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Abstract
Image segmentation plays a vital role in artificial intelligence and computer vision with major applications such as
industrial picking, defect detection, scene understanding and video surveillance. As parallel computing technologies
develop, numerous deep learning (DL)-based segmentation algorithms have demonstrated practical performance with
increased efficiency and accuracy. With the concept of DL image segmentation, a comprehensive review on recent
literature is introduced in detail, including traditional image segmentation algorithms, DL schemes and the fusion
of the former two algorithms. The seminal efforts of DL in image segmentation are elaborated in accordance with
the quantity and quality of annotated labels, covering supervised, weakly-supervised, and unsupervised frameworks.
Numerous methods on industrial benchmark datasets are compared and analyzed in standard evaluation indicators.
Finally, the challenges and opportunities of DL image segmentation are discussed for further research.
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1. INTRODUCTION

As an important component of artificial intelligence, computer vision represents the science and technology
on how to make machines perceive and make decisions from images. Image segmentation is one of the most
fundamental tasks in computer vision. In general, it refers to the task of dividing an image or a frame in a
video into several target regions according to the objects in the image or frame on demand. This task serves
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as a key component of many perception systems and plays a central role in a wide range of applications, such
as industrial picking [1], autonomous driving [2], defect detection [3,4], virtual reality interaction [5], etc. The
manufacturing of intelligent medical equipment, loading tools and identification systems is pivotal to promoting
the digital upgrade and transformation in industry. Therefore, image segmentation is worthy of extensive
research.

Image segmentation relies on prior knowledge and abstract representation of target and background to determine
the target from the background or other erroneous objects. It is an important component of image understanding,
which aims to separate targets and backgrounds for target recognition, and other subsequent processing.
Accurate positioning will directly affect subsequent processing results. In order to achieve this goal, extensive
and effective technologies have been developed over the years, including technologies based on traditional
digital image processing methods such as threshold segmentation [6], edge detection [7] and region growing [8],
active contour models (ACMs) [9], and recently utilized convolutional neural networks (CNNs) [10,11], generative
adversarial networks (GANs) [12] or Transformer [13]. Although these methods have made significant progress,
image segmentation still faces challenges in accurately depicting complex object boundaries, optimizing network
structures, and processing multi-domain data.

Traditional approaches of image segmentation are mainly based on mathematical and image processing al-
gorithms, dividing pixels of an image based on elementary image features. Traditional image segmentation
divides images into several non-overlapping regions based on features such as grayscale, color, texture, and
shape. These segmented targets make these features show similarities within the same region, while showing
significant differences between different regions. Traditional image segmentation mechanism is widespread
applied in textile, infrared, remote sensing, defect detection fields, etc. Common segmentation schemes include
threshold method, edge detection method, clustering algorithm, and graph theory, and more, which achieve
automatic extraction and recognition of interested target areas in images by different mathematical modeling.
These methods are able to produce acceptable segmentation results with simple model implementation and low
computational complexity.

The rapid development of parallel computing technologies such as deep learning (DL) and compute unified
device architecture (CUDA) has directly propelled computer vision and image processing into a new techno-
logical era. DL has been extensively utilized in intelligent transportation navigation, defect detection, human
behavior recognition [14], etc. As one of the fundamental problems in computer vision, image segmentation
technologies are widely applied in fields such as robot control, defect detection, autonomous driving, assisted
medical care, etc. DL-based image segmentation divides the image into several specific and unique regions
based on features such as grayscale, color, spatial texture, and geometric shape, and extracts the target of
interest. Unlike traditional image segmentation techniques that rely on manually designed features, DL-based
image segmentation automatically learns and extracts complex features of images, thereby achieving more
sophisticated image segmentation tasks.

DL-based image segmentation can be divided into three categories: semantic segmentation, instance segmenta-
tion, and panoptic segmentation. Semantic segmentation refers to dividing each pixel in an image into one
of predefined categories, such as vehicles, pedestrians, insulators, etc. They are extensively applied in fields
such as scene understanding and defect detection. However, the semantic segmentation framework is unable
to distinguish different instances within the same category. Instance segmentation is more refined, aiming
to detect all target instances in an image. It not only needs to distinguish diverse semantic categories, but
also requires to differentiate distinct targets in each category. Panoptic segmentation combines semantic and
instance segmentation to predict the semantic category of each pixel in the scene image and assign instance
identification numbers to pixels belonging to instance targets. Panoptic segmentation allows for advisable
visualization of different scene components, including detection, localization, and classification of various scene
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parts. The development of image segmentation approaches with DL is rapid, while they still face the following
challenges:

• The performance of DL models is dependent on dataset quality and scale. Annotation cost is expensive, and
annotation quality is difficult to guarantee without noise. The professional and accurate requirements for
industrial data annotation are higher.

• The problem of multiple poses or perspectives of objects curtails the diverse practical application scenarios
of DL image segmentation.

• The DL-based model structure is complicated, with numerous parameters, and requires a large amount of
computing resources to train, including hardware devices such as CPU, GPU, TPU, etc., which reduces the
possibility of real-time and flexible application.

In response to the above issues, scholars in this image segmentation field have explored various methods to
address challenges such as multi-source domain data, multimodal scenes, and few samples. Pei et al. introduced
multi-level adversarial learning and multi-model consistency loss into multi-modality cardiac segmentation
and cross-modality liver segmentation [15]. This framework converts multi-source data features to the target
domain and realizes multi-source unsupervised domain adaptation. In accordance with the spatial correlation
between samples and intradomain sample expansion, a hyperspectral image (HSI) classification scheme with
weak supervision is designed for few-sample training, which enhances classification stability and accuracy
of HSIs [16]. Convolutional filters with dynamic parameters are utilized for various samples and learnable
descriptive convolution adaptively learns fine texture features in lightweight dynamic convolution network
(LDCNet) [17], decreasing computation complexity and improving real-time feasibility.

In accordance with DL, image segmentation that utilizes traditional image processing techniques to enhance
segmentation performance and efficiency through networkmodels and learning strategies has gradually emerged
in public vision. DeepSnake [18] combines snake algorithm [19] in traditional ACMs, using a gradual adjustment
strategy based on contours. DeepSnake gradually optimizes the initial contour to the boundary of targets,
achieving excellent performance while still maintaining high real-time performance. However, DeepSnake
propagates features of locally adjacent contour vertices to refine contour vertices instead of pixel-wise prediction,
which is able to correct significant prediction errors. Yin et al. introduced the level set method (LSM) into
neural networks, using the level set as input and constructing relevant loss functions to limit predicted level
sets, such as using length terms to smooth boundaries [20].

With the advancement of DL technology, remarkable progress has been made in image segmentation research,
which is widely exploited in fields such as defect detection, industrial quality inspection, bin-picking and map
production. This survey sorts out the key nodes in the development process of this field and introduces a series
of important algorithms and architectures focusing on the importance of data state for the development of DL.
The practical applications of DL are widely explored in various fields such as defect detection and industrial
picking. A forward-looking discussion is conducted on the future development trends of DL technology
including the potential challenges and the opportunities contained in the future development process.

On the basis of previous work, this article summarizes the research results of traditional image segmentation,
and systematically elaborates on DL-based image segmentation approaches. This survey mainly works on recent
processes in three branches of industrial image segmentation according to the annotation level of datasets,
namely supervised, weakly-supervised, and unsupervised image segmentation. Combined with traditional
segmentation approaches, there are numerous papers in the DL-based image segmentation field. Influential
works published in reputable conferences and journals are provided. Then, commonly used segmentation
datasets, related evaluation metrics, and performance analysis are elucidated. Finally, there are a host of
challenges and development directions in real-time and functional DL image segmentation, hoping to provide
reference and assistance for more flexible and efficient DL image segmentation.
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2. TRADITIONAL IMAGE SEGMENTATION

Traditional segmentation approaches commonly rely on topology, mathematical modeling, image processing,
and so on to segment images, mainly containing threshold-, region-, edge-, clustering-, energy functional-,
graph theory-, and wavelet-based approaches.

2.1 Threshold method

The basic notion of the threshold method is that various targets have diverse features such as color, grayscale,
contour, etc. On account of small differences between features, specific thresholds are selected to classify pixels
into appropriate categories according to comparison results, thereby distinguishing target objects from the
background and achieving fast image segmentation. The most crucial step of the threshold method is to solve
for the optimal threshold in the light of a certain criterion function. Given an original image � (G, H), the feature
value ) is able to divide the original image into foreground and background with the segmented image obtained
as

5 (G, H) =
{
C0, � (G, H) < )
C1, � (G, H) ≥ ).

(1)

Moreover, the Otsu algorithm, also known as the maximum inter-class variance algorithm, segments an image
based on the probability density of the mean and variance, without assuming a specific probability density
function, which significantly enhances the algorithm’s computational speed. Many researches are conducted
based on Otsu method. Bhandari et al. proposed an energy-based three-dimensional (3D) Otsu algorithm
with contextual information, which combines with the pixel intensity values, same properties of histogram
and spatial information [21]. This 3D Otsu algorithm yields desirable segmentation results in terms of daily
color images. Ma et al. introduced a reverse learning strategy and an adaptive weighting strategy into the whale
optimization algorithm using Otsu method as objective function, presenting efficient convergence accuracy on
benchmark images [22].

Threshold segmentation approaches [23] are suitable for images, where the target and background occupy distinct
grayscale ranges. However, uneven lighting and noise interference still need to be addressed. Uneven lighting
causes the target peak in the histogram to mix with the background peak, thereby reducing the effectiveness of
threshold methods. Noise has an impact on the entire process of image processing, causing the disappearance
of separable grayscale peaks and a large number of misclassifications for segmentation.

2.2 Region-based methods

The region-based image segmentation strategy utilizes the spatial properties of images and similarity criteria of
pixels in the same category, such as grayscale similarity, texture similarity, color similarity, etc., to segment out
the target region. It mainly includes three methods: watershed method, region division and merging method,
and region growing method.

The watershed method [24] is a mathematical morphology-based segmentation approach with topology theory.
Its basic idea is to model an image as a topographical terrain in geodesy. The grayscale value of each pixel
in the image corresponds to the elevation of that point. Each local minimum and its affected area are called
a watershed and its boundary forms a watershed. With the advantages of fast calculation speed, accurate
positioning, and sensitivity to weak edge changes, this improved watershed algorithm presented by Tian et al.
is combined with pseudo-color image transformation, principal component analysis (PCA) and band ratio
methods to detect fruit surface defects unscathed [25]. However, for images with noise, low contrast, and bright
edges such as bubble images, the interference causes the offset of segmentation contours. Therefore, Peng et al.
proposed a watershed segmentation scheme with optimum labeling and edge constraints, employed to fuse
foreground labels and correct segmentation results [26].
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The region division and merging approach [27] is to divide an image into disjoint sub-regions, and then split
or merge these subregions in accordance with relevant criteria. This method is proper for both grayscale and
texture image segmentation with no need to specify seed points in advance. However, the splitting and merging
algorithm is likely to damage boundaries of segmented regions. The region growing algorithm starts with
a set of seed pixels representing various growth regions and then continuously merges eligible pixels in the
neighborhood of seed pixels into the growing region represented by seed pixels. Meanwhile, it utilizes the newly
added pixels as new seed pixels until no new pixels meet the growing criteria. Noise and uneven intensity still
incur voids and over-segmentation, and this region growing method performs inadvisably due to low contrast
regions in an image, although region growth algorithms are extensively applied in water quality analysis [28],
visible point cloud segmentation [29], etc.

2.3 Edge-based methods

Edge refers to the collection of continuous pixels on the boundary lines of two different regions in an image,
reflecting the discontinuity of local features such as grayscale and color. The edge-based segmentation method
is rooted in the observation that the grayscale values of edges exhibit step or rooftop changes for image
segmentation. There is a significant difference in the grayscale pixel values on both sides of the step edge,
whereas the rooftop edge is located at the turning point where grayscale values rise or fall. Hence, the extremum
of the first derivative and the zero crossing of the second derivative are adopted to decide edges, which is
achieved by convolutional operators and more. Common edge segmentation operators include Sobel [30],
Prewitt [31] operators, etc. These approaches convert images into grayscale forms and then calculate gradients or
differences between pixel values to seek edges.

Traditional edge detection algorithms for segmentation usually require threshold processing on gradients or
differences to distinguish between edges and noise. Therefore, threshold selection and noise have a serious
influence on segmentation accuracy of these algorithms. Researchers have also conducted some research
renewal for these issues and applications. Ghodrati et al. combined image edge detection solutions with
different resolutions to measure material surface roughness, which provided a practical resolution for evaluating
polymeric material roughness online [32]. An optimized edge detection method was designed by Xu et al. for
detection of fissures in infrared images at diverse times based on the mathematical morphology, Canny and
Laplacian of Gaussian operators [33]. Lu et al. introduced the local maximum inter-class variance calculation
into Canny edge-detection framework to select threshold effectively for automatic hollowing checks in thermal
images [34]. These improvements increase the practicality and flexibility of traditional edge detection algorithms.

2.4 Clustering-based methods

Clustering algorithm is an unsupervised machine learning method that discovers common cluster classes
without labels. The essence of applying clustering to the field of image segmentation is to iteratively cluster pixels
with similar features into the same region. The clustering technology is updated and employed in various image
segmentation tasks. The spatial-temporal separation-based clustering segmentation (STSCS) algorithm [35]

enhances pulsed infrared thermography images to detect sub-surface defects as small as 101 µm in diameter,
using wavelet decomposition, and K-means clustering for effective segmentation. The global features with
proposed self-representation coefficients modeled in fuzzy clustering are combined with fuzzy membership and
neighbor information to resist intensity inhomogeneity and complex background in infrared images, which is
proposed by Chen et al. [36]. Common clustering algorithms are summarized into three categories: distance-,
density-, and connectivity-based algorithms.

The K-means algorithm uses distance as a measure of data similarity, meaning that the smaller the distance,
the higher the likelihood of belonging to the same cluster. In K-means algorithm, the value of different
clusters : needs to be selected according to different application scenarios. Basically, consistent with K-means
algorithm, Achanta et al. suggested a simple linear iterative clustering (SLIC), which generated compact
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and neat superpixels with fewer hyperparameters, and had certain advantages in running speed, superpixel
compactness, and wheel profile preservation [37]. Later, an image segmentation approach, combining SLIC with
an automatically adjustable fuzzy c-means (FCM) algorithm, was presented [38] based on Gaussian radial basis
function kernels. This algorithm is utilized for image segmentation and DL networks, with strong robustness
and improved operational efficiency, although it is unable to obtain weak boundary information well, causing a
lack of segmentation efficiency.

The mean shift algorithm originally proposed by Fukunaga [39] is a typical density-based non-parametric
estimation. The mean shift algorithm achieves image segmentation by clustering pixels with the same mode
points into the same region. When the number of cluster centers is unknown, it is capable of adapting clusters
of any shape and has robustness to initialization and insensitivity to noise. Howbeit, the selection of its
bandwidth parameter ℎ significantly influences final segmentation. If ℎ is too small, the convergence speed is
slow. When ℎ is set too large, the clustering effect is not inadvisable. Owing to overlapping organs and noise,
Ranjbarzadeh [40] switched to utilize a mean-shift algorithm to enhance organ edges and used FCM and Kirsch
filter for segmentation of liver and tumor, while its running time and complexity are high.

Density-based spatial clustering of applications with noise (DBSCAN), as a spatial clustering algorithm stemming
from connectivity and density function, clusters grayscale data and finally performs coloring. Since multiple
pixels in an image can be clustered together to form a larger object, each category determined in DBSCAN
is mainly determined by the aggregation degree of sample distributions. Qiu et al. presented an improved
DBSCAN with local window and multi-scale sliding windows extracting candidate objects quickly to realize
adaptive threshold segmentation for infrared small target detection [41]. However, if the processed image has
massive clusters or complicated background colors, the segmentation effect is undesirable and the computation
time is high.

2.5 Energy functional based methods

The schemes based on energy functional mainly refer to ACMs. They employ continuous curves to express
target edges and define energy functions so that their independent variables include edge curves. Accordingly,
the segmentation process is converted into tackling the minimum value of energy functional. According
to different forms of curve expression in these models, ACMs are divided into two categories: parametric
ACMs [42] and geometric ACMs [43,44]. Parametric ACMs are based on Lagrange framework, which directly
express curves in the parameterized form. The curve motion process of geometric ACMs is rooted in geometric
measurement parameters of curves rather than expression parameters of contours.

The most representative model of parametric ACMs is Snake model proposed by Kasset et al. [19], which has
been successfully employed in the early field of biological image segmentation, while its segmentation results are
enormously affected by initial contour setting and laborious to cope with changes in curve topology. In addition,
its energy functional only depends on choosing contour parameters, which can fall into local extremum and
cannot segment concave object boundaries. In view of this situation, Xu et al. introduced a gradient vector
flow (GVF) external force diffusing grayscale gradient vectors or binary edge maps with gradient amplitudes
inversely proportional to distances from targets [45].

Compared to Snake model, initial curve position sensitivity of GVF model has been decreased, and it has
the corresponding concave convergence ability [46]. However, noise robustness is reduced and its weak edge
protection is inadvisable. For segmentation regarding images with weak edges and noise, an effective ACM
using the adaptive radius of truncation equation and denoised variation-based term [47] is exploited to segment
images with severe noise and uneven grayscale such as remote sensing images and brain magnetic resonance
images in 2022. Later, a denoised ACM with optimized bias correction (BC) and a local pre-fitting equation [48]

is designed to implement weak boundary image segmentation and obtain robustness to heavy noise. For
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automatic non-destructive inspection regarding printed circuit boards (PCB), layer identification proposed by
Yun et al. automatically and unsupervisedly determines which slices of a 3D X-ray CT stack correspond to
specific layers of a physical PCB, validated on a 4-layer PCB, and post level set-based segmentation effectively
addresses grayscale inhomogeneity [49].

Geometric ACMs are able to handle changes in topological structure compared with parametric ACMs. This
LSM [50] is introduced to transform curve evolution into level set solving problems which utilizes higher-order
level set functions to describe contours. The geodesic active contour (GAC) [51] is the earliest edge-based
geometric ACM, exploiting image gradient information to drive evolution curves closer to object borders and
integrating geodesic construction concepts in Riemannian geometry, allowing contours to exactly detect fuzzy
boundaries. However, this method has sensitivity to position selection of initial curves.

With further development, frameworks based on regional features have gradually emerged. On the basis of
Mumford-Shah (MS) model [52], Chan-Vese (CV) model [53] replaces original smooth fitting equation with a
simplified piecewise constant reckoning function. Using global information of images, it simplifies compu-
tational complexity, whereas failing in segmenting images with uneven grayscale. Given a pixel point G, the
following CV energy function is written as

��+ (�, 21, 22) = _1

∫
>DCB834(�)

|� (G) − 21 |23G + _2

∫
8=B834(�)

|� (G) − 22 |23G + a · |� |, (2)

where 21 and 22 represent the average grayscale values outside and inside the curve, respectively. _1, _2, and a
are constants, and |� | denotes the length of the curve. The first two terms in Equation (2) are data-driven terms
that cause the curve to evolve towards target boundaries, while the length term acts as a smoothing curve.

Aimed at uneven intensity, numerous models [54,55] based on local image information have emerged, such as
local binary fitting (LBF) [56] and local Kullback–Leibler divergence (LKLD) [57] models, etc. Taking minimizing
LBF energy functional as an example, the curve� is expressed with the level set function q, building its following
remodeled energy equations as

�!�� (q, 51, 52) =
2∑
8=1

F8

∫
Ω

[∫
 f (G − H) |� (H) − 58 (G) |2"8 (q)3H

]
3G + Z%(q) + bL(q), (3)

where 51 and 52 respectively indicate mean values of nearby small fields within and outside the curve,  f
represents a Gaussian kernel with standard deviation f, and F8 (8 = 1, 2) are fixed weight parameters. Besides,
"1(q(G)) = �n (q(G)) denotes the approximated Heaviside function defined as

�n (G) =
1
2
(1 + 2

c
0A2C0=( G

n
)). (4)

"2(q) = 1 − �n (q) explains that the pixel point is located outside the curve; Z and b are constant values
regarding the distance regularization expression %(q), and the length restriction equation L(q), respectively,
and they are written as

%(q) =
∫
Ω

1
2
( |∇q | − 1)23G, (5)

L(q) =
∫
Ω

X(q) |∇q |3G, (6)

where Xn (G) is Dirac function and its definition is

Xn (G) = �
′
n =

n

c(n2 + G2)
. (7)

Due to overlapping distribution of grayscale from bias field, this BCmodel [58] and its correspondingly developed
ACMs [9,59] utilize the bias assumption regarding image multiplication model to derive the local intensity
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clustering properties of images and model energy functionals. Given that there are extensive convolution
calculations in iterative evolution, significant operational consumption affects practicality.

2.6 Graph theory-based methods

The image segmentation algorithm based on graph theory transforms image segmentation into graph parti-
tioning and seeks an optimal solution. Through different graph partitioning criteria and weight calculation
expressions, extensive graph-based algorithms have been derived, such as GrabCut [60], and Random Walk.
Felzenszwalb et al. introduced a minimum spanning tree strategy based on graph theory, clustering vertices in
the graph via differences within and between regions to achieve segmentation [61]. This method possesses high
running rate since its time complexity is $ (#;>6#). The purpose of these algorithms is to maximize internal
similarity of partitioned subgraphs and minimize the similarity between subgraphs.

Image segmentation is associated with the minimum cut problem of a graph according to graph theory. An
image is mapped into a weighted undirected graph � =< +, � >, where each node # ∈ + corresponds to
each pixel in an image, and each edge belonging to � connects a pair of adjacent pixels. Values of edge weight
represent non-negative similarity in gray intensity, color, or texture between adjacent pixels. Then, a cut B for an
image is a cropping of an image, where each segmented region � ∈ ( corresponds to a subgraph in this image.
In segmentation with graph theory, each pixel in an image is considered as a node in the graph, and edges
between nodes denote their similarity. The optimal segmentation principle is to ensure that these partitioned
subgraphs retain maximum similarity internally and minimum similarity between subgraphs.

The essence of graph-based segmentation is to remove specific edges and partition a graph into several subgraphs.
In line with various similarity measurement approaches, diverse types of graphs are constructed, such as K-
nearest neighbor graphs, fully connected graphs, etc. Subsequently, graph-based algorithms, such as minimum
cut algorithm, spectral clustering, etc., are employed to segment an image into multiple regions. The graph-
based framework for segmentation is capable of handling complex scenes such as multiple objects overlapping
together, without defining object numbers to be segmented in advance. Nevertheless, its deficiency is that it is
not sensitive to noise and edges in an image, which induces over-segmentation or under-segmentation.

2.7 Wavelet-based methods

This wavelet theory was proposed by Morlet in 1980 [62], effectively analyzing and processing signal mutations
and non-stationary properties by introducing scaling and translation factors. Wavelet transform (WT) is a
commonly applied mathematical tool. Unlike Fourier transform, which only obtains global spectral information,
WT is equipped with high localization properties in both time and frequency domains and is able to unify
time and frequency domains to analyze various signals. It possesses multi-scale characteristics and analyzes
signals at different scales, and it has accordingly been applied to complete image segmentation. On the basis of
multi-scale features fromWT, Bi et al. designed a 3D discrete WT and subsequently adopted Markov random
field (MRF) to realize image segmentation for polarimetric synthetic aperture radar (SAR) [63].

Since binary WT is equipped with the ability to detect local mutations in binary functions, it is applied as an
image edge detection strategy. Image edges that appear at local grayscale discontinuities correspond to modulus
maximum points of the dyadic WT. By detecting this maximum point of WT modulus, it is determined that
image edges are located at various scales, and each scale’s WT is capable of providing certain edge information.
Therefore, multi-scale edge detection can be performed to obtain ideal image edges for image segmentation.
With WT to attain detailed information from diagonal, vertical and horizontal directions, Gao et al. presented
an image decomposition strategy to automatically decide segmentation thresholds [64]. This approach produces
better conspicuous advantages to segment medical images than a maximum variance and histogram valley
threshold segmentation.
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Figure 1. A framework of DL algorithms applied in industry. DL: Deep learning.

3. DL-BASED IMAGE SEGMENTATION APPROACHES

Traditional image segmentation methods have been effective in certain contexts; however, they often struggle
with complex images and require extensive manual tuning. With the advent of DL, a paradigm shift has
occurred in image segmentation. DL models have demonstrated remarkable capabilities in automatically
learning hierarchical features from raw pixel data. This transition has enhanced the accuracy and efficiency
of image segmentation tasks and handled diverse and intricate datasets, paving the way for advancements in
various applications, including defect detection, autonomous driving, and path planning.

This section summarizes numerous DL-based segmentation approaches, including supervised models, weakly-
supervised approaches and unsupervised schemes according to label completeness and accuracy of training
data. Moreover, with the ability of traditional methods to extract low-level feature information such as texture,
DL frameworks combined with traditional image segmentation are covered. According to data annotation
level, a summarization of supervised, weakly-supervised and unsupervised models is provided in Table 1 and
Figure 1.

3.1 Supervised deep-learning approaches

Modern supervisedDLmodels learn from input images and their corresponding labeledmasks shown in Figure 2
and models recognize new data and classify or predict it by learning these label masks. For image segmentation
tasks, training data typically includes # input images and corresponding pixel-level labels, meaning that each
pixel corresponds to a label. The standard evaluation manner for supervised DL with # inputs and # outputs is
called loss minimization equation as

R̃ ∈ arg min
1
#

∑
8

! (I(G8), 5 (G8)), (8)

where ! represents an error formulation measuring this estimated 5 (G8) against image segmentation outcomes
related prior I(G8). In the light of Equation (8), the quality and quantity of label data have a serious impact on
supervised DL models, which is time-consuming and labor-intensive prior knowledge for image segmentation.
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Table 1. Summary of essential features for reviewed DL-based methods

Year Method Core architecture Technical feature Learning goal

2020

DeepSnake [18] CenterNet
Circular convolution Supervided learning

GCN
FCN-SFW [65] FCN Structured forests with WT Supervided learning

BlendMask [66] ResNet
Attention map learning Supervided learning

FPN
SOLO [67] FCN SOLO learning Supervided learning

PolarMask [68] ResNet-50
Mask assembling

Supervided learningPolar centerness
FPN Distance regression

CondInst [69] - Conditional convolutions Supervided learning

ODC [70] ResNet-50
Unsupervised fine-tuning

Traditional method and DL
Joint clustering and feature Learning

2021

HRNet [71] HRNetv2-W48
Parallel multi-resolution convolution

Supervided learning
Repeated multi-resolution fusion

LayerCAM [72] VGG-16 Weakly-supervised object localization Weakly-supervised segmentation

HOTCRF-PCANet [73] Principal component analysis network
Unsupervised segmentation

Unsupervised segmentation
CRFs

Feng et al. [74] VGG16
Weakly-supervised

Traditional method + DL
Graph cut

2022

MDOAU-Net U-Net
Multi-scaled feature-fusion

Supervided learning
Offset convolution

Wu et al. [75] Siamese network
Max-pooling-based nonlocal attention

Weakly-supervised segmentationAutofocus subwindow
LSE Pooling

FreeSOLO [76] SOLO
Free mask

Unsupervised segmentation
Self-supervise SOLO

Sledge et al. [77] VGG13
weak saliency maps

Unsupervised segmentation
MB-CEDN Segmentation Postprocessing

Chen et al. [78] FCN Superpixel-guided unsupervised learning Unsupervised segmentation

E2EC [79] DLA-34
Learnable contour initialization

Traditional method and DL
Multi-direction alignment

2023

HSIs [16]
Continuous side window filter Cross-domain classification Supervided learning

PSPNet SE module Supervided learning
HRNet - Supervided learning

ABFormer [80] Transformer
Attention mechanism

Supervided learning
Split-attention boundary-aware fusion

ABCMask R-CNN [81] ResNet Attention block and context block
Supervided learning

FPN Balanced block

Diaz et al. [82]
Resnet50 Depthwise separable convolution

Supervided learning
FPN Transfer learning

CCRCNN [83] ResNet101
Adaptive threshold segmentation Weakly-supervised segmentation

FPN
Wang et al. [84] - Self-attention Unsupervised segmentation

Wei et al. [85] GAN
Structural similarity algorithm

Unsupervised segmentation
Multi-stage training strategy

Midwinter et al. [86] CNN Structural similarity Unsupervised segmentation

S3Net [87] Spectral–spatial Siamese network
Self-supervised learning
Superpixel segmentation

Transfer learning Unsupervised segmentation

Ma et al. [88]
CNN Image style transfer

Unsupervised segmentationChannel attention Multitask learning
One-shot unsupervised domain adaptation

Wang et al. [89] CNN Unsupervised segmentation Unsupervised segmentation
Nouri et al. [90] CNN ACM Traditional method and DL

WDLS Qi et al. [91] VGG16
Weakly-supervised learning

Traditional method and DL
ACM

2024

Mobile-Deeplab [92] Mobilenetv2 Depthwise separable convolution
Supervided learning

Deeplabv3+ Self-attention block
PCB-DeepLabV3 [93] Deeplabv3+ Attentional multi-scale two-space pyramid pooling network Supervided learning

ConvNeXt-SCC [94] ConvNext
CBAM attention mechanism

Supervided learning
PCA

Deeplab-YOLO [95] Deeplabv3+ Depth separable convolution
Supervided learning

YOLOv5 Convolutional block attention module

Shi et al. [96] DeepLabv3+
ECA module and lightweight attention module

Weakly-supervised segmentationShallow feature fusion
Dynamic threshold strategy

He et al. [97]
GAN Adaptive threshold segmentation

Weakly-supervised segmentation
U-GAT-IT CAM quadratic optimization

FBSFormer [98] ViT
Foreground–background separation module

Weakly-supervised segmentation
Attention-map refinement module

CapNet [99] YOLOv8 Lightweight MirrorFill algorithm Weakly-supervised segmentation

OBBInst [100]
ResNet

Oriented bounding box supervised learning Weakly-supervised segmentation
FPN

Jiang et al. [101] -
Weakly-supervised segmentation mix

Weakly-supervised segmentationMuti-instance loss
Semi-supervised learning

Li et al. [102] ResNet-18 Mutual information maximization Unsupervised segmentation
MNMC [103] - Mutual constraint Unsupervised segmentation

Goyal et al. [104] Xception
Self-supervised learning

Unsupervised segmentation
Contrastive learning encoder

Wang et al. [105]
ResNet Semi-supervised classiffcation

Unsupervised segmentationConvolutional long short-term memory SimMatch
Label information dissemination

S2VNet [106] -
K-Means cross-attention

Traditional method and DL
Unified segmentation learning

DL: Deep learning; FCN: fully convolutional network; WT: wavelet transform; FPN: feature pyramid network; SOLO: segmenting objects
by locations; ODC: online deep clustering; CRFs: conditional random fields; HSIs: hyperspectral images; GAN: generative adversarial
network; CNN: convolutional neural network; ACM: active contour model; PCA: principal component analysis.
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Figure 2. Supervised DL. DL: Deep learning.

Figure 3. The network structure of FCN. FCN: Fully convolutional network.

3.1.1 Encoder-decoder-based models
Convolutional networks have been effectively applied in computer vision tasks, especially when initially used for
object recognition and classification such as LeNet [107]. These images are processed by the input layer, hidden
layer and output layer step by step, and the conception has also been applied in most subsequent computer
vision tasks. Moreover, hidden layers comprise convolution layers, fully connected layers, and pooling layers,
and CNNs tend to become an influential framework of image segmentation due to their translation invariance,
parameter sharing, and sparse connections with improvement of computing resource level.

Different from treating semantic segmentation as a region classification, fully convolutional networks (FCNs)
from Long et al. consider it as a pixel-level classification problem, and only convolutional layers are included in
FCN [108]. As depicted in Figure 3, FCNs are encoder-decoder-based models, and their encoder is designed for
downsampling to extract high-level semantic features, and then deconvolution is used for upsampling, enabling
a segmentation map to be the same size as its input image. Combining FCN and structured forests with wavelet
transform (SFW), FCN-SFW [65] is a fusion segmentation algorithm to effectively detect tiny cracks in steel
beams, achieving superior segmentation performance against existing methods. The result resolution from
FCN is too low due to 16 times upsampling rate, and its segmentation boundaries between objects tend to
appear incorrectly. Without considering the correlation between pixels, spatial information is prone to be lost
in FCN.

To address above two issues, DeepLab V1 [109] introduces dilated convolution that enlarges dilation in the
convolutional kernel to capture a larger range of contextual information without increasing computational
complexity, improving CNN receptive field while ensuring parameter quantity. To effectively learn relationships
between pixels, DeepLab V1 only improves accuracy compared to FCN, whereas the overall accuracy is still not
high. Both SegNet [110] and U-Net [111] utilize a similar encoder-decoder structure as FCNs, and fine-grained
upsampling to recover to original maps. In SegNet, unpooling in the decoder to upsample feature maps,
which reduces the number of parameters and computations compared to deconvolution in FCN. As shown
in Figure 4, U-Net improves a long skip connection, different from DenseNet [112], to connect feature maps at
different levels and enable the model to simultaneously focus on low-level and high-level semantic features.
Hence, U-Net is used to obtain preliminary insulator masks by training insulator images [4]. Nevertheless,
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Figure 4. The network structure of U-Net.

the skip connection imposes unnecessary restrictive fusion schemes, forcing fusion only on feature maps of
the same proportion in the encoder and decoder. Li et al. improved U-Net combining VGG16 and hybrid
attention module to achieve high-precision segmentation of PCB welding defects and meet real-time detection
requirements [4]. In accordance with U-Net, a multi-scale attention DL model called MDOAU-Net is designed
by Wang et al. with extended convolution and offset convolution for monitoring aquaculture rafts with SAR
image segmentation [113].

Moreover, DeepLab V2 [114], DeepLab V3 [115], DeepLab V3+ [116], and PSPNet [117] adopt a spatial pyramid
pooling (SPP) structure with granularly multi-receptive field learning the relationships between pixels, which
extracts featuremaps and convert them into fixed-size feature vectors for subsequent classification and regression
tasks. SPP makes the model handle input images of different sizes and improves robustness to changes in object
position and size by pooling feature maps at different scales. Inspired by PSPNet, SE-PSPNet [118] accurately
segments defects in 3D braided composites, enhancing small object detection and addressing class imbalance
for improved performance. Due to multi-scale input, RefineNet [119] can obtain global contextual information
of small-sized targets. Although these models enhance their ability to learn relationships between pixels, their
parameter quantity, and inference speed cannot meet real-time demands. Due to actually high real-time
requirement, Mobile-Deeplab [92] is a lightweight pixel segmentation-based fabric defect detection strategy with
87.11 frames per second (FPS) on a 256 × 256 size image. The improved PCB-DeepLabV3 model [93] combined
with Mobilenetv2 and multi-scale attention pooling achieves high-precision intelligent segmentation of voids
inside chip solder joints, improving industrial detection efficiency.

Instead of upsampling to restore resolution in the decoder, HRNet [71] parallelly connects high-resolution to
low-resolution convolutional streams and exchanges information across resolutions with multi-scale feature
fusion to remain high-resolution expression. Wang et al. achieved a mean intersection to union ratio of 70.60%
with HRNet by denoising Sentinel-1 SAR radar images and enhancing them with deep neural networks in
industrial applications [120]. Besides, some DL-based models efficiently learn contextual connections between
pixels from a spatial perspective. DANet [121] simultaneously introduces spatial attention and channel attention
to capture contextual information between any two positions and channel dimensions. Given that Transformer
is able to capture global information of input data effectively with multiple Transformer blocks in Figure 5,
ABFormer [80] improves the accuracy of defect semantic segmentation and solves the problems of intra-class
differences and inter-class ambiguity in industrial products by introducing boundary perception modules and
attention mechanisms. Due to these drawbacks, it is essential to utilize image features from multiple scales
containing features from shallow and deep layers in the backbone network for accuracy.
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Figure 5. The standard network block of Transformer.

For real-time industrial demand, professional lightweight architecture is essential for practical application
efficiency. ERFNet [122], ESPNetV2 [123], and other lightweight models adopt an asymmetric encoder-decoder
structure, removing low-level feature extraction results via exchanging accuracy for speed. With ESPNetV2,
a high-precision surface crack detection architecture for steel rolling equipment is presented by Peng et al.,
which utilizes coordinate attention-deep convolution generative adversarial networks (CA-DCGANs) for
data augmentation, MLESPNetV2 for accurate detection, and MLESP-GAN for semi-supervised learning,
enhancing real-time performance significantly [124]. Shallow and deep features respectively contain more spatial
information and contextual information for images and they are indispensable in DL models. Therefore,
some researchers have utilized a lightweight network to achieve multi-scale input while avoiding large-sized
convolutional kernels similar to approaches in RefineNet [119]. These typical models include ICNet [125], etc.,
while their segmentation accuracy is acceptable with reluctantly real-time speed.

Moreover, the feature extraction network should be as lightweight as possible for less occupied computing
resources. In glaucoma diagnosis, Mallick et al. presented a ConvNext encoder and decoder with skip
connections realizing light weight, and a novel attention gate module was designed for smoothing [126]. Besides,
this method improves its loss function for accurate model training. ConvNeXt-SCC [94] visualizes tire crown
defects and enhances defect detection and localization performance in tire production despite challenges such
as limited datasets and small defect sizes by a modified convolutional block attention module and ConvNext.

3.1.2 Region proposal based methods
Region proposal based methods are generally identified as the combination of semantic segmentation and
object detection tasks, for which they are known as a two-stage method. In accordance with the series sequence
of object detection and semantic segmentation, two-stage approaches are further divided into top-down
and bottom-up schemes. The top-down DL segmentation technique adopts the notion of detection before
segmentation, predicting a bounding box for each object first and then generating an instance mask within
each bounding box. By contrast, the bottom-up approach utilizes a semantic segmentation model for pixel
embedding projection, and then uses post-processing to project pixels onto each instance, i.e., completes
segmentation before detection.

In top-down DL image segmentation, Mask Region-based CNN (R-CNN) proposed by He et al. adopts ResNet
as its backbone, adds a branch to predict segmentationmasks in each region of interest (RoI), constructs a feature
pyramid network (FPN) to process features at different scales, and utilizes non-maximum suppression (NMS)
to remove masks with excessive intersections [127]. Since Mask R-CNN outperforms previous benchmarks in
standard datasets such as COCO, an intelligent welding quality detection model [81] called ABC Mask R-CNN
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using enhanced Mask R-CNN with attention mechanisms, achieves 98.20% accuracy, improves efficiency over
traditional expert-based methods, and supports intelligent maintenance in metro train body manufacturing.
However, this mask R-CNN evaluation function only scores bounding boxes outputted by its target detector
instead of mask prediction, disrupting segmentation results.

Mask Scoring R-CNN [128] adds MaskIoU head to learn intersection over union (IoU) scoring templates, and
obtains more accurate masks. BlendMask [66] locks in the approximate range of instance pixels by object
detection, and within this range, mask refinement is applied to the instance pixels to ensure the quality of
the instance mask. Later, Geng et al. combined BlendMask with top-down and bottom-up structures to
detect tunnel defects [129]. Although bottom-up methods such as deep metric learning (DML) [130] conform to
human intuition, they generally depend on post-processing methods such as performance, causing over- or
under-segmentation. Hence, DL-based bottom-up image segmentation has generally been less mainstream
than top-down methods.

If the order of detection and segmentation is only distinguished, it is difficult to bring performance gains to
two-stage image segmentation schemes. Therefore, the multi-stage approach has emerged, where segmentation
and detection no longer have a sequential order. In the typical multi-stage Cascade Mask R-CNN [131], each
cascade has an independent RPN to produce proposed boxes, and each detector filters bounding boxes given
by its previous detector for boxes with high confidence so that this more accurate box proposal is used for
detection and segmentation. By cascade, it enhances accuracy for segmentation with inconspicuously increased
computational burden. In accordance with Cascade Mask R-CNN, Diaz et al. presented a fast wind turbine
defect detection model with depthwise separable convolutions, enhanced by image augmentation and transfer
learning, with a superior performance of 82.42% mAP [82].

Although two-stage and multi-stage DL approaches bring object instances of different scales into a standard
scale and improve segmentation accuracy, they lack sufficient representational power and low efficiency. As
demonstrated in the experimental literature [132], abundant training resources are needed in both two-stage
and multi-stage DL schemes. Therefore, the one-stage segmentation model has emerged that consolidates
detection and segmentation into a single network. Based on the presence or absence of a preset fixed-size
object detection bounding box, the one-stage DL model is divided into two categories, i.e., anchor-based or
anchor-free schemes. Anchor-based image segmentation mainly develops from you only look once (YOLO) [133]

series. Deeplab-YOLO [95] is a lightweight hot spot defect detection model in infrared photovoltaic (PV) panels
with MobileNetV3 to replace the YOLOv5 backbone, and MobileNetV2 was introduced into Deeplabv3+ for
segmentation. SSA-YOLO [134] is an enhanced YOLO by a convolution squeeze-and-excitation module, Conv2d-
BatchNorm-SiLU with Swin transformer, and adaptive spatial feature fusion module, thereby advancing quality
control in steel production.

The anchor-free segmentation detector is mainly built on fully convolutional one-stage object detectors
(FCOS) [135], including models that classify masks only by location and use contour regression to segment labels.
Explicit shape encoding-based segmentation (ESE-Seg) [136] and polar coordinate-based instance segmentation
(PolarMask) [68] predict contour regression to output instance masks. They typically use 20 to 40 coefficients
to parameterize a mask contour, have fast inferring speed and are easy to optimize. However, they cannot
accurately depict masks and objects with holes in their centers. Segmenting objects by locations (SOLO) [67]

and conditional convolutions for instance segmentation (CondInst) [69] define instance categories by position
and size. SOLO sets instance segmentation as a classification problem and removes any regression-dependent
problem, making SOLO naturally independent of object detection. CondInst is prone to being affected by
imprecise contour regression methods. By contrast, the performance of anchor-based segmentation is affected
by detection, and an effective anchor is relatively time-consuming to obtain. Moreover, these anchor-free seg-
mentation models serve as a comparative model to evaluate the performance of designed models for industrial
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Figure 6. Weakly-supervised DL. DL: Deep learning.

applications due to their fast inferring speed.

3.2 Weakly-supervised image segmentation

The generalization ability of DL segmentation models relies on large-scale and high-quality pixel-level annotated
data, while image segmentation annotation is a costly and time-consuming process for manual inefficiency. For
new tasks or scenarios that require rapid application, data scarcity is even more severe. Therefore, the high
cost of data annotation reduces the model’s applicability in new tasks and scalability, thereby hindering the
practical application of DL-based image segmentation models in industry, such as defect detection, etc. To
alleviate the pressure of data annotation for actual industrial applications, a large amount of work has been done
on semi-supervised and weakly-supervised image segmentation. In semi-supervised and weakly-supervised
learning, partial image pixels are labeled while others are unlabeled. Displayed in Figure 6, algorithms utilize
labeled pixel labels to learn prior information maps for generated Pseudo masks and then apply knowledge to
unlabeled pixels for category and target location.

3.2.1 Image-level weakly-supervised image segmentation
Image-level supervision refers to using image-level labels such as category labels of objects contained in
each image to train a model, which ignores the object position and size in an image and poses obstacles to
learning object boundaries. Compared to pixel-level annotation, image-level annotation greatly reduces the
manpower, time, and capital costs of data annotation. Mayr et al. designed !? normalization with ResNet50
for defect detection in the solar cell by image-level supervision [137]. Shi et al. improved defect detection in
diverse scenarios by a semi-supervised semantic segmentation with more reliable pseudo labels from dynamic
threshold strategy [96]. However, due to lacking the position, shape, and contour information of targets in an
image, training segmentation networks through image level annotation is a highly challenging problem, to
which the key lies in how to convert image category information into corresponding target location information.

The segmentation process of most existing image-level semantic models mainly includes three stages. Object
features are firstly preliminarily learned with coarse-grained annotation information. Since the class activation
map (CAM) [138] cannot cover the entire corresponding target, different CAMs need integration to obtain
a more complete target activation region. CAM-based models such as gradient-weighted class activation
mapping (Grad-CAM) [139] enable classification-trained CNNs to learn object localization without the need for
any bounding boxes. LayerCAM [72] combines activation maps from different layers to simultaneously obtain
fine-grained object details and accurate spatial localization, achieving a segmentation effect of 27.26% mean
IoU (mIoU) on the industrial product defect dataset Deutsche Arbeitsgemeinschaft fuer Muster-erkennung
(DAGM)-2007. Wu et al. introduced a weakly-supervised defect segmentation algorithm with image-level
labels and CAMs, enhancing performance with a Siamese network and improved modules [75]. He et al.
proposed a weakly-supervised pavement crack segmentation method using CAM based on a GAN (U-GAT-IT)
model to generate and refine CAMs, effectively bridging the gap between unsupervised and fully supervised
approaches [97]. A foreground-background separation transformer (FBSFormer) [98], a weakly-supervised pixel-
level defect detection method, enhances CAMs through a foreground-background separation module and
attention-map refinement, achieving superior performance on industrial defect datasets.
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Introducing the prompt paradigm from natural language processing into computer vision for segmentation, the
segment anything model (SAM) is applied into semi-/weakly-supervised models to obtain exact segmentation
outputs. SAM is Meta’s open source generic model for image segmentation tasks. It utilizes a combination of
CNNs and Transformer architectures to process images in a hierarchical and multi-scale manner, and prompt
engineering idea is introduced to realize prompt segmentation based on point, box, mask and even free-form
text. In addition, SAM employs a large dataset (SA-1B) containing at least 1 billion masks and 11 million images
for model pre-training, enabling powerful generalization capabilities.

CS-WSCDNet [140] adopts CAM with localization capability and SAM to localize changed regions of image
pairs and generate pixel-level pseudo labels to train a model for high-resolution scenes. The self-attention and
model global correlation are integrated for optimized initial CAMs, a Siamese structure and generic SAM for a
joint optimization strategy are used to produce high-precision target boundaries in remote sensing images at
different scales [141]. In PV power generation, Yang et al. strategically combined both SAM and CAM to refine
efficient pseudo-labels, and a boundary-aware loss function was employed to manage error features derived
from generated pseudo-labels [142].

3.2.2 Bounding-box weakly-supervised image segmentation
Weakly-supervised schemes based on bounding boxes adopt bounding boxes surrounding an object to train
their segmentation models, allowing the model to generate segmentation results based on produced bounding
box range. Bounding boxes provide category labels for objects, and include the quantity and rough location
information of objects. The bounding box-based segmentationmethods utilize the position and size information
of object bounding boxes instead of pixel-level annotation information inside the object, making it a more
powerful supervision signal than image-level annotation. Thereupon, such methods tend to achieve better
performance than image-level annotation methods. Because all regions outside bounding boxes are divided
into background, and both foreground and background regions exist inside the minimum bounding box, it is
essential for bounding box weakly supervision to accurately distinguish foreground objects and background
regions decided by bounding boxes.

In 2015, Dai et al. proposed BoxSup, the first segmentation network based on bounding box annotation [143].
BoxSup uses border annotation and multi-scale combinatorial grouping (MCG) [144] to generate rough segmen-
tation outputs of target classes, and uses them as supervised information to train parameters in VGG. Then,
based on the current network, the predicted target segmentation results are used as supervision to continue
training a segmentation network, iteratively optimizing segmentation results as supervisory information and up-
dating network parameters. Due to category information annotated with borders and foreground segmentation
results from MCG, BoxSup achieves good segmentation accuracy.

In Box2seg [145], pixel-level cross entropy loss is optimized by predicting attention maps of each object type,
and the filling rate of each object kind in the minimum bounding box is calculated to constrain the generation
of attention maps, thereby making the attention maps better focus on the foreground region and reducing
incorrect gradient propagation. Zhang et al. trainedCut-Cascade R-CNNwith simple bounding box annotations,
obtaining high accuracy on welding defect detection in radiographic images [83]. CapNet [99] is a novel insulator
self-blast defect detection network using normal samples and bounding box annotations, featuring a memory
mechanism, polar alignment loss, and MirrorFill algorithm to enhance defect detection without additional
manual effort. These schemes guide the segmentation process by calculating the fill rate of each foreground
object in the minimum bounding box, improving the accuracy of pixel-level pseudo labels.

Some weakly-supervised schemes leverage various bounding boxes to guide network training for effective
segmentation results and obtain object instances. In OBBInst [100], oriented bounding box annotations with
compact object expression have a lower annotation burden than horizontal bounding box annotations, which
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Figure 7. Unsupervised DL. DL: Deep learning.

are combined with corresponding loss function for oriented projection. Besides, OBBInst introduces Canny
edge prior into DL to identify more precise edges for instance segmentation. Moreover, Jiang et al. presented
single object box-supervised segmentation for insulator images using horizontal bounding boxes, generating
segmentation maps to synthesize high-quality images for weakly-supervised segmentation mix and providing
pseudo-labels for weakly-supervised instance segmentation [101].

Compared with weakly-supervised semantic segmentation, the supervised signal used in weakly-supervised
instance segmentation is directly related to target instances. There is relatively less general prior information
that can be learned and utilized compared to semantics, making it more sensitive to changes in the shape, size,
quantity, and other aspects of the target instance. However, coarse-grained labels in weakly-supervised image
segmentation models have inaccuracies, missing labels, or mutual interference between labels, resulting in
lower accuracy and stability of the training model. Therefore, further research and improvement are needed
to enhance the accuracy and robustness of weakly-supervised semantic segmentation with more accurate
bounding box prior and labels.

3.3 Unsupervised DL-based image segmentation

The combination of unsupervised learning and DL enables DL models to discover hidden structures in data,
improve their generalization performance and better deal with structurally complex image segmentation
problems. By learning the hidden patterns and structures of data on unlabeled data for same semantic feature
descriptions, unsupervised DL is not dependent on labels to address problems of difficult data annotation and
extensive unlabeled images in Figure 7.

3.3.1 Pixel-level feature relation as prior information
Traditional unsupervised segmentation schemes are mainly realized through artificially designed image features
and low-level image features, such as Gaussian mixture models, spectral clustering and K-means clustering,
which are adopted to divide images into multiple regions with high self-similarities or discrepancies. In view of
the abstract and high-level feature representation capacity of DL, unsupervised feature representation learning
combined with DL develops rapidly. Unsupervised intensive feature representation learning, as indicated
in SimCLR [146] and MoCo [147], substantially promotes unsupervised DL image segmentation strategies. In
unsupervised image segmentation, it is essential for an effective network to learn a dense feature map for a given
image without any annotation. An efficient network analyzes and models the similarity between pixels based
on features and these learning feature maps represent pixels in the same semantic region (object/stuff) with
similar feature descriptions, while pixels from different semantic regions are represented with various feature
representations. Since the network learning process is not guided by labeled data, unsupervised segmentation
schemes are constructed by extracting pixel-level features and grouping pixels into different semantic groups
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according to a variety of prior rules independent of training data.

Kanezaki [148] used a classical machine learning unsupervised segmentation algorithm for input image pre-
classification to assign identical semantic labels to small areas where the semantic information is clearly identical,
and CNN was adopted to process fine-grained pre-classification results from machine learning and merge these
small semantic pixel regions for expected segmentation results step by step in iteration. Wang et al. designed
an unsupervised CNN model with feature learning and self-attention modules to capture features and this
proposed model clustered labels according to feature similarity to segment surface defects from components
fabricated by selective laser melting with various materials [84]. A multi-stage unsupervised framework was
proposed by Wei et al. based on DCGAN, and completed defect detection by comparing differences between
test and reconstructed images from minimal normal samples [85]. In these models, superpixel segmentation
and image reconstruction are combined into a unified network model and similarities or discrepancies between
superpixel feature blocks are utilized to upgrade network parameters. Pixels extracted from randomly initialized
CNNs are grouped on feature maps to minimize the distance between similar pixels while maximizing the
distance between different features to maintain feature diversity.

There are proposed models to learn feature representation of repeated semantic objects in the image via
maximizingmutual information between pixel features from two views of the same input image [149]. Information
maximization and adversarial regularization segmentation (InMARS) [150] clusters generated superpixel regions
with mutual information for maximizing the dependency between output and input, and then an adversarial
regularization is combined with data augmentation strategy for training and optimization. Li et al. designed a
PCA stretch alignment operation and loss function for fusing infrared and visible image features, and utilized
mutual information maximization between visible feature maps and infrared feature maps to obtain these
interimage relations among pixels, which is unified with loss functions to optimize computing and fusion
representation [102]. A mixed noise-guided mutual constraint (MNMC) [103], an unsupervised anomaly model,
utilizes mixed noise generation and mutual constraints to enhance feature learning, effectively addressing
challenges in anomaly detection, and demonstrating competitive performance on MVTec dataset. Midwinter et
al. proposed an unsupervised semantic segmentation method leveraging pose information to enhance visual
inspection, validated through a spalling quantification task [86].

Furthermore, other models generate dense self-supervised information including cross-view consistency,
cross-pixel similarity and cross-image relation according to heuristic priors to complete unsupervised image
segmentation tasks. Despite different views, the same target object is considered to be consistent, which is
so-called cross-view consistency. SimSiam [151] is a simple Siamese network model, where neither large batches
nor negative sample pairs and momentum encoders are needed. It employs cross-view consistency between
two randomly enhanced images by two decoder branches in the same input image. A self-supervised learning
approach [104] for hotspot detection in thermal images, utilizing a SimSiam-based ensemble classifier, achieves
high accuracy and precise hotspot isolation, addressing industrial safety concerns.

Cross-pixel similarity is that the same semantic region in an image contains pixels with highly similar cues such
as color, texture or brightness. FreeSOLO [76] is an unsupervised framework to study instance segmentation
combining segmentation and dense self-supervised learning for generated class-agnostic masks via cross-view
consistency. Pixels from the same category target across images possess semantic relations. Due to the lack of
supervised information, extracting semantically similar pixel features across images is challenging. Zhang et al.
introduced an implicitly cross-image relation unsupervised segmentation scheme with pixel-wise contrastive
learning [152]. This model assigns pseudo labels to all pixels in training images by clustering image features and
utilizes these pseudo labels to choose appropriate positive or negative pairs with contrastive learning.

It is a preliminary stage for unsupervised DL to explore how to produce intensive representation information.
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Different from pixel-level feature learning, dense representation requires regional priors to extract the relation-
ship between pixels, which is used to determine whether these pixels are subordinate to the same semantic
space. However, prior rules are generally unable to handle complex scenes. Objects of different categories
are likely to possess similar appearances, while it is considerably possible for objects of the same category to
have significant intra-class appearance variations, causing algorithms to be unable to effectively distinguish the
differences in semantic features for each pixel in the feature space. Therefore, it is worth further exploration
on how to introduce more accurate region priors and refine them for a more efficient segmentation learning
process.

3.3.2 Intermediate features as additional clues
Instead of directly processing pixel-level features, a portion of unsupervised learning approaches adopt inter-
mediate features as additional clues to guide semantic feature grouping, including saliency maps, superpixels,
and shape priors. Saliency is a pattern of image partitioning, while saliency maps represent features on the
uniqueness of each pixel. Saliency maps are extracted to simplify or change the representation of general images
into a style that is appropriate for DL strategies to discover and analyze the salient and common foreground
objects with the same semantic class. Superpixels are generated by directly clustering spatially connected groups
of pixels instead of pixels, increasing the reliability of statistics when increasing batch size for training, and
decreasing operation cost. Different from texture and color, the shape prior representation is more applicable
to application scenarios with limited data scale and large shape changes but insignificant color features such as
organ or tumor region extraction.

Utilizing features from a set of pixel groups, namely superpixels, transforms unsupervised image segmentation
from pixel-level classification into unsupervised sub-region classification. MaskContrast [153] employs two
additional unsupervised saliency models to generate pseudo labels for foreground objects in each image, and
trains its final segmentation model a two-step bootstrap mechanism. Subsequently, collected foreground masks
are clustered to form semantic concepts via contrastive learning. An unsupervised PolSAR image classification
segmentation framework [105] utilizes high-confidence superpixel pseudo-labels and semi-supervised methods,
achieving significant accuracy improvements over existing methods, as demonstrated on three real PolSAR
datasets. A saliency-based multitarget detection and segmentation framework [77] utilizes a multibranch
convolutional encoder-decoder network for circular-scan synthetic aperture sonar imagery. Although saliency
maps are obtained to reduce the complexity of pixel-level feature expression, it is difficult to capture effective
semantic information without the guidance of common semantic category information.

It is inadvisable for DL schemes to merely use low-level image information; the segmentation accuracy at object
edge details is limited. Superpixels not only make for retaining the object edge information, but also represent
image features instead of a large number of pixels, hence decreasing the noise interference for model training.
Chen et al. utilized superpixel segmentation results to supervise the gradient descent direction for better FCN
training, which realizes pixel-level segmentation for remote sensing images with various scales [78]. S3Net [87] is
a deep Siamese network guided by superpixels and inspired by transfer learning, and it generates pseudocolor
maps to obtain homogeneous superpixel objects for desirable boundary adherence and multi-scale object-level
difference features. Methods based on superpixels use a small region as a computing unit to independently
extract features and determine saliency values, while it is possible for superpixels to generate salient object
feature maps with fuzzy boundaries, incurring training instability.

Explicit shape priors are conducive to mitigating the dependence on the color features and learnable prototype.
SegSort [154] is a pixel-level end-to-end unsupervised model with spherical K-means clustering to obtain pseudo
segments and create segments aligned with semantic boundaries, which is crucial for subsequent clustering,
prototype extraction and segmentation. For ultrasound vessel segmentation, an unsupervised and model-
based domain adaptation segmentation with two-stage training strategy was suggested to achieve in-vivo
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data segmentation and the prior information from the elliptical shape of segmentation masks was applied to
recognize uncontemplated outputs [155]. In rail surface defect segmentation, Ma et al. used prior information
on content features and style features as input of a transfer module to obtain shape-consistent style features,
and inputted constructed images using multitask learning to avoid distortion with SegFormer [156] as a feature
extractor [88].

By implementing intermediate feature transformation, consistency information comparison and other schemes
according to saliency maps, superpixels, and shape priors, the semantic discrimination of features is enhanced,
promoting the separation of heterogeneous pixels. It is effective to adopt intermediate features as guidance
to train segmentation for lower computing cost and complexity than pixel-level feature map classification.
However, these methods assume that the objects in the image have sufficient saliency, which is not always true
in some complex scenario-based situations and is likely to cause segmentation inaccuracy and instability.

3.3.3 Post-processing as a refinement
In the image segmentation process, an unsupervised model needs to model and analyze the similarity between
pixels according to features such as color, texture and edge. Subsequently, this unsupervised model divides all
pixels in an image into different groups, and different groups represent various object categories to complete
segmentation tasks. However, since the network learning process is not guided by labeled data, segmentation
results are prone to be undesirable. As unsupervised learning algorithms involve the processing and learning
of unlabeled data, it is essential to be fully aware of the prior structure regarding the data and the model for
expected convergence. Moreover, unsupervised learning algorithms usually require more domain knowledge
to select and tune models, and further post-processing or manual intervention is hence needed to improve
segmentation accuracy and efficiency.

Upon careful examination of the predicted mask, small prediction edges or regions with incorrectly predicted
pixels are segmented out. Therefore, a step to finer adaptation and segmentation boundaries is essential to be
added into unsupervised learning. An unsupervised recurrent scheme forDL and its corresponding loss function
were suggested by Wang et al. to generate optimized pixel-level feature expression and semantic labels [89]. An
attention-gate-based U-shaped reconstruction network (AGUR-Net) [157] achieves 59.38% precision on YDFID-
1 dataset for unsupervised defect detection in color-patterned fabrics, and a dual-threshold segmentation
post-processing optimizes detection results. In this recurrent framework, an over-segmentation method was
implemented into model training, and the post-processing steps regarding clustering, threshold limitations, etc.
were applied to coalesce over-segmented model outputs into the expected clustering number, further improving
segmentation effectiveness.

Moreover, conditional random fields (CRFs) tend to be employed as a post-processing tool to improve the
algorithm performance in that they are able to consider the feature information of the entire sequence and
better capture the dependencies between sequences. HOTCRF-PCANet [73], combining high-order triplet CRFs
and unsupervised principal component analysis network (PCANet), was proposed for effective segmentation of
nonstationary SAR images, enhancing label consistency and feature representation. GAN continuously learns
from the generative network and discriminative network through game theory in the framework to achieve
better distribution convergence, where the one forges while the other performs detection, allowing models to
train each other and achieve equilibrium. Although GAN achieves high performance in the game shown in
Figure 8, the relationships between pixels are easily ignored, resulting in feature loss and segmentation results
with discontinuity or significant deformation. Therefore, CRFs serve as a post-processing approach to capture
entire sequence features and better-structured segmentation.
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Figure 8. The model structure of GAN. GAN: Generative adversarial network.

3.4 DL combined with traditional image segmentation models

Traditional image segmentation generally utilized low-level feature information such as texture, color, etc.,
while DL is equipped with a powerful expression in high-level semantic feature extraction. However, it is
inevitable for DL to break shallow details in the image with feature extraction due to pooling, etc., which is
unfavorable to the feature recognition of small objects [158]. In addition, DL has large requirements for device
performance and hardware consumption, limiting the possibility of landing applications. Therefore, considering
the complexity and cost of implementation, many effective image segmentation methods have emerged by
combining traditional image segmentation algorithms with DL.

3.4.1 Frameworks with improved theory
Some frameworks improve the construction mechanism of DL model in accordance with traditional image
segmentation conception. Some schemes generate a joint distribution of two adjacent pixels based on similar
semantic information of the same object, and obtain the segmentation result according to the similarity
distribution on the centroid of a series of clusters. The segmentation route of ACMs is applied into DL image
segmentation, which includes determining an initial contour, calculating the offset of the control point on the
contour, shrinking the contour curve according to this offset to approximate the target boundary, and then
segmenting out contours. Moreover, there are models to blend the concept that pixels with similar features are
iteratively fitted to a region from GrabCut into DL-based segmentation frameworks, such as DeepCut [159].

Unsupervised clustering is applied to aggregate similar pixel-level features into a certain number of clusters, and
each cluster represents a kind of semantic object. DeepClustering [160] exploits a simple process to generate the
semantic distribution. In DeepClustering, K-means algorithm is used to cluster the eigenvalues of the model
output for generated classification pseudo-labels. Thereafter, artificial labeling of general classification tasks
is replaced by pseudo-labels generated by K-means to train neural network classifiers. As one of the earliest
self-supervised representation learning methods, this paradigm has not achieved considerably acceptable
performance, while its ideas have inspired numerous later works. Online deep clustering (ODC) [70] further
improves the updating scheme of cluster centers in each iteration. The original updating strategy of resetting
cluster centers in iteration is improved into an iterative updating method, and the two adjacent cluster centers
are updated using the optimal matching algorithm, alleviating convergence instability to a certain extent.

The segmentation train of thought regarding Snakemodel [19] is fused into DL for accurate contour segmentation.
Within the bounding box provided by the object detector, DeepSnake first generates an initial contour, and then
deforms the contour by predicting vertex offsets to accurately match the object shape, implying the possibility of
applying structured contour feature learning to instance segmentation. It uses cyclic convolution to efficiently
learn contour features, reducing reliance on precise bounding boxes and enhancing the ability to handle object
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localization errors. Compared with DeepSnake, an end-to-end contour-based method (E2EC) [79] firstly learns
the initialization contour by performing backbone operations on the image to generate a heatmap for the
location of instance target centers and regresses the initial bias based on the center point features. Then, the
generated initialization contour is deformed through a global deformation module to obtain a coarse contour,
and finally two deformations are implemented to obtain a fine contour. These models pay special attention
to boundary detection and segmentation of complex objects. They effectively handle objects with irregular
shapes and fuzzy boundaries, and understand the shape and structure of objects in different contexts, thereby
improving segmentation accuracy. Although the specific implementation and optimization strategies differ,
they focus on real-time performance, especially in industrial application scenarios that require rapid response.

3.4.2 Frameworks with designed loss functions
In DL, all algorithms rely on minimizing or maximizing a function, called loss function. The loss function is
used to measure the error between predicted values and their corresponding true values. When the model
is trained, the loss function is minimized or maximized to make the model reach the convergence state and
update model parameters to reduce the error of model prediction values. Therefore, the impact of different loss
functions on the model is crucial. With help of additional prior information, such as shape, region and edge,
traditional image segmentation algorithms achieve promising performance.

LevelSet R-CNN [161] is a deep variational instance segmentation framework, combining the architecture of CV
model and Mask R-CNN, and its loss functions are designed corresponding to CV model and Mask R-CNN.
Mask R-CNN is intended to categorize all objects in an image, and then a RoI is obtained by convolution
operation to initialize a truncated signed distance function (TSDF), and instance hyperparameters. TSDF,
hyperparameters and feature tensors are inputted into a CV optimization model to output a target TSDF, and a
mask is produced by applying Heaviside function to this TSDF. Accordingly, a loss function on the basis of final
and initial TSDFs is established to calculate the error between ground truth and prediction for joint end-to-end
model training. Later, Nouri et al. utilized an original image and its encoded image generated by local word
directional pattern texture descriptor as inputs to CNN for parameter maps and GVF maps, and introduced
the loss expression concerning predicted ACM parameter and GVF maps for more accurate and robust fuzzy
boundary segmentation [90].

The loss function according to traditional image segmentation algorithms is defined to optimize segmentation
results or constraint prediction contour length for less non-target prediction results. Due to the striking
similarity between the softmax layer in those networks and these feature functions in MS model, the LSM is
naturally incorporated into CNN. The weakly-supervised deep level set model [91] combines a multibranch
structure with a self-supervised objective, and presents an adaptive algorithm with level set function as a self-
supervised loss term, effectively segmenting aeroengine defects in videoscope images and achieving real-time
processing on Turbo19 dataset. These designed loss functions can not only serve as a regularization term for
supervised neural network segmentation, but also as a semi-supervised or unsupervised segmentation since it
is difficult to obtain the dataset required for training supervised segmentation networks.

3.4.3 Frameworks with pre-processing and post-processing
DL is suitable for high-dimensional data processing to solve problems that traditional image algorithms find
difficult to solve, such as diverse defect segmentation and detection. However, DL devices have high-performance
requirements, high hardware consumption, and high model training costs. In addition, DL segmentation has a
dependency on training data, and generally speaking, the larger the amount of data, the better its performance.
Therefore, some researchers, starting from optimizing model training efficiency and smoothing segmentation
boundaries, utilize traditional image segmentation as part of model pre-processing or post-processing. These
approaches rely on traditional image processing in data pre-processing to greatly reduce the learning pressure
of the model and noise interference.
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Due to sample distribution imbalance and interference such as noise and lighting changes in image datasets,
there are DL-based approaches to utilize traditional strategies such as pre-processing for noise reduction and
smoothing. Lin et al. proposed ScribbleSup that iteratively trains segmentation networks and uses graph cuts
to correct pixel labels [162]. ScribbleSup first divides the image into superpixel forms, and then corresponds
scribble annotations to the superpixel annotations, executing the graph-cuts algorithm on superpixels. Feng
et al. adopted the graph cut scheme to obtain more effective supervision information according to activation
seeds from a classification network, and employed fully-connected CRF for segmentation smoothing [74].

Moreover, DL-based unsupervised algorithms generally require more domain knowledge to optimize models,
and post-processing is hence adopted to improve segmentation efficiency. Raja et al. exploited a non-local mean
filter to denoise in the pretreatment stage, and then Bayesian fuzzy clustering, deep autoencoder and softmax
regression were jointly suggested to complete brain tumor segmentation and classification [163]. S2VNet [106]

is a general purpose framework intended to address medical image segmentation problems, using clustering
techniques to initialize cluster centers from prior slices and perform fast inference speed and less memory
consumption with 2D networks compared to mainstream 3D solutions.

3.4.4 Discussion on traditional and DL-based segmentation
Traditional methods are relatively easy to implement and suitable for rapid development and prototype design.
In industrial scenarios with small data volumes and distinct features, traditional methods can achieve good
results. Due to their clear features, the results are usually easy to interpret, making it easier for engineers to
understand and debug. However, traditional methods are sensitive to image noise and lighting changes, which
may result in poor segmentation performance and affect the accuracy of industrial detection. In complex scenes,
selecting appropriate features and parameters requires experience and is not suitable for diverse industrial
images. When dealing with complex or diverse images, the performance of traditional methods often declines,
making it difficult to adapt to different industrial applications.

On large-scale datasets, DL-based methods typically achieve higher segmentation accuracy and have better
robustness to noise and lighting changes. These models are able to adapt to different industrial environments
and are suitable for complex industrial inspection tasks. Additionally, they automatically learn optimal features,
reducing manual intervention without manually selecting features. However, training DL models requires
a significant amount of computing resources and time, which is not suitable for resource-limited industrial
environments. The demand for annotated data is high, and performance may decrease when there is insufficient
data, especially in specific industrial scenarios. The poor interpretability of DL models affects engineers’ trust
in detection results.

Traditional methods are suitable for scenarios that are simple, feature-rich, and require high real-time and
interpretability, while DL methods perform well in applications with complex backgrounds, high-precision
requirements, and large-scale datasets. It is crucial to choose appropriate segmentation strategies based on
specific industrial needs, which may require comprehensive consideration of characteristics from practical
applications and resource limitations. Therefore, designing pre-processing, post-processing or loss functions
using traditional methods is an effective component for weakly-supervised or unsupervised segmentation,
when training supervised segmentation networks is challenging for lack of uniform and efficient datasets.

3.5 Data analysis of industrial image segmentation models

According to statistical results through a Web of Science search from 2020 to 2024, DL-based industrial
image segmentation models are summarized in Figure 9. Technique terms are set based on image annotation
level, i.e., supervised image segmentation, weakly-supervised image segmentation and unsupervised image
segmentation. Industrial application terms include six widely concerned image segmentation search fields:
insulator defect, PCB, fabric defect, magnetic tile, rail defect, and steel defect. The type of these statistically
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Figure 9. Statistical results for application of DL-based models in industry. DL: Deep learning.

analyzed papers is limited to research papers, not including conference papers, review articles, and doctoral
and master dissertations.

The proportion of DL methods in different industrial applications is shown in Figure 9A. It is seen that the
research papers on steel defect have the largest proportion 35 % and papers on rail defect have second largest
proportion 25% in image segmentation. The application of defect detection accounts for the largest proportion
77% in Figure 9A, meaning that image segmentation in defect detection is considerably widespread. There are
a small amount of DL methods in industrial applications of insulator detection and magnetic tile since the
detection requirements for insulator and tile defects may be relatively small, compared to other types of defects
such as PCB defects or fabric defects, resulting in insufficient investment in related research and development.

From Figure 9B, compared to supervised image segmentation, the application of weakly-supervised and
unsupervised methods accounts for a smaller proportion in industry. Relatively mature supervised learning
utilizes a large amount of labeled training data to achieve high-precision segmentation results, making it
suitable for industrial applications that require high precision. The goal of supervised learning is clear, and
the model accurately identifies and segments target objects by learning specific input-output relationships.
Weakly-supervised learning reduces the cost and time of annotated data, while it requires designing effective
strategies to utilize unlabeled data, which may face complex backgrounds and changing conditions in industrial
environments, increasing implementation difficulty. Although unsupervised learning has advantages in data
annotation cost, its ability to identify specific targets or details is weak, making it difficult to meet industrial
requirements for high accuracy and reliability.

4. DL-BASED MODEL SEGMENTATION PERFORMANCE

In this section, the metrics and datasets for DL-based segmentation models are summarized, which are generally
adopted to evaluate DL-based segmentation performance. The quality, scale, and diversity of datasets have
a significant impact on the performance of image segmentation approaches. Therefore, the performance
estimation on corresponding several segmentation benchmarks is also reported for DL-based segmentation
models in this section.

4.1 Metrics for image segmentation models

Image segmentation model performance should be evaluated from multiple aspects, including accuracy, visual
quality, inference speed, and memory storage requirements. Nevertheless, most researchers have focused on
evaluation metrics to quantify model accuracy. The corresponding popular metrics are as follows:
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The calculation of pixel accuracy (PA) is based on the number of pixels that accurately predict the category, and
the accuracy ratio is obtained through ratio calculation. PA is obtained by dividing the number of correctly
classified pixels by the total number of pixels. For # + 1 categories including the background and # foreground
categories, PA is expressed as

PA =

∑#
8=0 ?8 9∑#

8=0
∑#
9=0 ?8 9

, (9)

where ?8 9 denotes the number of pixels belong to class 8 predicted as class 9 . However, the correspondence
between pixels and classification is likely to be inaccurate, and the accuracy ratio is fed back through the mean
PA (mPA), which is calculated for each category and then averaged over the totality number of categories as

mPA =
1

# + 1

#∑
8=0

?8 9∑#
9=0 ?8 9

. (10)

Dice coefficient (Dice) is mainly employed to calculate the similarity between different samples and is a similarity
measurement function between two sets. The larger the coefficient, the better the segmentation effect. Dice is
expressed as twice the overlap of predicted and ground-truth pixel maps divided by the total number of pixels,
and its definition is

Dice =
2|� ∩ �|
|�| + |�| , (11)

where � is a predicted segmentation result and � represents ground truth.

IoU or Jaccard Index represents the number of overlapping pixels between the real label and the predicted
image divided by the merged pixels between the real label and the predicted image. IoU ranges from 0 to 1, and
is defined as

IoU =
|� ∩ �|
|� ∪ �| . (12)

Precision, Recall and F1 score can be specifically defined for each segmentation class or at the overall level. F1
score is computed by the harmonic mean of precision and recall rates. They are respectively defined as follows:

Precision =
TP

TP + FP
, (13)

Recall =
TP

TP + FN
, (14)

F1 =
2 × Precision × Recall

Precision + Recall
. (15)

4.2 Datasets

A suitable dataset ensures that models can learn correct and critical features, which directly affects their accuracy
and efficiency. When selecting a dataset, it is necessary to make the selection based on specific application
scenarios and algorithm requirements. The commonly used public datasets in image segmentation include
NEU, Kolektor Surface Defect Dataset (KolektorSDD), etc. Some basic information is summarized in Table 2
respecting commonly applied datasets.

4.2.1 Dataset for daily scenarios
COCO dataset [164] created by Microsoft covers 80 categories of common objects and scenes, such as humans,
animals, vehicles, furniture, etc. Each image is equipped with dense pixel-level segmentation annotations to
identify boundaries of each object. COCO dataset consists of three subsets: training, validation, and test sets.
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Table 2. Common industrial image segmentation datasets

Name Objects Links Annotation

KolektorSDD Electronic commutator https://www.vicos.si/Downloads/KolektorSDD Pixel level

NEU Hot rolled steel belt http://faculty.neu.edu.cn/yunhyan/NEU_surface_defect_dataset.html Bounding box

RSDDs Rail http://icn.bjtu.edu.cn/Visint/resources/RSDDs.aspx Pixel level

MVTec AD Surface defect https://www.mvtec.com/company/research/datasets/mvtec-ad Pixel level

DAGM 2007 Optical texture https://hci.iwr.uni-heidelberg.de/content/weakly-supervised-learning-industrial-optical-inspection Label level

Aitex fabric image Fabric defect https://www.aitex.es/afid/ Pixel level

FUSAR-Ship Ship https://radars.ac.cn/web/data/getData?dataType=FUSAR Bounding box

Magnetic tile dataset Magnetic tile https://github.com/abin24/Magnetic-tile-defect-datasets Pixel level

The training set contains approximately 118,000 images, the validation set has approximately 5,000 images, and
the test set includes approximately 20,000 images.

Pascal VOC dataset [165] comes from the Pascal VOC Challenge and is a popular benchmark dataset used to
evaluate image segmentation algorithms. It contains images of 20 object categories such as humans, vehicles,
animals, and 10 action categories. Moreover, pixel-level annotations are provided in Pascal VOC for each image.
This dataset contains 11,540 images for object detection and classification recognition, and 6,929 images for
image segmentation.

4.2.2 Dataset for surface defect detection
KolektorSDD includes defect images of electronic commutators. Specifically, there are minor damages or
cracks on the plastic embedded surface of the electronic commutator. The image is collected under controlled
conditions such as uniform lighting. Provided pixel-level annotation of defects for defect images. This dataset
includes eight non-overlapping images collected from each surface of 50 defective electronic commutators,
resulting in a total of 399 images, including 52 defect images and 347 defect-free images.

NEU surface defect database contains 1,800 grayscale images about surface defects in hot-rolled strip steel.
Six defect categories including scale, patches, cracking, pitted surface, inclusion, and scratches are collected
in NEU. Each category contains 300 images with a size of 200 × 200. The characteristics of the NEU dataset
are significant differences in intra-class defects and certain similarities between inter-class defects, which pose
difficulties and challenges for achieving accurate classification in defect detection.

MVTec Anomaly Detection (MVTec AD) dataset contains 5,354 high-resolution color images of 15 different
objects and texture categories, where 3,629 images were used for training and validation, and 1,725 images were
used for testing. Among 15 categories, five texture categories cover different types of regular textures such as
carpets, grids and random textures such as leather, tiles, wood. The remaining ten object categories include
rigid objects with a fixed appearance such as bottles, metal nuts and non-rigid and deformable objects such
as cables, and some contain natural objects. All image resolutions are between 700 × 700 and 1, 024 × 1, 024
pixels, and pixel-level ground truth annotations are provided for all anomalies in MVTec AD.

RSDDs dataset is designed specifically for detecting surface defects in steel rails and includes two types of
surface defect datasets: Type-I and Type-II. This Type-I dataset is collected from the fast lane and contains
67 images with 160 × 1, 000 pixels. This Type-II dataset is collected from regular/heavy transport tracks and
contains 128 images with 55 × 1, 250 pixels. Each image in both datasets contains at least one defect, with a
complex and noisy background. Defects in RSDDs include various common rail surface defects such as cracks,
wear, grooves, and foreign object embeddings, which have been pixel level annotated by some professionals in
rail surface detection.
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4.2.3 Dataset for other industrial scenes
DAGM-2007 dataset is designed specifically for detecting miscellaneous defects on textured backgrounds in
industrial optical inspection. It contains ten sub-datasets, with the first six being training datasets and the last
four being testing datasets. The characteristic of DAGM 2007 is that it provides images in grayscale 8-bit PNG
format. Each dataset contains 1,000 defect-free images and 150 defective images, where the “defect free” images
display texture backgrounds without miscellaneous defects, while defective images have exactly one marked
defect on the texture background.

The high-resolution ship dataset FUSAR Ship is a unified and standardized dataset for ship target recognition.
This dataset slice contains 15 key ship targets with 98 subcategories and non-ship interference targets. A total
of 16,144 slices have been accumulated, including 6,252 ships that match AIS information, 2,045 strong false
alarms such as bright spots resembling ships, 1,461 bridges and coastlines, 1,010 coastal areas and islands,
1,967 complex sea waves and clutter, 1,785 ordinary sea surface images, and 1,624 land images. The annotation
method for ship slices in the dataset is to expand 256 pixels outward with the center of the minimum outer
circle of the target as the midpoint, and store them in a fixed size of 512 × 512 pixels.

Aitex fabric image dataset contains seven different fabrics with a total of 245 images, each with a resolution of
4, 096 × 256. The fabrics in this dataset are mainly in plain colors. Among them, there are 140 flawless images,
with 20 images for each type of fabric. There are a total of 105 defect images, including 12 common types of
fabric defects in the textile industry. The large size of the image allows users to use different window sizes,
thereby increasing the sample size. All defects are annotated at the pixel level, with white pixels representing
the defect area and the remaining pixels being black.

Magnetic-tile defect dataset was automatically collected by the Chinese Academy of Sciences, and six common
defects of the magnetic tile including crack, blowhole, break, fray, uneven and free images were marked by
image acquisition and semantic segmentation. The dataset contains 1,344 images, each cropped to a RoI with
different sizes. Suitable for studying the detection and segmentation techniques of small defects in complex
backgrounds, especially those defects with similar colors, textures, and backgrounds.

4.3 Quantification performance for DL models

To facilitate the analysis of current research progress in image segmentation, the quantification performance of
DL models is tabulated on current segmentation benchmarks in this section. Model segmentation accuracy
such as PA and mIoU are generally utilized as standard metrics to evaluate model performance. Although most
works report standard datasets and measure metrics to evaluate model performance, the downstream scenarios
and implementation purposes of image segmentation frameworks are diverse, causing some differences between
evaluation indicators reported by numerous research works. The following tables summarize the performance
of several DL-based segmentation models on various datasets, where “-” indicates that the original work does
not provide the corresponding value.

Combining with Table 3, MDOAU-Net [113] segments SAR images with fewer non-target or background pixels,
and its overall accuracy is 0.906 in segmenting its test images, which is 4.1% over SegNet [110], 2.5% over
U-Net [111], 1.8% over DeepLab V3+ [116]. Shape-consistent one-shot unsupervised domain adaptation (SC-
OSDA) [88] obtains 81.7% precision, outperforming SegFormer [156] over 0.7%, Mask R-CNN [127] over 10.8%
with results verified using only RSDDs dataset while other models are trained with RSDDs dataset listed in
Table 4. According to the literature [88], SC-OSDA generates finer segmentation with easily ignored appearance.

mIoU metric is the most extensive usage in industrial image segmentation. Table 5 summarizes the results of
reviewed approaches on KolektorSDD datasets. As seen, FBSFormer [98] performs the best, with 0.787 in mIoU,
which is 0.157 higher than U-Net [111]. In addition to mIoU, there are also precision, recall, and F1 score used

http://dx.doi.org/10.20517/ir.2025.09


Page 170� Wang et al. Intell. Robot. 2025, 5(1),143-80 I http://dx.doi.org/10.20517/ir.2025.09

Table 3. Performance comparison of algorithms in SAR images

Time Model Feature Accuracy Parameters

2015 U-Net [111] Skip connection 0.881 31.1M

2017 SegNet [110] VGG16 0.865 29.4M

2018 DeepLab V3+ [116] SPP + decoder-encoder 0.888 59.3M

2022 MDOAU-Net [113] U-Net 0.906 4.1M

SAR: Synthetic aperture radar; SPP: spatial pyramid pooling.

Table 4. Performance comparison of algorithms in RSDDs dataset

Time Models Feature Precision Recall IoU F1

2015 U-Net [111] Skip connection 0.869 0.903 0.856 0.886

2017 Mask R-CNN [127] FCN 0.709 0.967 0.692 0.818

2017 PSPNet [117] ResNet50 0.901 0.908 0.826 0.905

2018 DeepLab V3+ [116] SPP 0.906 0.889 0.814 0.898

2021 SegFormer [156] Transformer 0.810 - - 0.833

2023 SC-OSDA [88] - 0.817 0.834 0.748 0.825

IoU: Intersection over union; FCN: fully convolutional network; SPP: spatial pyramid
pooling.

for steel defect detection. Table 6 gathers steel defect segmentation results on MVTec dataset, illustrating that
ABFormer [80] obtains the mIoU value of 0.915, 0.962 Precision value, Recall value of 0.947 and F1 score of
0.954. Transformer-based ABFormer [80] greatly improves segmentation performance.

Giga floating-point operations per second (GFLOPs) and FPS are two common metrics for measuring compu-
tational complexity in DL. NEU dataset and DAGM-2007 dataset are chosen for testing image segmentation
methods. As listed in Table 7, ABFormer [80] is the top one in terms of mIoU, precision, recall and F1 score,
and the parameter number metric GFLOPs is the lowest, implying that ABFormer is significantly superior to
all other networks in terms of computational complexity, inference accuracy, and number of parameters. In
Table 8, FBSFormer [98] performs the best in DAGM-2007 dataset, with 79.1% in mIoU and scores 78.6 in terms
of FPS.

Over the past few years, the performance of DL-based segmentation models has improved significantly, with
relative improvements of 30%-40% on various evaluation metrics across different datasets. However, for diverse
reasons, the performance evaluation of several models lacks reproducibility. They evaluate some performance
metrics against non-standard databases, or report only a few metrics on the subsets of test sets from popular
benchmarks. In addition, the source code for many model implementations is not provided or the model
architecture is difficult to reproduce. However, with the increasing popularity of DL models, the development
trend of DL-based image segmentation models is positive and inspiring.

5. CHALLENGES AND PROSPECTS

Image segmentation based on DL is an important research direction in the field of computer vision, which has
enormous theoretical research value and a wide range of application prospects, while several challenges lie ahead.
The rapid development of DL technology also brings new challenges and opportunities. Some promising and
potential development directions and challenges are illustrated for advancing image segmentation algorithms.
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Table 5. Performance comparison of algorithms in KolektorSDD dataset

Time Model Feature mIoU

2015 U-Net [111] Skip connection 0.630

2016 CAM [138] ResNet50 0.703

2019 ESPNetV2 [123] SPP 0.662

2021 LayerCAM [72] ResNet50 0.705

2022 Wu et al. [75] Weakly-supervised 0.69

2024 MLESPNetV2 [124] GAN 0.754

2024 FBSFormer [98] ViT 0.787

mIoU: Mean intersection over union; CAM: class activation map; SPP: spatial pyramid
pooling; GAN: generative adversarial network.

Table 6. Performance comparison of algorithms in MVTec dataset

Time Model Feature mIoU Precision Recall F1

2015 U-Net [111] Skip connection 0.691 0.903 0.710 0.779

2015 FCN [108] - 0.895 0.948 0.938 0.943

2017 SegNet [110] VGG16 0.671 0.798 0.725 0.756

2017 PSPNet [117] ResNet50 0.901 0.951 0.942 0.946

2018 DeepLab V3+ [116] SPP 0.611 0.831 0.627 0.683

2018 ICNet [125] PSPNet 0.853 0.929 0.909 0.919

2019 DANet [121] Dual attention network 0.900 0.951 0.941 0.946

2020 HRNet [71] HRNetv2-W48 0.626 0.792 0.632 0.715

2022 OBFTNet [11] VGG16 0.426 - - -

2022 OBFTNet [11] ResNet50 0.522 - - -

2023 ABFormer [80] Transformer 0.915 0.962 0.947 0.954

2024 Mobile-Deeplab [92] Mobilenetv2 0.871 0.912 0.941 0.926

mIoU: Mean intersection over union; FCN: fully convolutional network; SPP: spatial pyramid pooling.

Table 7. Performance comparison of algorithms in NEU dataset

Time Model Feature mIoU Precision Recall F1 GFLOPs

2015 FCN [108] - 0.798 0.922 0.851 0.885 30.17

2017 PSPNet [117] ResNet50 0.824 0.903 0.898 0.900 27.27

2018 DeepLab V3+ [116] SPP 0.804 0.902 0.875 0.887 41.15

2018 ICNet [125] PSPNet 0.786 0.865 0.886 0.875 2.28

2019 DANet [121] Dual attention network 0.828 0.907 0.899 0.903 30.37

2023 ABFormer [80] Transformer 0.847 0.908 0.922 0.915 1.26

mIoU: Mean intersection over union; GFLOPs: giga floating-point operations per second; FCN: fully
convolutional network; SPP: spatial pyramid pooling.

5.1 Challenges for DL models

Equipment dependency. DL segmentation models have a high dependence on hardware devices. Generally
speaking, segmentation results will be more advisable when calculated on GPUs with fast speed and high
accuracy. However, it is challenging for most researchers to obtain available hardware devices. Therefore, it is
a thought-provoking question on how to break away from the dependence on hardware devices and enable
segmentation models to achieve desirable experimental results on ordinary devices for the future development
of real-time image segmentation. Besides, for low-storage hardware such as portable and mobile devices, it is
difficult to carry out large-scale operations, and it is a major challenge to achieve high-precision computing
results in a short period of time. Therefore, it is a major challenge for real-time DL-based image segmentation
to reduce the computational load and storage requirements in applying segmentation networks to lightweight
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Table 8. Performance comparison of algorithms in DAGM-2007 dataset

Time Model Feature mIoU FPS

2016 CAM [138] ResNet50 0.676 66.32

2017 SegNet [110] VGG16 0.220 17.92

2017 RefineNet [119] - 0.329 31.05

2020 Grad-CAM [139] CAM 0.350 60.97

2021 LayerCAM [72] ResNet50 0.717 70.34

2024 FBSFormer [98] ViT 0.791 76.8

FPS: Frames per second; CAM: class activation map.

devices such as mobile devices in the future.

Model performance. Compared to semantic features, it is more difficult for DL-based models to learn feature
expressions of different individual instances within the same semantics. Given that the same semantic objects
generally share similar semantic features, feature sharing reduces the dimensionality of the feature space. Despite
sparse vectors representing specific objects, these features corresponding to instance objects are related to
random differences in appearance, position and size of each individual, and these random differences incur
various individual features. Therefore, if it is expected that models are able to learn general instance prior
features, the difficulty is generally greater than that of semantic features. As the search dimension of instance
features is larger than that of semantic features in the feature space, learning and optimizing instance feature
expression is more challenging. How to enable DLmodels to fully utilize finite prior knowledge to learn instance
features is crucial for efficient instance segmentation and panoptic segmentation in autonomous driving, defect
detection, track monitoring, etc.

Data scarcity. Due to inconsistent constraints of real labels, sample distribution is considerably likely to
be unbalanced, where the number of samples for some categories is too small to fully learn their feature
representations. The sample imbalance results in undesirable model segmentation performance for these
categories. Due to noise interference, there are issues such as abnormal pixel values, incomplete target regions,
or inferior image quality, exerting a negative impact on segmentation results. For lack of constraints from real
labels for weakly-supervised and unsupervised segmentation, pixels within the same target region is also likely
to have different features, especially when segmenting image with unclear target boundaries. Moreover, due to
the uncertainty of manually labeled labels and the diversity of application scenarios, it is challenging to form
consistent evaluation criteria in image segmentation, which also brings certain predicaments to the training
and optimization of models.

Application scenarios. Industrial scenes often have complex backgrounds and diverse textures, which may
interfere with the performance of segmentation models. The size, shape, and arrangement of industrial objects
vary, making segmentation tasks more complicated. The lighting conditions in industrial environments vary,
affecting image quality and segmentation accuracy. In industrial applications, especially for specific categories
of objects, a lack of sufficient labeled data is a difficult challenge to overcome for effective training. In many
industrial applications, segmentation models require real-time processing capabilities to meet the needs of
production lines. There are significant domain differences between natural images and industrial images,
leading to poor performance of models trained in one domain in another domain.

5.2 Development trends for DL models

Adaptive learning model. Most existing DL-based segmentation models are trained and tested on existing
datasets with fixed categories that do not exceed the known range of the model. However, real-world scenarios
are open and the object categories are unfixed. Models will encounter constantly emerging new categories
during their application process. In autonomous driving, unprecedented categories are likely to encounter, such
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as flood during driving. Therefore, whether algorithms continuously incorporate unseen scenarios and targets
into the knowledge base and automatically adjust model parameters to maintain lifelong learning ability is a
worthwhile research direction.

Cross-modality federated learning. At present, a small number of researchers are attempting to combine visual
tasks with language processing. Cross modal federated learning includes two aspects. On the one hand, visual
tasks are responsible for providing pixel-level clues, and then language models generate titles or other text. On
the other hand, semantic models provide textual clues, and visual models complete segmentation tasks based
on textual information, such as reference segmentation and reference video segmentation. The cross-modality
joint learning will also become a major research trend in the future.

Real time segmentation centered on data. The DL scheme mainly focuses on the model as the center, with
relatively fixed data, and then designs various models to improve prediction accuracy. Given possible various
issues arising with data in practical applications, it is hence essential to show solicitude for high-quality
annotated data in real-world scenarios to improve the quality and quantity of data. The existing real-time image
segmentation is generally aimed to segment object classes with a large pixel proportion in the image, while
there is little segmentation for classes with a small pixel proportion. Therefore, the image quality and quantity
deserve attention for data for fine-grained small-sized object segmentation.

Domain adaptation technology can reduce the domain shift between natural images and industrial images,
and enhance the generalization ability of the model. By simultaneously training multiple related tasks such
as classification and segmentation, the robustness and accuracy of the model can be improved. Introducing
attention mechanism can help the model focus on important features, reduce the interference of background
noise, and improve segmentation accuracy. The use of lightweight network architectures such as MobileNet and
EfficientNet, along with model compression techniques, enables real-time processing of segmentation models
in industrial applications. These technological advancements make the application of DL image segmentation
more effective and reliable in industrial scenarios.

Moreover, with the ability of traditional methods for shallow image feature extraction, it is advisable for DL
segmentation strategies to adopt traditional algorithms for noise reduction and low-level feature enhancement
on data. With these shallow visual features, which are similar to visual features acquired by human direct
perception, it is conducive to improving the segmentation results regarding images with distinct imaging
equipment and environments in various industry communities. Although these fusion approaches yield
advisable segmentation results, it is essential for these algorithms to integrate weakly-supervised learning
strategies and unsupervised DL strategies for better universality for industrial scenarios with few labels.

6. CONCLUSIONS

This work investigates the recent advancement in image segmentation approaches relying on DL in various
complicated circumstances. The description on DL image segmentation tasks and recent developments in three
branches of industrial image segmentation, categorized by the level of dataset annotation, i.e., supervised, weakly-
supervised, and unsupervised image segmentation, are provided respecting designing network architecture,
improving segmentation accuracy or speed, optimizing the trade-offs between speed and accuracy, and reducing
the burden of manually annotated data. In conjunction with traditional segmentation methods, there is a
wealth of literature in the field of DL-based image segmentation. The commonly applied benchmark metrics
are subsequently illustrated, followed by benchmark datasets used to evaluate the accuracy and effectiveness of
proposed models. Meanwhile, performance tables and figures are displayed to analyze quantitative performance
of these approaches in industrial image segmentation. In conclusion, DL-based image segmentation faces both
challenges and embraces bright prospects in flexible and practical applications.
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