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Abstract
Wilson disease (WD) is a rare genetic disorder characterized by the excessive accumulation of copper in the body, 
leading to metabolic alterations and subsequent health complications due to mutations of the ATP7B gene. Despite 
advancements in medical science, diagnosing this condition remains challenging due to its variable presentation 
and overlap with other disorders. Traditional diagnostic methods are helpful in establishing WD, although in some 
cases, conflicting results may necessitate invasive procedures. The practicing physician may not always utilize the 
known diagnostic parameters or may not weigh their significance due to a lack of experience with the rare 
population of WD patients. In such cases, artificial intelligence (AI) can facilitate the diagnosis and management of 
WD, avoiding individual misinterpretation. By leveraging advanced algorithms and machine learning techniques, AI 
enhances diagnostic accuracy through predictive modeling and data analysis, while also facilitating personalized 
treatment plans tailored to individual patient profiles. Additionally, AI tools are reshaping disease monitoring 
through wearable technology and remote systems that provide real-time data integration with electronic health 
records. However, ethical considerations such as data privacy concerns and algorithmic bias must be addressed to 
ensure responsible implementation of AI in healthcare settings. The potential for broader applications across 
various genetic disorders further emphasizes the importance of continued research and interdisciplinary 
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collaboration among tech developers, clinicians, and researchers. Ultimately, this paper highlights how AI can 
significantly improve patient outcomes and modulate copper metabolism in such a way that WD patients have a 
normal and worthwhile life expectancy.
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INTRODUCTION
Overview of Wilson disease
Wilson disease (WD) is a rare genetic disorder characterized by the excessive accumulation of copper in the 
body, primarily affecting the liver, brain, and other vital organs[1]. This condition arises from mutations in 
the ATP7B gene, which disrupts the body’s ability to regulate copper levels effectively. Understanding WD 
is important because it can help prevent severe health complications through appropriate therapy. The 
complications in WD include liver failure, neurological disorders, and psychiatric issues. Early diagnosis 
and effective intervention are crucial to mitigate these risks and improve patient outcomes. In this review, 
we have compiled information from previous papers found in the PubMed database that utilized artificial 
intelligence (AI) for the diagnosis and management of WD. We conducted a search using the keywords 
“Wilson disease” and “artificial intelligence”. However, the search yielded papers that were, in most cases, 
highly specific. Therefore, we only discuss and cite those that are of more general interest.

Current challenges in diagnosis and management
Despite advancements in medical science, diagnosing WD remains challenging due to its variable 
presentation and overlap with other conditions. In WD, metabolic alteration primarily occurs due to the 
accumulation of copper in the liver, leading to hepatocellular damage. The liver plays a critical role in the 
body’s metabolism by processing nutrients absorbed from the digestive tract, converting them into energy, 
and storing essential substances such as glycogen, lipids, and minerals including iron and copper. 
Additionally, it is responsible for detoxifying harmful substances, regulating blood sugar levels, and 
synthesizing proteins necessary for various bodily functions, making it vital for overall metabolic health. 
Therefore, ongoing damage to the liver can lead to severe and numerous health complications, ultimately 
compromising overall bodily functions and quality of life[2]. In addition, many patients with WD experience 
nonspecific symptoms such as fatigue, abdominal pain, or behavioral changes that can lead to misdiagnosis 
or delayed treatment[3]. Traditional diagnostic methods often require invasive procedures like liver biopsies 
or extensive laboratory testing, which even may not always yield definitive results[1,4]. These challenges 
highlight the need for more efficient diagnostic tools and management strategies that can provide timely 
interventions tailored to individual patient profiles.

Introduction to AI in healthcare
AI is emerging as a transformative force in healthcare, offering innovative solutions to complex medical 
problems[5]. By leveraging advanced algorithms and machine learning techniques, AI can analyze vast 
datasets rapidly and accurately, capabilities that are especially advantageous in areas like diagnostics and 
disease management. In the context of WD, AI has the potential to enhance diagnostic accuracy through 
predictive modeling based on patient data while also improving personalized treatment plans by integrating 
various clinical information sources[6].

Purpose of this perspective
The purpose of this paper is to explore how AI is revolutionizing the diagnosis and management of WD in 
the 21st century. Compared to previous papers, we have included pathogenetic and pathophysiological 
aspects to explain the diagnostic features and their importance in establishing WD. We also provide a 
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rationale for its treatment. We discuss the current challenges that healthcare professionals face in effectively 
diagnosing and managing WD. Furthermore, we will delve into specific applications of AI technology 
within this field, highlighting its role in enhancing diagnostic accuracy, personalizing treatment strategies, 
monitoring disease progression, and addressing ethical considerations surrounding its use. By shedding 
light on these aspects, this paper aims to underscore the importance of continued research and 
collaboration between technologists and clinicians for advancing care for individuals affected by WD.

UNDERSTANDING WD
Physiology of copper metabolism
Copper plays a catalytic role in cellular respiration as part of the oxygen-handling proteins, known as 
cytochromes[7]. In the blood, copper is present as a copper cluster within ceruloplasmin, which is 
synthesized in the liver. Ceruloplasmin is responsible for oxidizing iron from a Fe2+ state in ferritin to a Fe3+ 
state, allowing it to bind to transferrin[8]. We consume about 900 µg of copper daily in its cupric form 
(Cu2+)[8]. To be transported into the system, copper must be converted (reduced) to Cu+ at the apical side of 
mucosal cells, which is the form that can pass through cell membranes via the copper transporter 1 (Ctr1). 
Within the cells, the toxic Cu+ is bound to copper chaperones such as ATOX1 or, in cases of excess 
intracellular copper, to metallothionein. ATOX1 releases its Cu+ to the ATP7A (Menkes ATPase) at the 
basal side of mucosal cells for delivery to the blood, where it is taken over by albumin[9]. In the liver, after 
the reduction of Cu2+ at the basal plasma membrane, Cu+ is absorbed from albumin by Ctr1 and then 
transferred to ATOX1. When in excess, Cu+ is stored in metallothionein. The Cu+ bound to ATOX1 is 
presented to ATP7B (Wilson ATPase) for translocation to the trans-Golgi network (TGN). In the TGN, 
copper is loaded onto apoceruloplasmin with its six copper binding sites before ceruloplasmin is secreted 
into the blood via a vesicular pathway. Once the capacity for copper incorporation into apoceruloplasmin or 
other less abundant copper-containing proteins is met, any remaining copper leaves the TGN through a 
vesicular export route, passing through the canalicular plasma membrane into bile as an unabsorbable 
complex[10] [Figure 1].

Genetic basis and pathophysiology
WD is caused by mutations in the ATP7B gene located on chromosome 13, which encodes the Wilson 
ATPase ATP7B[11] [Figure 2]. This defective protein impairs the translocation of Cu+ to the TGN, hindering 
the incorporation of copper into ceruloplasmin and its excretion into bile. Consequently, copper 
accumulates primarily in hepatocytes, initially stored in metallothionein, whose synthesis is stimulated by 
the excess copper.

When this rescue pathway is overwhelmed, excess copper is deposited in lysosomes (Rhodanine-positive 
granules), leading to cellular damage over time due to oxidative stress and even necrosis or apoptosis[10] 
[Figure 3].

This pathophysiological process ultimately leads to liver cirrhosis with hepatic dysfunction. In addition to 
the lack of ceruloplasmin synthesis and the absence of biliary copper secretion, albumin-bound copper is no 
longer taken up by the liver. Unlike ceruloplasmin, copper bound to albumin is only loosely associated and 
can exchange with histidine, a copper-binding amino acid (albumin-histidine shuttle)[13]. This represents the 
non-ceruloplasmin bound or “free” copper. An excess of free copper can enter various parenchymal cells 
and is responsible for a plethora of clinical symptoms, particularly neurological manifestation when copper 
deposits affect brain tissue[10].
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Figure 1. Schematic representation of copper metabolism in healthy individuals compared to Wilson disease. The regulation of copper 
levels involves absorption in the upper gastrointestinal tract and excretion by liver cells (hepatocytes) into bile as an insoluble complex. 
Key components include the mucosal cell and the hepatocyte. This diagram illustrates the processes of cellular uptake, intracellular 
transport, storage, metabolic processing within the liver, and cellular excretion. In Wilson disease, a mutation in the ATP7B gene leads to 
a defective copper transporter at the trans-Golgi network, hindering proper loading of apoceruloplasmin with copper, resulting in 
decreased serum copper levels. Additionally, impaired biliary excretion causes copper accumulation in hepatocytes, initially bound to 
metallothionein. Cu+: Cuprous form; Cu2+: cupric form; ATOX1: antioxidant copper chaperone; ATP7A: ATPase copper transporter alpha; 
ATP7B: ATPase copper transporter beta; CTR1: copper transporter 1.

There are other rare genetic diseases resembling WD, as summarized in Table 1. Each of them has a 
different clinical picture due to varying pathophysiology and requires a distinct therapeutic approach. This 
information can be utilized in AI analysis for cases of disturbed copper metabolism unrelated to WD[4].

Epidemiology and prevalence
The prevalence of WD varies globally but is estimated to be around 1 in 30,000 individuals overall[4]. 
However, certain populations exhibit higher rates due to founder effects or consanguinity patterns that 
increase mutation frequency within families or communities. It affects both males and females equally. The 
disease typically presents between ages 5-35 years, but manifestations can occur earlier in life or as late as 70 
years, when symptoms become apparent due to significant copper accumulation over time without 
appropriate treatment measures taken during earlier life stages. It is emphasized that early detection plays a 
critical role in preventing irreversible organ damage[1,4].

Traditional diagnostic methods
Diagnosing WD involves a combination of clinical evaluation alongside laboratory tests aimed at assessing 
abnormalities in copper metabolism in suspected patients[1,4]. The clinical presentation can involve multiple 
organs with various symptoms that, on their own, are not necessarily indicative of WD. However, when 



Page 5 of Stremmel et al. Metab Target Organ Damage. 2025;5:9 https://dx.doi.org/10.20517/mtod.2024.138 23

Table 1. Rare genetic diseases resembling Wilson disease1

Disorder Gene Cytogenetic 
location2

Serum 
ceruloplasmin Hepatic Cu

24-h 
basal 
urinary 
Cu

Possible mechanism (s) Type

Aceruloplasminemia CP 3q24-q25.1 Absent Normal; Fe ↑ Normal No production of 
ceruloplasmin

Clinical

MDR3 deficiency ABCB4 7q21.12 Normal NN May be ↑ Cu retention due to 
cholestasis

Clinical

MEDNIK syndrome AP1S1 7q22.1 Very low May be ↑ ↑ (2.5 µ
mol/24-h)

Abnormal protein production 
and metal (Cu) excretion

Mechanistic

Mn retention-1 SLC30A10 1q41 Normal Slightly ↑ NN Hepatic Mn excretion 
abnormality

Mechanistic

Mn retention-2 SLC39A14 8p21.3 Not reported NN NN Abnormal hepatic Mn uptake Mechanistic

Nieman-Pick type C NPC1, 
NPC2

18q11.2; 14q24.3 Low or slightly 
low

Mildy ↑ (100-
250 µg/g dry 
weight)

Normal Defective interaction with 
ATP7B

Mechanistic

PGM1-CDG PGM1 1p31.3 Low Mildy ↑ (50-
250 µg/g dry 
weight)

Normal (Golgi dysfunction) Clinical, 
mechanistic

CCDC115-CGD CCDC115 2q21.1 Low or very low Slightly ↑ Normal or 
mildly ↑

Abnormality in protein 
production pathway affecting 
ATP7B function (Golgi 
dysfunction)

Clinical, 
mechanistic

TMEM119-CDG TMEM199 17q11.2 Low Not reported Normal or 
mildly ↑

(Golgi dysfunction) Clinical,
mechanistic

1Data were taken in modified form from[4]; 2The cytogenetic locations were obtained from the OMIM database[14]. ↑: Increase. ABCB4: ATP-binding
cassette, subfamily B, member 4; AP1B1: adaptor-related protein complex 1, beta 1 subunit; AP1S1: adaptor-related protein complex 1, sigma 1 subunit;
CCDC115: coiled-coil domain-containing protein 115; CP: ceruloplasmin; NPC1: NPC intracellular cholesterol transporter 1; NPC2: NPC intracellular
cholesterol transporter 2; SLC30A10: solute carrier family 30 (zinc transporter), member 10; SLC39A14: solute carrier family 39 (zinc transporter),
member 14; TMEM119: transmembrane protein 119; NN: not known.

considered in combination, they can be a useful tool in suspecting the diagnosis [Figure 4].

However, any unexplained liver disease - particularly in childhood and adolescence - should be considered
as WD. This is also true for Coombs-negative hemolytic anemia with high bilirubin levels. Finally, liver
enzyme elevation and signs of hepatic architectural changes observed on ultrasound, in association with a
movement disorder (e.g., tremor), should also raise suspicion for WD. A family history of WD is a very
strong indicator of this copper overload disease[1,4]. The challenge lies in identifying asymptomatic cases, as
early therapy can prevent complications and provide a normal life expectancy. Thus, alongside clinical
suspicion, a laboratory examination is essential. Initial evaluations include measuring serum ceruloplasmin
levels (which are low, mostly clearly reduced or at least below the lower level of normal). Since
ceruloplasmin is the predominant copper-containing protein in blood, serum copper is also reduced.
Urinary copper excretion is elevated due to the above-mentioned release of “free” copper. In normal
individuals, only 10%-20% of copper is “free”, while in untreated WD, it represents up to 60%-80% of serum
copper. Unfortunately, due to technical reasons, it is not directly measurable[15]. In cases with low serum
ceruloplasmin levels (< 0.1 g/L), there is a formula that can estimate the free copper with sufficient
accuracy[10]:

free Cu (µg/dL) = total Cu (µg/dL) - ceruloplasmin (mg/dL) × 3.15.

According to the elevated, filterable free copper, urinary copper is increased without further stimulation by
D-penicillamine, making it a very reliable diagnostic parameter[1,4] [Table 2].
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Figure 2. The ATP7B gene. (A) The ATP7B gene (OMIM: 606882) is located on the long arm (q-arm) of human chromosome 13, 
specifically in region q14.3. It consists of 21 exons, encoding a transcript of approximately 7.5 kb that translates into a 1,465 amino acid 
protein with an estimated molecular weight of around 165 kDa; (B) The ATP7B protein, known as ATPase copper-transporting beta, 
contains a phosphatase domain, a phosphorylation domain, an ATP binding domain, a metal binding domain, and eight transmembrane 
segments. The ideogram image shown in (A) was obtained from the Genome Data Viewer of the National Library of Medicine[12]. There 
are over 500 known disease-causing mutations, with the most common European mutation being H1069Q and the most common 
mutation in the Chinese population being R778L. The location of these mutations is shown.

Clinical presentation can vary from asymptomatic cases to severe manifestations in terms of hepatic and 
neurological symptoms. Hepatic manifestations range from simple hepatomegaly with hyperechogenicity, 
often with elevated transaminases, to acute liver injury/failure, and cirrhosis (compensated or 
decompensated). Neurological manifestations typically manifest as movement disorders (tremors, 
involuntary movements, rigid dystonia), dysphagia, dysarthria, pseudobulbar palsy, drooling, 
dysautonomia, seizures, and sleep disorders. Psychiatric manifestations include depression, bipolar 
disorders, personality changes, and psychosis. Other manifestations include Kayser-Fleischer rings, 
sunflower cataracts, renal abnormalities, skeletal manifestations (osteoporosis, arthritis), cardiomyopathies 
and arrhythmias, pancreatitis, hypoparathyroidism, infertility, and miscarriages. The wide range of possible 
manifestations and their overlap with other diseases pose a challenge in defining the diagnosis. Therefore, a 
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Table 2. Diagnosis of Wilson disease1

Parameter Criteria to diagnose Wilson disease

Ceruloplasmin < 0.2 g/L

Serum copper < 70 µg/dL (12 µmol/L)

Urinary copper > 60 µg/d (> 0.94 µmol/d)

Free copper > 15 µg/dL (0.23 mmol/dL)

D-Penicillamine 2 mg × 500 mg Urinary copper increase to > 20× of basal value, > 1,600 µg/d in children

Liver copper > 250 µg/d dry weight

Kayser-Fleischer rings Sensitivity 50%; Specificity 95%

Genetic analysis Sensitivity 90%; Specificity 100%

1Data taken from[11].

Figure 3. Depiction of the potential hepatotoxic effects of copper accumulation in Wilson disease. Initially, excess copper is sequestered 
within cytosolic metallothionein. Once these stores are full, copper can be re-excreted through CTR1 into the bloodstream. From there, it 
is transported as non-ceruloplasmin-bound copper within a histidine/albumin shuttle complex to other organs, such as the brain, and 
eventually excreted in urine. In hepatocytes, additional copper buildup leads to lysosomal deposition, which can be detected by positive 
Rhodanine staining. The reactive nature of Cu+ damages the lysosomal membrane, causing rupture and the release of Cu+ into the 
cytoplasm, resulting in damage to hepatocytes. This process also renders the plasma membrane permeable, allowing Cu+ to leak into the 
bloodstream and contribute to erythrocyte membrane destruction (hemolysis). Cu+: Cuprous form; Cu2+: cupric form; ATOX1: 
antioxidant copper chaperone; ATP7B: ATPase copper transporter beta; CTR1: copper transporter 1.
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Figure 4. Diverse organ manifestations and symptoms associated with Wilson disease. Wilson disease presents a wide range of 
symptoms that can vary significantly among individuals, affecting multiple organs. The key areas of manifestation include the liver, 
where copper accumulation leads to hepatotoxicity, and the brain, which can experience neurological disturbances due to copper 
deposition. Additional effects may be observed in the eyes, such as Kayser-Fleischer rings, as well as in the kidneys, heart, bones, and 
hematological system. This variability in clinical presentation underscores the complexity of Wilson disease and highlights the difficulty 
of early diagnosis and comprehensive management.

panel of experts evaluated various clinical and laboratory parameters with indicative values for the presence 
of WD and provided a Leipzig scoring system for establishing a diagnosis, which can be used as a helpful 
diagnostic algorithm, including for AI applications [Table 3][1]. Nevertheless, it must be considered that the 
Leipzig score is simply a tool to aid in diagnosis. There are limitations to be aware of, such as cholestatic 
diseases that result in the buildup of copper in the liver. In these cases, elevated urinary copper excretion is 
the most sensitive and specific indicator (refer to pathophysiology). However, in cases of fulminant hepatic 
failure in WD, urinary production may decrease or even stop, making urinary copper excretion unreliable 
or unmeasurable (see below).

Due to the autosomal recessive mode of inheritance, heterozygous carriers of the mutation show discrete 
changes in laboratory parameters but no clinical signs of disease manifestation[1,4]. In these cases which are 
hard to differentiate from asymptomatic early cases of homozygous carriers, no therapy is indicated because 
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Table 3. Leipzig scoring system for diagnosis of Wilson disease1

Typical clinical symptoms/signs Other tests/Score points

Kayser-Fleischer rings Score Liver copper (in the absence of cholestasis) Score

Present 
Absent

2 
0

5× ULN (> 4 µmol/g) 
0.8-4 µmol/g 
Normal (< 0.8 mol/g) 
Rhodanine-positive granules2

2 
1 
-1 
1

Neurologic symptoms3 Score Urinary copper Score

Severe 
Mild 
Absent

2 
1 
0

Normal 
1-2× ULN 
> 2× ULN 
Normal, but > 5× ULN after D-Penicillamine

0 
1 
2 
2

Serum ceruloplasmin Score Mutation analysis Score

Normal (> 0.2 g/L) 
0.1-0.2 g/L 
< 0.1 g/L

0 
1 
2

On both chromosomes detected 
On one chromosome detected 
No mutation detected

4 
1 
0

Coombs-negative hemolytic anemia Score Total score Diagnosis

Present 
Absent

1 
0

≥ 4 
3 
≤ 2

Established 
Possible, more tests needed 
Very unlikely

1This information is adapted from[1]; 2If quantitative liver copper levels are not available; 3or if typical abnormalities are observed on brain 
magnetic resonance imaging. ULN: Upper limit of normal.

of the absence of disease. The presence of WD can be confirmed by sophisticated copper kinetics (mostly 
not available) or imaging techniques, which are particularly significant for detecting the neurological 
manifestations typical of WD.

The presence of neurocognitive features along with Kayser-Fleischer rings is often sufficient for diagnosing 
WD. Accumulated experience has shown that magnetic resonance imaging (MRI) abnormalities are almost 
always present in individuals with neurological manifestations of WD[16-18]. Pathognomonic MRI features 
include the “Face of the giant panda” (14.3%), tectal plate hyperintensity (75%), central pontine 
myelinolysis-like abnormalities (62.5%), and simultaneous signal changes in the basal ganglia, thalamus, and 
brainstem (55.3%).

Diagnosis of WD through genetic analysis is typically performed at specialized centers. By sequencing the 
entire ATP7B gene, known mutations in the family can be confirmed. There are also libraries available that 
can assess the pathogenicity of a specific ATP7B variant [Table 4]. However, it is important to note that not 
all mutations detected are necessarily associated with disease manifestation. Therefore, genetic analysis may 
not always be the definitive method for diagnosis.

Indeed, in some instances, uncertainty regarding the diagnosis of WD persists. In these cases, physicians 
may utilize invasive procedures such as liver biopsies aimed at evaluating the histologic pattern of liver 
affection. More importantly, the demonstration of excess hepatic copper deposition by Rhodanine staining 
or, more precisely, quantifying hepatic copper content (higher than 250 µg/g dry weight, or in mild cases, 
higher than 75 µg/g dry weight) is crucial. This analysis is still considered the gold standard of diagnosis. 
However, the risk of bleeding as a complication of the biopsy procedure must be considered[1,4]. There are 
still cases where the diagnosis remains unclear due to sampling error by biopsy or performing the biopsy 
too early in life when full-blown copper accumulation has not yet occurred.
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Table 4. Representative resources available for evaluating ATP7B gene variants1

Public domain databases

URL Comments

ClinVar https://www.ncbi.
nlm.nih.gov/clinvar/

Hosted by the NCBI; aggregates information about genomic variation and its relationship to human 
health

gnomAD https://gnomad.
broadinstitute.org/

The Genome Aggregation Database, originally launched in 2014 as the ExAC, aggregates exome and 
genome sequencing data from various large-scale sequencing projects

VarSome https://varsome.
com/

A search engine that aims to share global expertise on human variants. It also offers a suite of 
bioinformatics tools for processing and annotating NGS data

Proprietary databases

HGMD https://www.hgmd.
cf.ac.uk/ac/index.
php

Hosted by the University of Cardiff, which systematically collates published gene lesions responsible 
for human inherited diseases. Established in 1996, its goal is to facilitate the scientific study of 
mutational mechanisms in human genes underlying inherited diseases

WilsonGen https://clingen.igib.
res.in/WilsonGen/

WilsonGen is a comprehensive resource of genetic variants in the ATP7B gene, manually curated 
from literature and data resources. It is systematically annotated using the ACMG and AMP 
guidelines for assessing the pathogenicity of genetic variants. WilsonGen serves as a central point 
for clinicians and geneticists working on Wilson Disease. It is a compilation of six datasets: Wilson 
Disease Mutation Database University of Alberta, NDDVD, ClinVar, ATP7B mutations database 
(UMD), LOVD, HGMD and publications

University of 
Alberta Wilson 
Disease Mutation 
Database

Formerly available 
at: 
https://www.
medgen.med.
ualberta.ca/
database.html

Data in this database are now integrated into the WilsonGen database

International 
Wilson Disease 
Mutation Database

https://
wilsondisease.azyfy.
com/home/Blog/
index1

This database, officially launched on September 23, 2022, contains almost all the ATP7B mutations 
reported in articles included in the PubMed and Embase databases updated to May 31, 2022, 
including both Chinese and international databases

1Part of these data are taken from[4]. NCBI: National Center for Biotechnology Information; ExAC: Exosome Aggregation Consortium; NGS: Next-
Generation Sequencing; HGMD: Human Gene Mutation Database; ACMG: American College of Medical Genetics; AMP: Association of 
Molecular Pathology; NDDVD: Neurodegenerative Diseases Variation Database; UMD: Universal Mutation Database; LOVD: Leiden Open 
Variation Database; HGMD: Human Gene Mutation Database.

THE ROLE OF AI IN DIAGNOSIS
AI algorithms for data analysis
In the realm of WD, AI algorithms are revolutionizing data analysis by enabling more accurate and efficient 
diagnosis and management[19-24]. These algorithms are accessible to practicing physicians, making them 
easily available to affected patients, without the need for specialized WD specialists. They leverage vast 
datasets, including genetic information, clinical symptoms, and biochemical markers, to identify patterns 
that may be overlooked by traditional methods. Machine learning techniques, such as supervised and 
unsupervised learning, facilitate the development of predictive models that can assess disease progression 
and treatment responses in real time. By integrating AI-driven insights into clinical workflows, healthcare 
professionals can make informed decisions tailored to individual patient profiles, ultimately enhancing 
outcome prediction for those affected by WD. The application of AI not only streamlines data processing, 
but also fosters a deeper understanding of the complexities of diseases. This paves the way for new 
pathogenetic mechanisms, such as urea-Krebs´ cycle abnormalities, the central role of mitochondria, and 
mechanisms of hepatic injury[19]. Moreover, innovative new therapeutic strategies may emerge.

Enhancing diagnostic accuracy
WD is a well-characterized condition with a comprehensive list of reported clinical symptoms, as shown 
above [Figure 4]. However, the diagnostic significance is not outlined in this compilation. Which symptoms 
are common in WD and which are rare? This responsibility lies with experts in the field who create 
corresponding guidelines[1,4]. These guidelines cover both clinical asymptomatic patients and symptomatic 
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Figure 5. Diagnostic algorithms for Wilson disease. The algorithms for patients with (A) unexplained liver conditions and (B) 
neurological symptoms are depicted. The numbers in parentheses correspond to the Leipzig score, where a total score of 4 or higher 
indicates a strong likelihood of Wilson disease. The minimum ULN for basal 24-h urinary Cu excretion is set at 40 μg/24 h. Genetic 
testing involves examining the ATP7B gene sequence to identify any disease-associated mutations present on each allele. The 
manifestation of Wilson disease as a neurological disorder without the presence of Kayser-Fleischer rings is uncommon, yet it poses 
significant diagnostic challenges. These schemes were adapted from[4]. ULN: Upper limit of normal; Cu: copper; CPN: ceruloplasmin.

cases with hepatic and neurological manifestations, outlining the most suitable approach [Figure 5][4].

Screening first-degree relatives of patients with WD is crucial due to the hereditary nature of this genetic 
disorder, which impairs copper metabolism and can lead to severe liver and neurological complications. 
Since WD follows an autosomal recessive inheritance pattern, siblings and children of affected individuals 
have a 25% chance of being affected themselves and a 50% chance of being carriers. Early detection through 
screening can facilitate timely intervention, potentially preventing the onset of symptoms or reducing 
disease severity in those who are diagnosed. Moreover, understanding their carrier status can help in family 
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Figure 6. Screening for Wilson disease in first-degree relatives of a diagnosed individual (proband). The initial step involves identifying 
all first-degree relatives. If the proband’s genotype related to Wilson disease (ATP7B) is known, genetic testing serves as the most 
effective screening method. In cases where the genotype is not available, clinical assessments are necessary. Should clinical evaluations 
yield inconclusive results and genetic testing not an option, a follow-up noninvasive assessment should be conducted after 6 to 12 
months. A treatment trial may also be considered at this stage. Genetic testing entails analyzing the ATP7B gene sequence to check for 
disease-associated mutations on each allele. This scheme was adapted from[4]. ATP7B: Adenosine triphosphatase copper-transporting 
beta; CPN: ceruloplasmin; INR: international normalized ratio; Cu: copper.

planning decisions. A strategy for screening first-degree relatives is depicted in Figure 6.

There are still areas of uncertainty in establishing a diagnosis, which are summarized in Table 5[4].

Another area that could benefit from AI technology is the specific diagnostic features of acute hepatic 
failure in WD. This is indeed a challenging diagnosis, especially in young patients (e.g., 14 to 24 years of 
age), predominantly in females without any previous signs of liver disease. They rapidly develop jaundice 
with elevated levels of conjugated and unconjugated bilirubin due to hepatic failure or hemolysis, 
respectively. Alkaline phosphatase is often low for unexplained reasons, but not in all cases[25,26]. Liver 
function is compromised (cholinesterase, albumin, and coagulation parameters). Thrombocytopenia is 
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Table 5. Checklist for dealing with “gray areas” in the provided diagnostic algorithms1

Type of problem Specific issues Action

Accuracy of laboratory 
data

Serum ceruloplasmin - potential confounders to consider 
24-h urinary copper - ensure complete collection and 
potential contamination 
Liver [Cu] - was the specimen large enough? Stored 
properly 
Thoroughness of genetic analysis

Confirm the technical adequacy of the assay 
Check the creatinine level 
Repeat testing 
Check the report and/or discuss it with the 
pathologist 
Review protocols 
Consult a clinical geneticist 
Confirm trans (not cis) mutations

Adequacy of clinical 
assessment

Neurological assessment 
Presence of Kayser-Fleischer rings 
Psychiatric assessment (only implied in algorithms)

Expert review to specify relevant findings 
Brain MRI 
Request an exam or optical tomography to determine 
the presence 
Expert consultation/review

Data available but not 
accounted for in algorithms

Liver function tests 
Liver tissue examination (histology)

Normal LFTs would likely preclude a liver biopsy 
Abnormal LFTs support WD or some other liver 
disorder: biopsy may be performed 
Findings may support WD or provide a basis for an 
alternative diagnosis 
Consider examining ultrastructure (by EM) as 
findings may support WD, especially in children

Emerging problem not well 
accounted for in algorithm

Hepatic Cu < 250 µg/g dry weight but above suggested 
revisions of that threshold (e.g., > 75 µg/g dry weight) and 
well above normal 
Only one mutation found, but along with a VUS 
Screening reveals an affected infant/toddler who is entirely 
healthy

Reevaluate, with genetic analysis if not yet performed 
Treatment trial 
Repeat clinical/biochemical evaluation in 6-12 months 
or until a clear diagnosis is reached 
In silico assessment of VUS 
Reevaluate every 6 months and plan to start 
treatment at 3 years old unless earlier evidence of 
organ damage

1Data were taken in modified form from[4]. Cu: Copper; EM: electron microscopy; LFT: biochemical liver test; MRI: magnetic resonance imaging; 
VUS: variant of unknown significance; WD: Wilson disease.

frequently present. The course is characterized by the rapid development of hepatic encephalopathy, often 
within 3-4 days, leading to a fatal outcome. Therefore, immediate registration for liver transplantation is 
crucial and can be life-saving. However, establishing a diagnosis of underlying WD is often challenging. 
Inflammatory parameters (transaminases) are only mildly to moderately elevated, while functional 
parameters are significantly reduced (high bilirubin, low coagulation parameters, low albumin, low 
cholinesterase, high ammonia). Due to liver failure, ceruloplasmin levels may be decreased, as in non-
Wilsonian acute liver decompensation, while free copper levels are elevated. This can be difficult to detect as 
it is not typically provided by standard laboratories. Calculating free copper is unreliable as it requires very 
low ceruloplasmin concentrations (< 0.1 mg/dL)[11]. Urinary copper excretion is a valuable parameter, as it 
reflects the free copper in the blood. However, some patients may have compromised urinary excretion due 
to hepatorenal syndrome, leading to low copper excretion, which could impede the diagnosis. Liver biopsy 
for quantifying liver copper, considered the gold standard of diagnosis, is challenging due to impaired 
coagulation (low plasma coagulation and low platelets). Genetic analysis can be time-consuming for 
logistical reasons and is not always reliable. The diagnostic features of fulminant hepatic failure are 
summarized in Table 6.

AI can help increase the likelihood of establishing the correct diagnosis. For fulminant hepatic failure due to 
WD, liver transplantation is often a curative option with better post-transplant survival rates compared to 
other reasons for liver transplantation, possibly due to the young age of the patients[1,4]. Furthermore, AI is 
significantly enhancing the diagnostic accuracy of WD by providing advanced analytical tools that assist 
clinicians in interpreting complex medical data. AI could also be useful in analyzing various influencing 
factors. For instance, the impact of estrogen on the increase of ceruloplasmin levels could be taken into 
account during diagnostic evaluations. Traditional diagnostic methods often rely on subjective assessments 
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Table 6. Introducing the NWI: a prognostic scoring system for Wilson Disease using conventional units1

Points assigned 0 1 2 3 4

Bilirubin, mg/dL 
Bilirubin, µmol/L

0-5.8 
0-100

5.9-8.7 
101-150

8.8-11.7 
151-200

11.8-17.5 
201-300

> 17.5 
> 300

INR 0-1.29 1.3-1.6 1.7-1.9 2.0-2.4 ≥ 2.5

AST, IU/L 0-100 101-150 151-200 201-300 > 300

WBC (×106/mL) 0-6.7 6.8-8.3 8.4-10.3 10.4-15.3 ≥ 15.4

Albumin, mg/dL > 4.5 3.4-4.4 2.5-3.3 2.1-2.4 ≤ 2.0

A score ≥ 11 is a strong predictor of mortality without liver transplantation

1Data were taken from[4]. AST: Aspartate aminotransferase; INR: international normalized ratio; MELD: Model of End-Stage Liver Disease; WBC: 
white blood cell count; NWI: New Wilson index.

and limited laboratory results, which can lead to misdiagnosis and, thus, delayed treatment.

AI algorithms, particularly those employing deep learning techniques, analyze a multitude of factors 
including genetic profiles, imaging studies, and biochemical tests to identify subtle indicators of the 
disease[19-24]. Examples of diagnostic algorithms for WD have already been proposed in the practice 
guidelines by the American Association for the Study of Liver Diseases (AASLD)[4] [Figure 5].

Predictive modeling based on patient data enables the development of sophisticated algorithms that can 
forecast disease progression and treatment responses by identifying patterns across large datasets. 
Additionally, image analysis techniques using advanced MRI technology for brain and liver scans play a 
crucial role in this process. AI systems can analyze these images with exceptional precision, detecting early 
signs of hepatic damage or copper accumulation that may not be visible to the naked eye. By synthesizing 
information from diverse sources and recognizing intricate patterns within the data, AI systems can flag 
potential cases of WD earlier and more reliably than conventional approaches. This increased precision not 
only facilitates timely intervention but also minimizes the risk of complications associated with late 
diagnosis, ultimately improving patient outcomes and quality of life for individuals affected by this 
condition. As AI continues to evolve, its integration into clinical practice promises to further refine 
diagnostic processes and enhance our understanding of WD complexities.

Case studies or examples of successful AI implementations
The implementation of AI in the diagnostic management of WD should begin with a basic assessment of 
clinical features, followed by an examination of laboratory data that focuses on detecting liver diseases and 
metabolic changes, especially those related to copper metabolism. Another challenge is related to the 
classification of genetic variants in the ATP7B gene and their pathogenetic significance. It is essential to 
analyze the involvement of both the liver and brain. It is important to consider the patient’s age, whether 
they are a child, adolescent, or adult. AI algorithms could utilize the information provided in the text, 
figures, and tables presented here, but they need to be consistently updated with new findings and 
recommendations from consensus conferences.

Diagnostic procedures and evaluation of liver involvement
Several case studies highlight the successful implementation of AI in the diagnosis and management of WD, 
showcasing its transformative potential[19,22]. One notable example involves a research team that developed 
an AI-driven diagnostic tool utilizing machine learning algorithms to analyze patient data from multiple 
healthcare institutions[5,6]. This tool demonstrated a remarkable accuracy rate in identifying WD, 
significantly reducing the time taken for diagnosis compared to traditional methods. In another instance, a 
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collaborative project between radiologists and data scientists employed deep learning techniques to evaluate 
MRI scans of patients suspected of having WD. The AI system was able to detect early signs of liver damage 
with higher sensitivity than human experts, enabling earlier intervention and improved patient outcomes. 
Additionally, predictive modeling applications have been utilized to assess treatment responses based on 
historical patient data, allowing clinicians to tailor therapies more effectively for individual patients.

Tools to detect brain affection
Agarwal et al. designed and validated seven types of advanced, high-performing AI-based computer-aided 
design (CADx) systems for classifying and characterizing brain magnetic resonance images from patients 
with WD against control groups. They addressed challenges posed by subtle intensity changes in MRI 
scans[20]. The AI models were evaluated using metrics such as area under the curve (AUC), diagnostic odds 
ratios (DOR), reliability, stability, and benchmarking against other machine learning methods like k-NN, 
decision trees, support vector machines (SVM), and random forests (RF). An improved deep convolution 
neural network (iDCNN) achieved a diagnostic accuracy of 98.28% ± 1.55% with an AUC of 0.99 in 
identifying WD. Additionally, the study utilized CNN-based feature map strength alongside bispectrum 
signal processing techniques for characterization purposes, showcasing a novel way to analyze MRI features 
indicative of WD. Power analysis indicated that a dataset size above 60% was necessary for generalization 
without compromising accuracy[20]. Overall, this research highlights the potential of advanced AI 
methodologies in improving early diagnosis and characterization of WD through effective image analysis 
techniques based on deep learning frameworks.

Similarly, Yang et al. focused on developing a predictive model for neurological symptoms in patients with 
WD using advanced machine learning techniques[23]. In their study, they analyzed data from 185 WD 
patients, 163 of whom exhibited neurological symptoms, and utilized various clinical indicators such as 
imaging results, blood tests, and clinical scale measurements. Among the machine learning methods tested, 
the eXtreme Gradient Boosting (XGB) algorithm showed the best performance, achieving an accuracy of 
92.9%, an area under the receiver operating characteristic curve (AUROC) of 0.835, and an area under the 
precision-recall curve (AUPRC) of 0.975. Key predictors identified through this model included brainstem 
damage, creatinine levels, age, indirect bilirubin levels, and ceruloplasmin levels. The study used Shapley 
Additive Explanations (SHAP) to interpret feature importance, revealing that higher values of creatinine 
and indirect bilirubin and older age increased the likelihood of neurological symptoms, while lower 
ceruloplasmin levels also correlated with symptom onset[23]. This example demonstrates that machine 
learning enhances clinical decision making by identifying critical indicators associated with neurological 
complications in WD patients.

Likewise, Zhang et al. utilized AI-based techniques to explore the potential of using resting-state functional 
magnetic resonance imaging (rs-fMRI) data, specifically the amplitude of low-frequency fluctuations 
(ALFF), which reflects the intensity of spontaneous brain activity, as a biomarker for diagnosing WD[21]. The 
study included 30 healthy controls and 37 WD patients, with ALFF values obtained from rs-fMRI data 
preprocessing. Four significant clusters were identified where WD patients showed abnormal ALFF z-values 
compared to healthy controls, particularly in regions like the thalamus and caudate nucleus. Three machine 
learning models [RF, SVM, and logistic regression (LR)] were developed to classify these groups based on 
ALFF data. The models exhibited good performance, achieving AUC values greater than 0.80 for several 
clusters, indicating their effectiveness in distinguishing between WD patients and healthy individuals[21]. 
Importantly, the integration of multimodal information did not significantly improve model performance 
beyond what was achieved using only ALFF data.
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Metabolic predictors for clinical courses
Another important example in which AI was used to address challenges in the diagnosis of WD was 
presented by Medici et al.[19]. By integrating clinical and molecular data, including serum metabolite levels, 
the artificial neural network (ANN) was trained to identify patterns associated with different WD 
phenotypes, which differ in hepatic, neurological, and asymptomatic manifestations. Notably, plasma levels 
of specific amino acids such as glutamate, asparagine, taurine, and ratios like Fischer’s ratio emerged as 
critical indicators for diagnosing WD[19]. The final ANN achieved high accuracy in distinguishing between 
healthy individuals and those with WD, while suggesting that many patients might have undiagnosed 
neurological issues even when asymptomatic. This innovative approach not only facilitates earlier diagnosis 
but also provides insights into underlying metabolic dysfunctions related to hepatic mitochondria in WD 
pathology.

Parameters to predict progression and prognosis
Liang et al. conducted a retrospective cohort study using US Optum EHR data from 2007 to 2020. The 
research employed advanced AI techniques, including LASSO Cox regression, Random Survival Forest 
(RSF), and XGBoost (XGB) models. These methods were utilized to identify significant predictors for 
adverse outcomes in WD patients[22]. Key findings revealed that factors such as age at diagnosis, alcoholism, 
AST and bilirubin levels shortly after diagnosis, along with neurologic and hepatic conditions, were strong 
predictors of progression. Among the machine learning models tested, XGB demonstrated slightly superior 
predictive performance compared to RSF. The resulting models were validated on an independent cohort 
using metrics like C-index and dynamic AUC. The study reported dynamic AUC values indicating good 
predictive accuracy over time for cirrhosis (0.78 at year 1), liver failure (0.82 at year 1), and death (0.81 at 
year 1)[22]. This example also demonstrates that the integration of machine learning into this research 
enhances understanding of WD disease natural history and offers potential benefits for clinical trial design 
and personalized patient care through individualized risk assessments based on identified clinical 
predictors.

AI application of genetic analysis in the diagnosis of WD 
Recently, Vatsyayan et al. introduced a new machine learning framework aimed at classifying genetic 
variants of the ATP7B gene lined to WD as either pathogenic or benign[24]. By leveraging two sophisticated 
algorithms, TabNet and XGBoost, the authors trained their models on a comprehensive dataset sourced 
from the WilsonGen database. Both models demonstrated high accuracy rates, with TabNet achieving 99% 
accuracy and XGBoost achieving 98.6% accuracy when validated against independent datasets. This 
innovative approach enables the swift classification of numerous genetic variants, including those previously 
categorized as variants of uncertain significance (VUS), thus expediting clinical interpretations and 
deepening our understanding of the genetic landscape of WD[24]. Moreover, by showcasing superior 
performance in comparison to existing tools, this study highlights the potential of deep learning 
methodologies in genomic medicine, particularly in navigating the complexities of variant classification in 
rare diseases such as WD.

Perspective
As AI technologies continue to evolve and integrate into clinical practice, they hold the promise of 
transforming how WD is diagnosed and treated in the 21st century. AI can analyze complex datasets, 
including genetic risk factors, changes in metabolic profiles, and conspicuous features in imaging data. This 
can enhance diagnostic accuracy and facilitate early intervention strategies for patients with WD.
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AI MANAGEMENT STRATEGIES
Personalized treatment plans using AI insights
AI is paving the way for personalized treatment plans in WD by harnessing insights derived from extensive 
patient data. The actual treatment options are limited. A first supportive step is maintaining a diet that 
avoids copper-rich food. This includes innards, nuts, raisins, chocolate, cacao, mushrooms, soy-based 
products, and shellfish. Respective lists can be found online. WD cannot be exclusively treated with dietary 
restriction. According to the pathophysiology described above, the ultimate goal of therapy is to prevent 
copper-induced cellular injury, rather than necessarily removing copper from the body, which is only 
partially achievable[10,11]. Treatment options recommended by European and American expert panels include 
the chelators D-penicillamine and trientine (only when D-penicillamine is not tolerated), or oral zinc 
preparations (3 mg zinc × 50 mg zinc daily)[1,4]. Other treatment options, such as dimercaprol, were deemed 
more harmful or less effective, so they will not be discussed further.

Table 7 summarizes the therapeutic options, but they only represent the authors’ recommendations. For a 
more detailed guideline of the individual treatment options, including children and adolescent doses, as well 
as dosage in pregnancy, lactation, and concomitant diseases, we refer to the published guidelines[1,4] and 
instruction leaflets of the applied medications.

Chelators bind “free” copper in the blood (copper not bound to ceruloplasmin) to facilitate its excretion in 
urine. This binding of toxic copper is a cellular protective mechanism. Both chelators also induce the 
synthesis of metallothionein, which binds and neutralizes toxic Cu+ within cells[27]. In the intestine, the 
induction of metallothionein inhibits copper absorption, helping to achieve a negative copper balance. D-
penicillamine is often associated with adverse effects, such as an initial worsening of neurological symptoms 
and a higher risk compared to trientine or zinc therapy. Early sensitivity reactions, as well as nephrotoxicity 
or bone marrow toxicity, can also occur. Dermatological toxicity, such as collagen disorders or pemphigus, 
may develop. The dosage should be slowly increased from 150 mg to 1,200 mg daily. Trientine is as effective 
as D-penicillamine but may require a higher dose with fewer side effects[11].

Zinc (3 mg × 50 mg for adults, 3 mg × 25 mg for children and adolescents) is the safest and most effective 
therapy for WD. It induces metallothionein, which provides cellular protection and inhibits copper 
absorption. The only potential drawback may be dyspepsia, but this can be minimized by providing zinc as 
a complex with amino acids, such as histidine. Pancreas irritation (enzyme elevation) may also occur. 
However, if tolerated, it is an excellent therapy for WD. Therapy progress is monitored by normalizing 
copper excretion in urine (24-h collection) while taking zinc or after a 2-day pause in chelator therapy[11]. If 
copper in urine is undetectable, a gradual reduction in the initial dosage of the therapies can be considered, 
with close monitoring of urinary copper levels. An ideal parameter for balanced and effective therapy would 
be measuring free copper levels, which should be normal under effective therapy. However, this is a 
technically challenging laboratory analysis and is not yet routinely available. The calculated free copper 
estimation is only reliable when ceruloplasmin is < 0.1 g/dL (as mentioned above).

A final therapeutic option for WD is liver transplantation. This is only applicable in cases of advanced 
cirrhosis, mostly untreated cases with severe liver function failure, or in rare cases of hepatocellular 
carcinoma if transplantation is deemed suitable for limited disease extension. The second indication is acute 
hepatic failure in fulminant WD, which occurs in 5% of all cases. The outcome of liver transplantation in 
these cases is usually better compared to other indications, as it corrects the metabolic defect in the liver, 
eliminating the need for further therapy[28,29]. However, there is still a mortality rate of 10%-20% within the 
first year after transplantation. This is why liver transplantation is not recommended for the general WD 
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Table 7. Therapy of Wilson disease

Chelator therapy Zinc therapy

(1). D-Penicillamine
Begin with 150-300 mg daily, increasing by 300 mg increments every 7 days up to 1,200
mg on an empty stomach
For children and adolescents: 10 mg/kg

In case of adverse events:
(2). Trientine
- dihydrochloride
- tetrahydrochloride
Starting with 200 mg daily, increasing by 200 mg every 7 days up to 800-1,600 mg on
an empty stomach; for children and adolescents, use half of the adult dose (10 mg/kg)

Oral zinc (optimal zinc histidine) 
Start with 50 mg daily, increasing by 50 mg 
increments every 7 days up to 150 mg on an empty 
stomach 
For children and adolescents: 
Start with 25 mg daily, increasing by 25 mg 
increments every 7 days up to 75 mg on an empty 
stomach

population, as with available treatment options, normal life expectancy can be achieved[30]. Whether gene 
therapy may become a therapeutic option for the general WD population remains to be seen[31]. The issue 
may be immunologic reactivity, which could impact efficacy, especially if gene therapy can only be applied 
once in a lifetime.

By analyzing genetic, biochemical, and clinical information, AI algorithms can identify specific disease 
patterns and predict individual responses to various therapeutic interventions. This enables healthcare 
providers to tailor treatment strategies that are uniquely suited to each patient’s needs, optimizing efficacy 
while minimizing potential side effects and dosage adaptation for patients in special periods of their disease 
and other life circumstances[19-24]. For instance, machine learning models can evaluate the likelihood of a 
patient responding positively to chelation therapy based on their unique metabolic profile and disease 
severity. As a result, patients benefit from more targeted therapies that not only enhance treatment 
outcomes but also improve adherence by aligning with their personal health circumstances and preferences.

Monitoring disease progression with AI tools
AI tools are revolutionizing the monitoring of disease progression in WD through innovative applications 
such as wearable technology and remote monitoring systems. These devices can continuously track vital 
signs and symptoms, providing real-time data that are crucial for assessing changes in a patient’s 
condition[32]. By integrating this continuous stream of information with electronic health records (EHRs), 
clinicians can gain comprehensive insights into a patient’s health trajectory over time. Furthermore, 
advanced data analytics can identify trends and anomalies that may indicate worsening liver function or 
neurological involvement, allowing for timely interventions before complications arise. This proactive 
approach not only enhances patient safety but also empowers individuals to take an active role in managing 
their own health[33]. It should be noted that WD research could also greatly benefit from AI technology. For 
example, our laboratory investigates copper overload in experimental WD models by using innovative laser 
ablation inductively coupled plasma mass spectrometry[34]. Data management in this technology requires a 
significant amount of hands-on work, and it would be highly beneficial if AI could simplify the overall 
workload associated with this methodology. In particular, the programs require sophisticated methods of 
calibration, standardization, and normalization to quantify copper concentrations in tissues. The abundance 
of mass spectrometry data processing programs actually differs widely in terms of quality, usability, 
integrated features, workflow, reliability, system requirements, speed of data processing, and price[35]. All of 
these features could be harmonized and better adapted for routine use by AI technologies.

Decision support systems for clinicians
Decision support systems powered by AI are becoming invaluable tools for clinicians managing WD, 
offering evidence-based recommendations that enhance diagnostic accuracy and treatment 
effectiveness[19-24]. These systems analyze vast amounts of clinical data alongside established guidelines to 
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provide actionable insights tailored to individual cases. For example, an AI-driven decision support tool 
could assist physicians in determining optimal drug regimens based on a patient’s specific biochemical 
markers or genetic predispositions, thereby reducing the risk of adverse reactions or ineffective treatments. 
Additionally, these systems facilitate collaboration among multidisciplinary teams by synthesizing input 
from various specialties involved in patient care, such as hepatology, genetics, and neurology, ensuring a 
holistic approach to management[36].

ETHICAL CONSIDERATION AND CHALLENGES
As AI continues to revolutionize the diagnosis and management of WD, several ethical considerations and 
challenges must be addressed to ensure its responsible implementation in healthcare settings[33]. One of the 
foremost concerns is data privacy, as AI systems rely on vast amounts of sensitive patient information to 
function effectively. The collection, storage, and processing of these data raise questions about consent, 
confidentiality, and the potential for unauthorized access. Healthcare institutions must establish robust 
protocols to protect patient data while complying with regulations such as General Data Protection 
Regulation (GDPR) or Health Insurance Portability and Accountability Act (HIPAA)[36]. Ensuring 
transparency in how patient information is used by AI algorithms will be crucial for maintaining trust 
between patients and healthcare providers.

Data privacy concerns
Data privacy concerns are particularly significant in the context of AI applications for WD, where sensitive 
health information is essential for accurate diagnosis and treatment planning[5]. Patients may feel hesitant 
about sharing their medical history or genetic data due to concerns about misuse or breaches of 
confidentiality. To address these concerns, healthcare organizations must prioritize implementing strict 
security measures to protect patient data throughout its lifecycle, from collection to analysis[37]. Additionally, 
promoting a culture of informed consent is essential. Patients should be informed about how their data will 
be used in AI systems and have the option to opt out if they wish. Addressing these privacy issues is not 
only necessary for compliance but also crucial for ensuring patient engagement and trust in AI-driven 
healthcare solutions.

Algorithmic bias and its implications in healthcare
Another significant ethical challenge associated with AI in healthcare is algorithmic bias, which can lead to 
disparities in diagnosis and treatment outcomes for individuals with WD. If training datasets lack diversity, 
whether due to underrepresentation of certain demographic groups, AI algorithms may produce skewed 
results that do not accurately reflect the characteristics or needs of all patients[38]. This bias can exacerbate 
existing inequalities within healthcare systems, potentially leading to misdiagnosis or suboptimal treatment 
plans for marginalized populations. To combat this issue, developers must prioritize creating inclusive 
datasets that encompass a wide range of demographics and clinical presentations related to WD[5]. Ongoing 
monitoring and validation of AI algorithms are essential to identify biases early on and ensure equitable 
care across all patient groups.

The role of healthcare professionals alongside AI
Despite the advancements offered by AI, the role of healthcare professionals remains indispensable in 
managing WD effectively. While AI can provide valuable insights and support decision-making processes, it 
cannot replace the nuanced understanding that clinicians possess regarding individual patients’ needs, 
preferences, and circumstances[37]. Healthcare professionals play a crucial role in interpreting AI-generated 
recommendations within the broader context of a patient’s health status and personal values. Furthermore, 
they serve as advocates for their patients by ensuring that ethical considerations, such as informed consent 
and addressing algorithmic biases, are prioritized during implementation processes. Collaboration between 
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AI technologies and human expertise will ultimately enhance diagnostic accuracy and treatment efficacy 
while safeguarding ethical standards in patient care[38].

FUTURE DIRECTIONS
Emerging technologies in AI for WD management and broader applications
The future of WD management is poised for significant transformation through the integration of emerging 
technologies in AI. Innovations such as natural language processing (NLP) and advanced machine learning 
algorithms are being developed to analyze unstructured clinical data, such as physician notes and patient-
reported outcomes[39]. These technologies can enhance diagnostic accuracy by providing a more 
comprehensive view of a patient’s condition, allowing for earlier detection of WD and more personalized 
treatment plans. Additionally, advancements in AI-driven imaging techniques are expected to improve the 
precision of liver assessments and other diagnostic imaging modalities, ultimately leading to better 
monitoring of disease progression and therapeutic responses[40].

The methodologies developed for applying AI in WD management hold promise for broader applications 
across various genetic disorders. As researchers refine AI algorithms tailored specifically to the complexities 
of WD, similar approaches can be adapted for conditions like cystic fibrosis, Huntington’s disease, or sickle 
cell anemia[41]. By leveraging insights gained from the unique characteristics of each disorder, healthcare 
providers can develop targeted interventions that address specific challenges associated with these diseases. 
This potential expansion underscores the importance of continued investment in AI research within 
genetics and rare diseases, as it may lead to breakthroughs that improve patient care on a much larger scale.

Collaboration among AI developers, clinicians, and researchers
To fully realize the benefits of AI in managing WD and beyond, collaboration among AI developers, 
clinicians, and researchers will be essential[40]. Interdisciplinary partnerships can facilitate the sharing of 
knowledge and expertise necessary for creating effective AI solutions tailored to clinical needs. By involving 
healthcare professionals in the development process from the outset, technologists can ensure that their 
tools are user-friendly and aligned with real-world workflows. Moreover, ongoing dialogue between these 
stakeholders will foster an environment conducive to innovation while addressing ethical considerations 
related to data privacy and algorithmic bias[38]. As these collaborations evolve, they will play a pivotal role in 
shaping the future landscape of genetic disorder management through AI advancements.

LIMITATIONS
We acknowledge that we are listing only established facts for diagnosing and treating WD. AI has been 
introduced to help critically evaluate available facts, creating a new, practical scoring system for physicians 
to use with input from individual patients. It is now the responsibility of AI experts to create algorithms that 
can input necessary data to determine the validity of the diagnosis and potential treatment options. 
Although we have compiled all relevant data on WD in this manuscript, the AI template for its practical 
application still needs to be developed. This initiative aims to encourage the implementation of AI to 
revolutionize the diagnosis and management of WD.

CONCLUSION
In summary, the integration of AI into the diagnosis and management of WD represents a significant 
advancement in healthcare that has the potential to transform patient outcomes. This paper has explored 
the complexities of WD, highlighting its genetic basis, symptoms, and current challenges faced in traditional 
diagnostic methods. We have examined how AI algorithms enhance diagnostic accuracy through advanced 
data analysis and predictive modeling while also providing personalized treatment plans that cater to 
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individual patient needs. Furthermore, we discussed the ethical considerations surrounding AI 
implementation, such as data privacy concerns and algorithmic bias, emphasizing the critical role healthcare 
professionals play alongside these technologies. The importance of continued research and development in 
this area cannot be overstated. As emerging technologies evolve, they will not only refine our understanding 
of WD but also pave the way for broader applications across various genetic disorders. Collaborative efforts 
among tech developers, clinicians, and researchers will be essential to ensure that AI tools are effectively 
integrated into clinical practice while maintaining ethical standards and prioritizing patient care. By 
fostering innovation in this field, we can look forward to a future where AI significantly enhances diagnosis 
and management strategies for WD and other complex conditions, ultimately leading to improved quality 
of life for affected individuals.
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