lifespan and small body size of rodent 
models also limit the monitoring of disease progression and observation of clinical symptoms in studying neuronal 
disorders that are late-onset or have a long course of progression. In comparison with rodents, rabbits are 
phylogenetically closer to humans and have closer similarities to humans in brain development, thus are an 
alternate animal model for human neurological diseases.

Keywords: Neurodegenerative diseases, genome editing, animal model, rabbit, Alzheimer’s disease, Parkinson’s 
disease, amyotrophic lateral sclerosis

https://creativecommons.org/licenses/by/4.0/
https://ageneudisjournal.com
https://dx.doi.org/10.20517/and.2022.15
http://crossmark.crossref.org/dialog/?doi=10.20517/and.2022.15&domain=pdf


Page 2 of Zhang et al. Ageing Neur Dis 2022;2:16 https://dx.doi.org/10.20517/and.2022.1511

INTRODUCTION
Neurodegenerative diseases (NDDs) are associated with progressive neuron losses, most of which are linked 
with genetic disorders[1]. At present, neurological disorders are considered as one of the major causes of 
mortality and disability worldwide[2]. Unfortunately, many NDDs are late-onset and hard to detect in the 
early stage; for instance, Parkinson’s disease (PD) and Alzheimer’s disease (AD) have high morbidity in 
elderly patients, while amyotrophic lateral sclerosis (ALS) does not exhibit clear symptoms at the early stage 
of the disease. Moreover, due to the irreversibility of neuronal death, no effective therapeutic approaches are 
available at present. Therefore, a thorough investigation of these diseases is essential for the development of 
disease-specific and effective prognostic, diagnostic, and therapeutic strategies. Model organisms are 
essential platforms for the above research; cell lines and animal models are frequently used. Although cell 
models can be used for the investigation of pathological pathways and molecular mechanisms of disease 
pathogenesis[3], due to the limitation in modeling organogenesis and human physiology[4], they cannot 
mimic histological, morphological, and behavioral changes in human diseases. Therefore, animal disease 
models that partially recapitulate the aspects of human diseases are essential. Additionally, animal models 
have irreplaceable value in preclinical tests; they are also important for the development of prognostic and 
therapeutic strategies.

In comparison with non-mammalian animals such as zebrafish and Drosophila melanogaster, mammalian 
models have greater similarities to humans in genetics, metabolism, and physiology and can therefore 
mimic some of the biological and clinical features of human disease[5,6]. In practical research, large animal 
models are often used because of the biological characteristics of these animals for modeling human 
NDDs[7]. With the development of genome editing tools and somatic cell nuclear transfer (SCNT) 
techniques, genetically modified large animal models can be effectively produced, which can promote the 
utilization of these models[8]. Unfortunately, maintenance costs, space requirements, and ethical standards 
are still problems for the use of large animal models in biomedical research. Compared with large animal 
models, rodents have a small body size, low maintenance cost, and can be easily handled, making them cost-
efficient models. Moreover, rodents have a relatively high genetic identity and physiological similarity to 
humans, and genetic modification capabilities can facilitate the modeling of genetic disorders[9]. Therefore, 
currently, rodents are the main experimental animal for biomedical research and disease modeling. From 
1950 to 2010, approximately 80% of animal-based biomedical studies were performed on rodents (59% on 
mice and 18% on rats)[10].

Rodents have been applied in modeling many neurological diseases and have adequate precision in 
mimicking the pathology and physiology in some cases. However, due to factors such as lifespan, genetic 
differences from humans, and small body size, rodent models have some limitations in studying neuronal 
disorders[9]. For example, they cannot replicate the exact pathological hallmarks in some human diseases 
because of physiological and genetic differences. PD mouse models (α-synuclein transgene or knockout of 
LRRK2, PRKN, and PINK1) do not show degeneration of nigrostriatal dopaminergic neurons[11] and striatal 
neurons remain viable, which is different from the pathological features in human disease[11]. The absence of 
intranuclear inclusion body formation in neuronal cells of ALS mice overexpressing mutant hSODl is 
inconsistent with the phenotype of human ALS disease. Thus, finding an alternative animal species for 
modeling is needed to produce better models for diseases that cannot be recapitulated in mice.

Rabbits are docile and easy to handle; their short reproductive cycle and high reproductive performance can 
guarantee an abundant sample size for experiments; and the efficiency of model production and the low 
demand for rearing and surgical operation equipment make rabbits easy to maintain and handle[12]. 
Moreover, rabbits have an intermediate lifespan (longer than rodents but shorter than large animals such as 
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non-human primates), and, compared with rodents, rabbits are phylogenetically closer to humans[13] and are 
more similar to humans in brain development[14]; therefore, they may have better precision in disease 
modeling. With the development of targeted genome editing tools, producing targeted genome-edited 
rabbit models for human neuronal disorders has become attainable.

ADVANTAGES OF RABBITS AS ANIMAL MODELS OF NEUROLOGICAL DISEASES
Rabbits are phylogenetically closer to humans than mice
Genetic similarity to humans is linked with the identity of protein structure and function, and high genetic 
similarity could increase the precision of disease modeling. Compared with rodents, rabbits are 
phylogenetically closer to primates[13], suggesting they may have better precision in disease modeling. 
Notably, some human genes do not have orthologs in mice: approximately 1% of human genes cannot find 
orthologs in mice’s genomes. For instance, caspase 10, a gene that is linked to neurodegeneration via the 
extrinsic apoptosis pathway[15], is absent in mice but has orthologs in rabbits[11]. However, the phylogenetic 
similarity between rabbits and humans does not guarantee rabbits would be a better model for all human 
diseases; the performance of disease modeling is still dependent on the type of mutant gene, and the 
mechanism involved in the pathogenesis should also be considered.

The development of the central nervous system of rabbits has greater similarity to humans 
compared with rodents
Neurological features are critical for NDD modeling, and the CNS development of rabbits is highly similar 
to that of humans compared with that of rodents. Specifically, the phase of brain development and 
myelination in rabbits is more similar to humans than that of rodents, since such a process happens during 
the perinatal period in humans and rabbits but postnatally in rodents[14]. Moreover, rabbits have a higher 
brain volume and cerebral surface area than mice. The time point of morphological configuration of major 
CNS structures of rabbits is closer to humans. The development of structures such as primitive streak, 
neural tube closure, and primary brain vesicles in rabbits is chronologically similar to that in humans[14]. In 
addition, the development of white matter in rabbits is closer to that of humans[14], and rabbits have a higher 
white matter ratio than mice (approximately 20% vs. 10%)[16,17] [Table 1]. Moreover, rabbits have larger brain 
volume, cortex surface area, and number of neurons compared with rodents [Table 1], suggesting that 
rabbits may exhibit better cognitive, learning, and memory abilities.

Rabbits can be trained to learn basic skills (e.g., recall signals) through positive reinforcement[25]. Rabbits 
also have both short- and long-term memory[26,27] and can exhibit memory losses when mimicking NNDs 
such as AD[27]. Specifically, in an AD rabbit model constructed by drug induction, the results of novel object 
recognition (NOR) and object location memory (OLM) tests suggest that the model can track cognitive 
impairment[28]. In other studies, the results of conditional and unconditional response tests also suggest that 
the AD rabbit model has reduced learning ability[29,30].

Additionally, axon degeneration is a common pathological feature of NDDs, and neurons with longer 
projections have a higher vulnerability to axon degeneration, which can be easily affected in NDDs[31]. Some 
mice models of motor neuron diseases exhibit molecular pathological features in neurons but only exhibit 
mild or even no behavioral symptoms[32,33]; vulnerability to axon degeneration might be the explanation for 
this phenomenon, since the axon length in rodents is shorter than that in larger animals. Collectively, rabbit 
models might have better accuracy in mimicking human neuronal diseases compared to rodents.

Rabbits have a relatively large body size for handling and sampling
In addition to the genetic and neurological features, rabbits also have a bigger body size compared with 
rodents, which can facilitate better animal handling and symptom observation. The relatively large body size 



Page 4 of Zhang et al. Ageing Neur Dis 2022;2:16 https://dx.doi.org/10.20517/and.2022.1511

Table 1. Major differences in size and structures between rabbits and mice

Human Rabbit Mice

Brain volume[18] 1300-1400 g 10-13 g 0.4-0.5 g

Spinal cord length[18] 43 to 45 cm 18 cm 7.5

Gray-white matter ratio[16,17] 40:60 80:20 90:10

Duration to reach adult brain volume[19,20] 20 years 4 months 2 months

Glia-neuron ratio (GNR)[21] 1.66 0.32-0.49 0.29-0.42

Number of neurons[22-24] 86,000 million 494.2 million 71 million

of the rabbits is also associated with larger organ size and blood volume (45-75 mL per kg body weight 
versus 1.5-2.5 mL)[10,34], which can be beneficial for diagnostic investment, surgical operation, and sampling 
for pathological analysis. Cerebrospinal fluid (CSF) and blood biomarker analyses are commonly used in 
the diagnosis of NDDs such as AD and FTD[35-37]. Such assays are hard to perform in mice due to the poor 
sample size, especially for experiments that need continuous monitoring; in contrast, for larger animals such 
as rabbits, an adequate amount of sample can be collected with minimal harm to the animal.

In addition, medical imaging approaches are usually needed for the prognosis and diagnosis of NDDs[38,39]. 
However, it is hard to perform high-definition medical imaging on small animals due to the limitation of 
the equipment. High-resolution magnetic resonance imaging (MRI) in mice requires a scanner with an 
ultra-high field strength of 7 T or higher[40], which is inaccessible for most researchers. Compared with 
rodents, rabbits have larger CNS [Table 1]; thus, a normal MRI scanner with a 3.0 T field strength is 
adequate for CNS imaging in rabbits[41]. The large body size of rabbits can also benefit electromyography 
tests, which are commonly used in the diagnosis of neuromuscular diseases such as ALS. Additionally, the 
scale of the central neuron system also affects the maneuverability of tissue sampling and the 
intraparenchymal or epidural injection of therapeutic vectors such as AAV in future translational medical 
research.

Collectively, the larger body size of rabbits makes it easier to handle and sample compared with small 
animals, which largely facilitate phenotype observation and surgical operation.

The lifespan of rabbits is long enough for the observation of disease progression
The onset of neurodegenerative disease and the speed of progression are affected by both genetic and 
environmental factors[42]. For pathological mutations that induce late onset and slow progression, the 
lifespan of animal models should also be considered, since the effect of aging can interfere with the 
observation of clinical symptoms[9]. Generally, NDDs are progressive diseases that last from years to 
decades. For instance, the median survival time of ALS patients is 20-48 months[43], while that of AD 
patients can reach up to 30 years[44]. Moreover, late-onset NDDs such as AD and PD develop late in life; 
both diseases usually begin at age 60 or older in human patients[45]. However, the normal lifespan of mice is 
12-36 months[10], which means that for diseases that begin late or have a slow rate of progression, mice may 
not fully exhibit the whole course of the disease. For mutations that can only induce late-onset symptoms or 
slow progressive disease, mice models may not exhibit observable symptoms in their lifetime without extra 
administration, such as drug stimulation[46]. Furthermore, due to the short lifespan of mice, it is hard to 
identify whether a symptom (e.g., vision loss) is caused by pathological neuronal death or age-related 
reasons[9]. In the adult phase, 2.6 mice days is equivalent to one human year, while, in the post-senescence 
phase, 2.069 mice days is equivalent to one human year[10]. Such fast senescence processes can largely limit 
the progression of disease and interfere with the observation of disease-related clinical symptoms. In 
contrast, the maximum lifespan of laboratory rabbits can reach up to 10 years under proper conditions, and 
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one human year is equivalent to 18.25 and 50.34 rabbit days in the adult and post-senescence phases, 
respectively[34]. Thus, for most NDDs, the lifespan of rabbits is long enough for the observation of disease 
progression.

PRODUCTION OF GENOME-MODIFIED RABBIT DISEASE MODELS VIA CRISPR-CAS 
SYSTEM
The production of disease models that recapitulate the pathological features of human disease is an 
important approach to investigating the pathogenesis of the disease. Artificially induced disease models can 
exhibit clinical features of some NDDs. For instance, hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine, rotenone, and paraquat are commonly used in the induction of Parkinson’s disease[47]. 
However, many NDDs are caused by pathological mutation of the disease-related gene, and an induction 
model cannot fully recapitulate the whole pathological pathway of diseases caused by genetic disorders[1]. 
Therefore, to elucidate the whole pathogenesis process of neuron degeneration, the production of animal 
models that carry pathological mutations that mimic human disease is necessary.

With the development of gene-editing tools, efficient and accurate genome modification has become 
achievable. To date, various genome-edited rabbits have been constructed, as shown in Table 2. In 2013, the 
CRISPR-Cas9 system was harnessed for efficient targeted genome editing in eukaryotic cells[99,100]. Moreover, 
with the further development of research on CRISPR-Cas systems, the CRISPR-Cas systems and their 
derivates can facilitate targeted gene knockout (KO), knockin (KI), activation, suppression, and single-base 
substitution. Presently, various genome editing tools based on CRISPR-Cas systems are widely used in 
multiple species, including non-human primates, large non-primate animals, rodents, and rabbits[101-103].

The first CRISPR-Cas-mediated gene KO in rabbits was successfully generated in 2014[101] [Table 2]; 
however, full-length gene KO can only recapitulate diseases caused by loss of function. To mimic diseases 
caused by gain-of-function mutation due to point mutation, more accurate gene manipulation is needed. 
Furthermore, more than 50,000 disease-causing mutations in humans are point mutations; therefore, a 
novel system that can mediate single base substitution is needed. Since 2017, the development of cytosine 
and adenine base editing systems can facilitate efficient C to T and A to G base substitutions, which can 
facilitate precise gene manipulation[104]. Such systems were identified as having ideal editing efficiency in 
rabbits [Table 2]; the efficiency of cytidine base editor (CBE) and adenine base editor (ABE) in rabbits after 
co-microinjection of base editor mRNA and sgRNA are 53%-88% and 44%-100%, respectively[90]. The 
following refinement of base editors has overcome or reduced the limitations of PAM sequences and the 
incidence of bystander activities[92,105]. At this stage, base editing systems are capable of inducing disease 
causative missense and nonsense mutations in rabbits to generate disease models.

Although base editing systems can induce four transversion mutations, it is impossible for such systems to 
induce the other eight transversion mutations. Moreover, the generation of bystander mutations cannot be 
completely avoided when there are multiple C or A in the editing window. Importantly, conventional gene 
editing systems cannot induce efficient single base or oligonucleotide insertions and deletions. Therefore, it 
is hard to generate disease models with fragment shift mutations. Fortunately, the development of prime 
editing systems solved such problems in 2019. The system, which is based on the target binding capacity of 
the CRISPR-Cas9 system and the retro-transcription activity of retrotrancripsase, can facilitate the whole 
genome “search and replace” activity in organisms. Prime editor was successfully used in generating a Tay-
Sachs disease (TSD) rabbit model in 2021 [Table 2], which is a model of neurological disease generated by 
prime editor-mediated four base insertion[98].
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Table 2. Summary of genetically modified rabbits

System Genes Modification Application Refs.

ZFN IgM KO Immunodeficiency [48]

ZFN APOC3 KO Lipid metabolism and 
atherosclerosis

[49]

ZFN APOE KO Lipid metabolism and 
atherosclerosis

[50]

ZFN CETP KO Lipid metabolism and 
atherosclerosis

[51]

TALENs RAG1; RAG2 KO Immunodeficiency
[52]

TALENs FAH KO Hereditary tyrosinemia type 1
[53]

CRISPR/Cas9 FBN1 KO Marfanoid progeroid lipodystrophy syndrome
[54]

CRISPR/Cas9 DMD KO Duchenne muscular dystrophy
[55]

CRISPR/Cas9 ANO5 KO Muscular dystrophy
[56]

CRISPR/Cas9 α-Crystallin KO Congenital cataracts
[57]

CRISPR/Cas9 GJA8 KO Congenital cataracts
[58]

CRISPR/Cas9 LDLR KO Lipid metabolism and 
atherosclerosis

[59]

CRISPR/Cas9 MSTN KO Muscle hypertrophy
[60,61]

CRISPR/Cas9 SRY KO Sex reversal syndromes and 
hermaphroditism syndromes

[53,54]

CRISPR/Cas9 PHEX KO X-linked hypophosphatemia
[62]

CRISPR/Cas9 LMNA KO Premature aging syndrome
[63]

CRISPR/Cpf1 WRN KO Werner syndrome
[64]

CRISPR/Cas9 TYR KO Oculocutaneous albinism
[65,66]

CRISPR/Cas9 DMP1 KO Mineralization defects
[67]

CRISPR/Cas9 GADD45G KO Congenital cleft palate
[68]

CRISPR/Cas9 HOXC13 KO Hair and nail ectodermal dysplasia
[69]

CRISPR/Cas9 GCK KO Maturity-onset diabetes of the young type 2
[70]

CRISPR/Cas9 HBB2 KO β-thalassemia
[71]

CRISPR/Cas9 WAS KO Wiskott-Aldrich syndrome
[72]

CRISPR/Cas9 CBS KO Congenital hyper-homocysteinemia
[73]

CRISPR/Cas9 LDLR; APOE KO Lipid metabolism and 
atherosclerosis

[74]

CRISPR/Cas9 APOC3 KO Lipid metabolism and 
atherosclerosis

[75]

CRISPR/Cas9 CFTR KO Cystic fibrosis
[76]

CRISPR/Cas9 CFTR KO ΔF508 Cystic fibrosis
[77]

CRISPR/Cas9 CLPG KO Muscular hypertrophy syndrome
[69]

CRISPR/Cas9 FGF5 KO Long hair
[78]

CRISPR/Cas9 IL2RG KO X-linked severe combined  
immunodeficiency

[79]

CRISPR/Cas9 MC1R KO Block the synthesis of eumelanin and create a novel pale-yellow coat 
color

[80]

CRISPR/Cas9 XIST P1 KO X-chromosome inactivation
[73]

CRISPR/Cas9 MSTN KO Muscle hypertrophy
[74]

CRISPR/Cas9 PCSK9 p.S386A Lipid metabolism and 
atherosclerosis

[75]

CRISPR/Cas9 ATP7B p. R778L Wilson Disease
[81]

CRISPR/Cas9 TYR p. T373K Oculocutaneous albinism
[82]

CRISPR/Cas9 TYR KO Oculocutaneous albinism
[83]

CRISPR/Cas9 RAG; RAG2; TIKI1; ALB; 
IL2RG

Multiplex gene KO Immunodeficiency
[84-86]

CRISPR/Cas9 FUT1; FUT2; SEC1 KO Fucosyltransferases enzymes activity [87]
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CRISPR/Cas9 ROSA 26 KI Safe harbor gene
[88,89]

MSTN p.Q93stop Muscle hypertrophyBE3

TYR p.Q68stop Oculocutaneous albinism

ABE7.10 DMD p.T279A Duchenne muscular dystrophy

[90]

eAID-
BE4max

TYR p.R299H Oculocutaneous albinism
[91]

YFE-BE4max TYR p.Q68Stop Oculocutaneous albinism
[92]

nNme2-CBE FGF5 p.Q79Stop Long hair
[93]

eA3G-BE TYR p.Q48stop Oculocutaneous albinism
[94]

NG-ABEmax HOXC13 p.Q271R Hair and nail ectodermal dysplasia
[95]

BE4max FGF5 Start Codon 
Disruption

Long hair
[96]

TYR p.T325A Oculocutaneous albinismABE8.17

LMNA p.L530P Emery-Dreifuss muscular dystrophy 

[97]

PE3 HEXA p.Y427fs Tay-Sachs disease [98]

PROSPECTS AND LIMITATIONS FOR EVALUATING RABBIT DISEASE MODELS
The observation of the clinical phenotypes of diseases is important for the evaluation of animal models. 
However, unlike the well-developed testing platforms for rodent models, currently, the evaluation criteria 
for rabbit NDD models are not well established.

In general, the diagnosis, prognosis, and autopsy criteria in human NDDs can be used in animal models. 
Such investigations can provide data that are comparable to human clinical reports and have better 
referential value. Indeed, commercialized analysis platforms, such as serological testing, enzyme-linked 
immunosorbent assay, MRI, electromyography, and histological analysis, are versatile and authentic tools 
for the assessment of both humans and animals including rabbits. However, it is impossible to apply the 
whole set of human diagnostic criteria to animals. For example, the investigation methods for behavioral 
and cognitive analyses in humans are hard to apply in animal models. Standardized and species-specific 
behavioral analysis platforms can support the assessment of animal disease models. For rodents, systematic 
behavioral analysis systems are well established and standardized; systems such as multivariate concentric 
square field and cylinder test are used to investigate traits such as sensory-motor function[106]. In contrast, 
the behavioral and cognitive analysis platforms for rabbits are not well developed at present, and further 
development of these systems is necessary for the future use of rabbits in neurological disease modeling.

CONCLUSION
Collectively, rabbits are more similar to humans in brain development, with more genetic similarities than 
rodents, and longer lifespan and larger body size, suggesting that rabbits can perform well in human 
neurological disease modeling in addition to traditional non-human primates, large animals, and rodent 
models. Therefore, it is expected that, in the near future, with the further development of genome editing 
technology and the establishment of phenotype assessment platforms for rabbit models, the value of rabbits 
in the research of neurological diseases can be maximized, not only for the understanding of pathological 
mechanisms but also for innovation of therapeutic approaches.
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