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Abstract
In acute traumatic or hypoxic brain and spinal cord lesions, as well as in chronic idiopathic neurodegenerative 
disorders induced by a genetic/environmental/idiopathic protein misfolding with aggregation, emerging evidence 
indicates that primary necrosis, as induced by the underlying event, initiates a secondary inflammatory process. In 
this secondary process, responsible for significant neurological deterioration, a microglia type M1/M2 misbalance 
plays a major role. Indeed, both acute and chronic neurodegenerative disorders share a common pathway: a 
M1/M2 misbalance-induced hyperinflammatory process with a lack of response to conventional anti-inflammatory 
interventions. In recent literature, however, both in preclinical and clinical neurodegenerative conditions, these 
processes were suggested to be sensitive for interventions with stem cells. Intrathecal interventions with a fresh, 
not-manipulated (naïve) bone marrow-derived stem cell preparation, after positive selection of pro-inflammatory 
substances (Neuro-Cells), were found to prevent/reduce secondary necrosis-induced pro-inflammatory and pro-
apoptotic processes in both immune-compromised and otherwise healthy experimental animal models. Therefore, 
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it seems justified to further encourage clinical trials applying autologous BM-derived naïve stem cells in patients 
suffering from those debilitating neurodegenerative conditions.

Keywords: Naïve bone marrow-derived stem cells, Neuro-cells, M1/M2 paradigm, cytokine release syndrome, 
neurodegenerative disorders

INTRODUCTION
In any acute or chronic, systemic or compartmental insults, interferons produced by lesioned cells are 
responsible for a range of signaling events leading to an inflammatory process, eventually ending with 
apoptosis and/or necrosis. Chemokines will activate immune cells such as macrophages and microglia to 
travel to the site of the insult. Exposed to inflammatory stimuli, these cells will initiate the secretion of 
cytokines.

Adequate resolution of the inflammatory process with phagocytosis of cell debris, cell survival and tissue 
repair, will be reached when the temporal dynamics of these cytokines show an early innate immune 
response with a release of pro-inflammatory tumor necrosis factor (TNF)-α, followed by a release of 
interferon (IFN)-γ, and then mainly interleukin (IL)-1β, IL-6, and IL-12. Normally, an adequate number of 
anti-inflammatory cytokines such as IL-4 and IL-10 will be subsequently released in response to the prior 
pro-inflammatory cytokines. However, an inadequate counter-balancing level of anti-inflammatory 
cytokines, or an overzealous/prolonged secretion of pro-inflammatory cytokines might cause a vicious, 
hyperinflammatory cycle [Figure 1]. Increasing inappropriate cytokine release-related morbidity includes 
multi-organ failure, neurotoxicity, and death[1-2].

Indeed, a systemic or compartmental disbalance between pro- and anti-inflammatory cytokines (i.e., a 
disturbed microglia type M1/M2 balance) may result in hyperinflammatory conditions and/or cytokine 
release syndromes (CRS). These conditions might be best formulated as an infectious or otherwise-induced 
production of circulating cytokines beyond a normal response, leading to inflammatory signs with fever, 
severe fatigue, nausea, and in some cases even secondary organ dysfunction or multi-organ failure[3]. 
Infectious insults include sepsis, viremia, herpes, Ebola, malaria, Dengue, Lassa, and coronavirus-induced 
severe acute respiratory syndrome or Middle East respiratory syndrome. Sterile conditions, such as 
monogenic disorders, autoimmune diseases, organ transplantation, immunotherapies like monoclonal 
antibodies or chimere antigen receptor-T cells for cancer, as well as burns, ischemia, and trauma, may also 
initiate inappropriate cytokine secretion[4-6]. The insults may be acute, subacute, or chronic. In chronic 
neurodegenerative disorders, chronic misfolding of proteins with subsequent divergent accumulation and 
aggregates formation as well as ongoing cell necrosis can be related to a disturbed M1/M2 paradigm with an 
elevation in the M1 pro‐inflammatory phenotype by the continuous exposure to pathogen-associated 
molecular patterns (PAMPs) and/or endogenous damage-associated molecular patterns (DAMPs). A 
similar shift towards M1 polarization might also be seen in rheumatoid arthritis arthritis[7].

CRS manifest with fever and general malaise, but as soon as endothelial cells become involved it may also 
come with coagulopathy, capillary leaks, and disruption of membranes. Also membranes surrounding 
immune-privileged compartments such as the blood-brain-barrier might be affected and lose their relative 
impermeability, thus enabling immune cells to freely pass those membranes[8]. The massive intracerebral 
influx of macrophages due to this increased permeability of the blood-brain-barrier explains the progressive 
exacerbation in chronic progressive neurodegenerative disorders. If untreated, most patients will suffer a 
diffuse intravascular coagulation and/or a pro-thrombotic coagulopathy with thrombocytopenia, leading to 
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Figure 1. The origin and propagation (vicious cycle) of hyperinflammation. In case of hyperinflammation, inappropriate (increased) levels 
of pro-inflammatory cytokines or (decreased) levels of anti-inflammatory cytokines (M1/M2 paradigm) initiate a vicious circle as non-
phagocytized apoptotic vesicles become necrotic and continue the activation of resting macrophages/microglia into M1 
macrophages/microglia. Thus, ongoing signaling pathways prolong the cytokine cascade with activation of other immune cell types 
which promote cell proliferation, boost the pro-inflammatory cytokine release (mainly IL-6), and thus promotes the propagation of tissue 
damage. In the figure, the blood-brain-barrier (BBB) is shown with the systemic compartment (blood) on the left and the CNS 
compartment at the right side. In case of hyperinflammation, BBB permeability is increased.

hypotension, multi-organ failure and/or acute hypoxemia[1].

In the absence of external stimuli, macrophages and microglia are normally in a resting state (M0 
macrophages/microglia). Due to polarization, macrophages adopt different functional programs in response 
to microenvironmental signals [Figure 2]. Pending their micro-environment and the presence of polarizing 
cytokines, they may be classically activated into M1 phenotypes, as well as into alternatively activated into 
M2 phenotypes. In the M1 state, macrophages/microglia secrete pro-inflammatory responses, enhancing 
nitric oxide synthase. In the M2 state, in addition to stimulating responses for repair and recruitment (from 
M2a and M2b phenotypes, respectively) they also may secrete anti-inflammatory phagocytic responses 
(M2c phenotypes)[9]. Indeed, macrophages also play an important role in the embryonic development, 
removal of cellular debris, and tissue repair. The polarization of mononuclear macrophages into M1 or M2 
macrophages is a simplified conceptual framework to describe their plasticity[10]. Originally,  macrophages 
were thought to be activated by IFN-γ alone or in concert with microbial stimuli (e.g., lipopolysaccharide) 
or cytokines (e.g., granulocyte-macrophage colony-stimulating factor) (so called classically activated 
macrophages). Subsequently, macrophage colony stimulating factor, TNF-β and the interleukins IL-4 and 
IL-10, rather than inhibiting this classical activation, were found to induce an alternative (M2) form of 
macrophage activation [Figure 2]. In response to certain endogenous and exogenous conditions, 
macrophages may even reverse classical or alternative polarization.

Although different patterns of macrophage responses cannot always be accurately described along the 
M1/M2 axis (in some reactive microglial populations, the canonical gene products of both “polarized” states 
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Figure 2. The M1/M2 paradigm in the central nervous system. Transcriptional regulators of M1 and M2 activation of microglia and 
mechanisms of their stimulation/inhibition. Resting microglia are stimulated by interferon (IFN)-γ, lipopolysaccharide (LPS), and/or 
granulocyte-macrophage colony-stimulating factor (GM-CSF) to classical activation into M1 microglia, and by macrophage colony-
stimulating factor (M-CSF), IL-4, IL-10, and transforming growth factor (TGF)-β for alternative activation into M2 microglia, producing 
pro-inflammatory and anti-inflammatory cytokines, respectively. In a well-balanced M1/M2 condition, there will be an adequate 
resolution of the inflammatory process. TNF-α: Tumour necrosis factor α; CD206: macrophage mannose receptor type 1 (adapted from 
Subramaniam et al.[9]).

are co-expressed)[11], the M1/M2 axis simply reflects the most phenotypically polar differentiation states of 
macrophages and, therefore, is often implied in research. In in vivo studies, the M1/M2 dichotomy may 
possibly be replaced with the terms pro-inflammatory/pro-regenerative[12].
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In the acute phase of an insult, M1 macrophages phagocytose the debris and promote the flow of other 
immune cells by expressing pro-inflammatory cytokines, mainly IL-1β, IL-6, IL-12, TNF-α, and IFN-γ 
[Figure 2].

After the acute phase with the onset of classical pro-inflammatory activation of the resting homeostatic M0 
macrophages/microglia into M1 phenotypes, normally within 3-7 days later, the transition to regeneration 
is reflected by increasing numbers of alternatively activated (M2) macrophages, dampening the pro-
inflammatory M1 cells-induced immune responses, and promoting regeneration and angiogenesis by 
expressing anti-inflammatory cytokines such as tumor growth factor (TGF)-β and the interleukins IL-4, 
IL-11, IL-13, and especially IL-10 [Figure 2].

In the recent past, more attention is given to the role of neuro-inflammation as a common final pathway in 
neurodegenerative disorders. Indeed, neuro-inflammation (i.e., gliosis and inflammatory reactions) has 
been described as a prominent sign in Alzheimer’s disease[10,13], Parkinson’s disease[14], Huntington 
disease[15], amyotrophic lateral sclerosis[16], prion disease[17], and multiple sclerosis[18,19]. In these disorders, 
chronic protein misfolding maintains a disturbed M1/M2 paradigm by the continuous exposure to PAMPs 
and/or DAMPs.

INAPPROPRIATE CYTOKINE RELEASE SYNDROMES
Macrophages and microglia are the sentries of the innate immune system in injury and infection; they are 
thought to play a major role in the tissue and organ homeostasis, as well as in autoimmune diseases, 
atherosclerosis, and cancer.

The timely switching of macrophage polarization from M1 to M2 plays a major role in the outcome of the 
inflammatory reaction (regeneration or fibrosis). Adequate immunosuppression and neuron protection is 
pending from a normal M1/M2 paradigm[10]. In case of a disturbed paradigm, a necrotic cell-induced hyper-
inflammatory condition may result, due to a vicious circle with an ongoing classical activation of the 
microglia, a condition with a great deal of collateral damage[20-22] [Figures 1 and 3].

Both in systemic and CNS (central nervous system) compartmental inappropriate CRS, the blood-brain-
barrier permeability normally preventing for the infiltration of blood‐borne monocytes/macrophages may 
be compromised, allowing the passage of chemokines, immune cells, and cytokines[8,23-28]. Thus, systemic 
hyper-inflammation may manifest with encephalopathic manifestations and a permanent deterioration in 
pre-existing neurodegenerative disorders[2,29,30].

In recent years, in several neurodegenerative diseases, the M1/M2 paradigm of microglial activation was 
extensively studied to uncover the mechanisms of immunopathogenesis. Molecular and clinical evidence 
from positron emission tomography imaging and post-mortem analysis suggested an increase of microglial 
activation and inflammatory mediators during the pathogenesis in these disorders[10]. Predicting the 
presence and severity of CRS has also been a challenge because this syndrome starts in the target tissue(s), 
only coming to attention when damage has occurred[1,8]. CRS is a dynamic process and body fluid cytokine 
levels may not adequately reflect the actual underlying physiological processes[31]. Nevertheless, peripheral 
blood biomarkers of CRS, even reflecting the remaining situation after cell redistribution to tissues or cell 
death, are used for diagnosis and to guide therapy[32].
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Figure 3. The breaking of the vicious cycle in hyperinflammatory conditions by bone marrow-derived naive stem cells. Necrosis in the 
target tissues initiate an M1 macrophage/microglia-induced cytokine cascade and activation of other cell types resulting in cell 
proliferation, further pro-inflammatory cytokine release (mainly IL-6), and propagation of tissue damage. In case of an imbalanced 
release of pro- and anti-inflammatory cytokines, phagocytosis of the apoptotic vesicles is blocked, and a vicious cycle will follow by the 
non-phagocytized vesicles, becoming necrotic. Intravenous (IV) and/or intrathecal (ITh) transplantation of stem cells then may restore 
the imbalanced cytokine levels and break the vicious cycle by polarization of cytotoxic M1 into antagonizing M2 immune cells on the one, 
and inhibition of the up regulation of the protein expression of inflammatory markers (GSK-3β) on the other hand.

INAPPROPRIATE CYTOKINE SECRETION IN NEURODEGENERATIVE DISORDERS
Neurodegenerative disorders are hereditary and/or sporadic, acute and/or chronic conditions, characterized 
by nerve cell degeneration and/or necrosis due to atrophy of the nervous system, interfering with normal 
mental and motor functioning.

Alzheimer’s disease
Alzheimer’s disease (AD) is an age-related multifactorial genetic/environmental neurodegenerative disorder 
resulting in a progressive impairment in memory, judgement, decision-making, and orientation. In this 
disorder, intracellular, misfolded tau protein-containing tangles underlie the neurofibrillary degeneration. 
Microglial macrophages react to the amyloid β peptide by releasing pro-inflammatory factors, promoting 
their own phagocytic activity[33]. In the immediate vicinity of the characteristic amyloid peptide deposits and 
neurofibrillary tangles, primarily pro-inflammatory (IL-1ß, IL-6, IL-12, and TNFα) and anti-inflammatory 
cytokines (IL-4, IL-10, and TGF-β) were found to play a major role in the phagocytic clearance of apoptotic 
neurons, indicating that inflammation, indeed, is a key pathological hallmark of AD. In Alzheimer’s disease, 
tau phosphorylation is thought to be responsible for the M1-activated microglia-induced neurotoxicity 
ease[33-36].

Parkinson’s disease
Parkinson’s disease (PD) is also an age-related genetic/environmental disorder. It is clinically characterized 
by hypokinesia, bradykinesia, rigidity, and tremor as well as numerous autonomic and mental symptoms, 
evidencing a multisystem α-synucleinopathic neurodegenerative process. The abundant synuclein 
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characteristically aggregates in Lewy bodies. Both direct and indirect microglial activation are initiated by 
aggregated α-synuclein. Numerous studies have shown that α-synuclein, probably by its dysregulation of the 
JAK/STAT pathways in myeloid cells[37], directly activates microglia into the M1 phenotype, with the 
activation of NADPH oxidase, and increasing production of reactive oxygen species and pro-inflammatory 
cytokines[38]. In PD patients, increased levels of immune cells and proteins such as adhesion molecules, 
chemokines, cytokines, and decreased levels of neurotrophins in brain, spinal fluid, and serum, such as 
brain-derived neurotrophic factor and nerve growth factor, evidenced chronic cytotoxic classical microglial 
activation with apoptotic cell death[39-43].

Huntington’s disease
Huntington’s disease (HD) is a progressive autosomal dominant monogenic disease, displaying a selective 
striatal and cortical neuronal loss, manifesting with a progressive motor dysfunction, cognitive decline, and 
psychiatric disorders. HD is caused by CAG trinucleotide repeat expansion in the gene encoding for 
huntingtin protein on chromosome 4p16[44]. In HD, proteomic plasma profiling demonstrated that 
increasing cytokine levels antedate the onset of neurological symptoms. Both in HD patients and 
experimental animal models, CNS microglial activation was found to result in an increased production of 
inflammatory mediators, and TNF-α and IL-6 mRNA levels were found markedly increased[45,46].

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a mainly sporadic (about 5%-20% familial) multifactorial disease 
caused by motoneuron degeneration in the spinal cord, brain stem, and primary motor cortex, with 
cytoplasmic inclusions containing aggregated/ubiquitinated proteins as well as RNAs. In this disease, again, 
glial activation leads to changes in the expression of a wide range of genes related to the production of 
soluble molecules, such as cytokines, chemokines, DAMPs, and reactive nitrogen and oxygen species, giving 
rise to profound modifications in their interactions with neurons[47].

Multiple sclerosis
Multiple sclerosis (MS) is the most common genetic/environmental chronic inflammatory disorder of the 
CNS, which may manifest as a relapsing-remitting or a secondary progressive disorder[19]. The infiltration of 
increased autoreactive myelin-specific CD4 and CD8 T helper cells into the CNS represents the crucial 
event in the inflammatory processes with the formation of focal inflammatory demyelinated lesions 
(plaques) via the secretion of M1-produced IFN-γ and IFN-γ-promoted TNFα[48-50].

Spinocerebral injuries (SCI) display evidence indicating that immediately after the trauma, macrophages 
accumulate within the epicenter of the lesion and may initiate necrosis-induced secondary M1 promoted 
inflammatory mechanisms, overwhelming a comparatively smaller and transient M2 macrophage response, 
leading to cavities and scar tissue. In time, the acutely increased levels of TNF-α, IL-1β, IFN-γ, and other 
pro-inflammatory M1-produced cytokines, chemokines, and proteases will gradually decrease, and 
increasing numbers of anti-inflammatory M2 cytokines will restore the initial M1/M2 balance[51]. Normally, 
in vitro, myelin phagocytosis comes with a facilitation of M2 polarization; macrophages in a damaged spinal 
cord are strongly inclined towards M1 polarization, which interferes with the neural tissue recovery.

STEM CELLS
Stem cells are essential for the development, assembling, and repairing of bodily structures. Without these 
cells one cannot survive. Recently, these cells emerged as a promising tool for the modulation of the 
immune system. They are undifferentiated cells that not only may proliferate, but also are able to 
differentiate into all kinds of target cells. Stem cells can be harvested out of adipose tissue, bone marrow, 
olfactory mucosa, umbilical cord blood, and embryonic tissue, as well as out of special niches in organs, all 
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varying in their regenerative capacity and potency. Their specific differences in biological properties might 
be an important consideration for their selection in regenerative medicine[52]. Applying autologous stem 
cells is preferred over allogeneic preparations, as these come with a risk of immunological incompatibility. 
In regenerative medicine, mostly bone marrow-derived stem cells are applied. Another source of stem cells 
is supplied by reprogramming adult somatic cells back into pluripotent stem cells: induced pluripotent stem 
cells. To reach quantitative numbers of stem cells, culturing these cells might help, though this procedure 
may come with changes in the telomers. Compared to small molecules such as neurotransmitters, and 
biologics such as antibodies, growth factors, and/or cytokines, stem cells act fundamentally different. 
However, the exact mechanisms of action of stem cells remain to be elucidated.

The nervous system, unlike many other tissues, has a limited capacity for self-repair; mature nerve cells lack 
the ability to regenerate, and only neuronal-resident stem cells have the potency to generate new functional 
neurons in response to lesions. Their limited availability, though, makes them unfit to cure devastating 
neurodegenerative diseases. Circumvention of this problem through intracerebral neuronal-resident stem 
cells grafts, on the other hand, raises serious concerns since the pathological phenotype of the diseased 
endogenous cells may affect the graft tissue. Neuronal-resident stem cells are already predestinated for 
neuronal renewal-committed operations, whereas naïve stem cells (with an excellent self-renewal capacity 
with sustained multipotency) are still multi-potent and also exert, for instance, immune-suppressive effects 
as a dedicated reaction to environmental vesicles or cytokines from degenerating, malfunctioning cells[53].

As said before, originally, the mode of action of bone marrow-derived stem cells was thought to be related 
to cellular integration by leveraging the plasticity of the stromal/stem and progenitor cells for the 
replacement of lost cells. Later, the mechanism was also considered to relate indirectly via cellular 
interactions. As stem cells hardly pass the intact brain barriers, eventual immunosuppressive paracrine and 
endocrine effects of stem cells in neurodegenerative conditions are rather reached through cell-to-cell 
interactions by communicators, signaling proteins such as extracellular vesicles, cytokines, growth factors, 
and/or mitochondrial transfers. Stem cell extracellular vesicles, indeed, were found to exert immune-
suppressive effects as a dedicated reaction to environmental vesicles or cytokines from degenerating, 
malfunctioning cells, thus coordinating their operations with their immediate environment[54-56]. They might 
be seen as decision making cells. For example, a high concentration of interferon-γ can activate the naïve 
stem cells to inhibit the innate immune responses, whereas a low concentration will result in the reversed 
effect.

Autologous stem cell transplants were found to modulate the immune system in both acute[57-59], and 
chronic[60,61] preclinical and clinical neurodegenerative conditions.

To assure that those stem cells can adapt to local circumstances, it is crucial not to change the multi-potent 
characteristics of these cells before the cells are re-implanted in the patient. Stem cells have a variety of 
receptors on their surface, which can be activated by specific antibodies, each changing the polarization of 
the cell and thus its naïve status[62]. In order to apply naïve stem cells into the environment where 
neuroinflammation and degeneration are ongoing, in our experiments, fresh human bone marrow-derived 
stem cells specimen with negatively selected stem cells were manufactured after positive depletion of 
erythrocytes, monocytes, and lymphocytes, and reduced in volume for intrathecal application (Neuro-Cells: 
patent WO2015/059300A1). Indeed, intravenous application will end up with most stem cells stuck in lung 
and liver, and the number of engrafted stem cells reaching the central nervous system will be minimal. 
Neuro-Cells, intrathecally applied, appeared to be a safe and effective treatment in preclinical models of 
neurodegeneration as well as in patients. The number of fresh bone marrow-derived stem cells (100 mL 
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bone marrow contains about 108 CD34+ cells) is limited, though, and their half-life is about 72 h. In cases 
with reduced plasticity of stem cells (e.g., diabetes, renal failure, aging, and severe amyotrophic lateral 
sclerosis), one may thus consider applying allogenic cells.

As the effects of the stem cells are thought to be reached by cell-to-cell reactions, not the dose but rather the 
timing is key, as an effective treatment window in acute neurodegenerative processes lies between 24 to 72 h 
after the initial CNS insult. Similarly, in chronic conditions with ongoing necrosis of neural cells, the best 
strategy appears to be starting treatment as early as possible, assuming that dead neurons cannot be replaced 
with this therapy. Here, the key is the slowing down of the ongoing and self-reinforcing disease process by 
applying the stem cells as early as possible.

STEM CELLS IN THE TREATMENT OF NEURODEGENERATIVE DISORDERS
Regarding systemic CRS, apart from specific vaccines and maybe the anti-viral remdesivir and/or 
dexamethasone for treatment of some virus-induced syndromes, there are no convincing disease-modifying 
interventions for those conditions, and symptomatic treatments are still enigmatic. Also, in the treatment of 
compartmental release syndromes such as in neurodegenerative disorders, due to ambiguous effects and/or 
serious adverse events, interventions with anti-inflammatory (non)-steroidal anti-inflammatory drugs 
[(N)SAIDs] were not very successful[63].

As most of acute and chronic, systemic and compartmental CRS, irrespective of their cause, share a 
common pathophysiological pathway [Figure 1], it seems justified to treat those conditions, in the same 
way, regardless the phase of the immunological response[2]. Here, adequate understanding of the role of 
chemokines and cytokines is important for better understanding these syndromes, as well as for diagnostic 
purposes and the development of therapeutic options. In modern biomedicine, as of now, regulation of cell 
homeostasis by modulating macrophage behavior in different pathological conditions is key. The M1/M2 
paradigm allows the reassessment of the course of typical pathological processes in terms of a misbalanced 
M1 and M2 macrophage polarization. Here, increasing the relatively low level of M2 macrophage/microglia 
phenotypes, for instance, might further stimulate regeneration, angiogenesis, and extracellular matrix 
remodeling. So, in CRS, restoring the M1/M2 phenotype balance might thus lead to restoration of 
homeostasis and improved clinical symptoms[64]. As pro-inflammatory macrophages are abnormally 
overrepresented in acute and chronic neurodegenerative disorders, in the next future molecular 
interventions affecting the M2 subpopulation, therefore, may offer a potential efficient therapeutic approach 
to suppress or boost the expression of certain genes in these conditions in order to obtain stably polarized 
M1 or M2 species[49]. The eventual incorporation of cytokines into therapeutic regimens, though, has 
significant challenges. In addition to low response rates when administered as recombinant proteins and 
short half-life limiting exposure and efficacy, cytokines can also activate counterregulatory pathways (i.e., 
immune-potentiating cytokines might initiate immune suppression), thus limiting their potential efficacy[65].

Recent approaches with stem cell implants yielded promising results in patients suffering acute[57,66] and 
chronic[60,67,69] neurodegenerative disorders. Our own preclinical studies in animal models of acute traumatic 
spinal cord injury[59,69] and chronic neurodegenerative processes such as amyotrophic lateral sclerosis and 
frontotemporal lobe degeneration[58,61] were fully in line with these findings. In these experiments, 
intrathecal application of Neuro-Cells in the various experimental animal models were found to break the 
hyper-inflammatory process by restoring the normal M1/M2 paradigm [Figure 3].

Those stem cells, but not (N)SAIDs, significantly improved the functional outcome and reduced signs and 
symptoms of inflammation in these animal models, compared to those treated with placebo, and were free 
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of adverse events. Intrathecal application of Neuro-Cells in SCI-rats within 24 h after the lesioning, induced 
depolarization of M1 into M2 reactivated macrophages/microglia, thus preventing for the secondary 
inflammation-induced elevations in serum IL-1β, TNF-α, and IL-6 levels as well as for the elevation of 
glycogen synthase kinase (GSK)-3β and ionized calcium-binding adaptor molecule (Iba)-1 protein levels in 
the spinal cord. Those stem cells were found to reduce the SCI-induced downstream IL-6 signaling 
pathways with cytokine-driven hyperimmune reaction[59,69]. Compared to vehicle-treated animals, 
immunohistochemical analysis 4 days after the intervention, but not 8 weeks later, displayed a significant 
increase of CD68+ microglia (P < 0.01) and decrease of GFAP+ expression of astrogliosis in the lesion (P < 
0.05), as well a reduced apoptosis with a significant decrease in cleaved caspase-3+ cells, compared to vehicle-
treated SCI-rats. Eight weeks after these interventions, though, histological studies of the lesioned tissue in 
the Neuro-Cells and vehicle-treated SCI-rats did not establish any significant difference any more in the 
expression of microglia, astrocytes, and apoptosis. Compared to the baseline in vehicle-treated animals (set 
to 100%), proteomics in the Neuro-Cells-treated rats at that time still showed significant changes in the 
downregulation of pro-inflammatory proteins and the upregulation of the proteins involved in axonal and 
cellular regeneration [Figure 4]. An interesting finding was also the significant lower expression of Iba-1 in 
the spinal lesion of the Neuro-Cells-treated SCI-rats, compared to these animals treated with vehicle and/or 
intraperitoneal methylprednisolone, 10 weeks after these interventions [Figure 4].

Conforming to previous studies with stem cell implantations[70-72], intrathecal Neuro-Cells implants, but not 
interventions with riluzole and/or celecoxib in 10-week old asymptomatic FUS(1-358) and SOD1(G93A) 
mutant ALS-like mice were found to significantly delay motor dysfunction, as well as muscle atrophy and 
the loss of spinal lumbar motor neuron as seen in transgenic mice[61]. Interventions with Neuro-Cells in 12-
week old asymptomatic FUS(1-358) frontotemporal lobe degeneration-like mice significantly delayed signs 
of depression and anxiety, cognitive deficits, and abnormal social behavior compared to FUS‐tg placebo-
treated animals. Neuro-Cells did normalize prefrontal and hippocampal protein expression of IL‐1β, and of 
hippocampal Iba‐1 and GSK‐3β. In these transgenic mice, interventions with riluzole and celecoxib did 
bring the same beneficial effects, though way less pronounced[73].

SUMMARY AND CONCLUSION
Both in acute traumatic or hypoxic neurodegenerative lesions, as in chronic protein misfolding-induced 
neurodegenerative disorders, emerging evidence indicates that primary necrosis as induced by the 
underlying event initiates a secondary inflammatory process by a M1/M2 misbalance. This secondary 
process is responsible for a significant increase in the ultimate neurological deficit. These neurodegenerative 
diseases share a final common pathway, that is a M1/M2 misbalance-induced autoreactive response that 
targets against components of the nervous tissue.

Here, an up‐regulated protein expression of inflammatory markers, GSK‐3, regulating several signaling 
pathways including pro-inflammatory cytokine and interleukin production in the innate immune response, 
and Iba-1, a marker of microglia activation, reflects this degenerative process. These conditions also share 
an unmet need for disease-modifying interventions.

In this article, we presented data of preclinical studies after the effects of intrathecal implants of a human 
bone marrow preparation with truly naïve, negatively selected stem cells (Neuro-Cells) in rat models of 
spinal cord injuries, and in SOD-1 and FUS-transgenic amyotrophic lateral sclerosis-like and 
frontotemporal lobe degeneration-like mice. Neuro-Cells implants induced disease-modifying effects with 
changes in markers for M1/M2 macrophages/microglia, where (N)SAIDs failed. Indeed, both in immune-
compromised and otherwise healthy experimental SCI-lesioned rats and in ALS- and frontotemporal lobe 
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Figure 4. Changes in the M1/M2 paradigm 8-10 weeks after an intervention with bone marrow-derived stem cells (Neuro-Cells), 
methylprednisolone and vehicle in the acute phase of a spinal cord injury in rats. (A) The Western blot Iba1-IR quantified polarization 
from M1 to M2 microglia in the spinal cord white matter within the area close to and into the lesion center. Ten weeks after the 
intrathecal intervention with Neuro-cells, the Iba1 expression was significantly lower (P < 0.05) compared to the treatment with 
intrathecal vehicle and/or intra-peritoneal methylprednisolone 150 mg/kg (data normalized to Iba1-IR in the spinal white matter of intact 
healthy (sham) rats; statistical difference not indicated). Bars show means and SEM, n = 5-6 rats/group (Romero-Ramírez et al.[61], 
2020, with permission of the authors). (B) Display of the increased levels of the typical M2-synthesized arginase-1 (inhibiting NO 
production), the M2 cell surface marker CD206 and the chemokine receptor CCR-2, polarizing macrophages toward an M2 phenotype, 
PCR-quantified polarization from M-1 to M-2 microglia (adapted from Wolters et al.[65] and de Munter et al.[71] with permission of the 
authors), 8 weeks after the acute intrathecal intervention of Neuro-cells in acute balloon compression-induced spinal cord injured rats, 
compared to SCI-rats, treated at the same time with only the vehicle. Due to the low numbers of experimental animals, significances 
were not reached.

degeneration-like transgenic mice, intrathecal Neuro-Cells implants prevented for outrageous secondary 
inflammatory and apoptotic effects as evidenced by elevated GSK-3β and Iba-1 protein levels in the CNS. 
Therefore, it seems justified to further encourage clinical trials, applying bone marrow-derived naïve stem 
cells in patients suffering debilitating neurodegenerative diseases.
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