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Abstract
Aim: Cells in the human body release extracellular vesicles (EVs) into fluids, such as plasma, urine, and 
cerebrospinal fluid. EVs express tetraspanin family proteins (e.g., CD63, CD9, and CD81) and cell-specific antigens 
on their surface as common and specific markers, respectively. In this study, we hypothesized that the profile of 
blood cell-derived circulating EVs could reveal both common and specific pathophysiology in atherogenic diseases.

Methods: Using surface plasmon resonance imaging (SPRi), we analyzed EVs surface molecules and identified 
circulating EVs in healthy controls (n = 18), patients with type 2 diabetes mellitus (T2DM; n = 71), and those with 
hypertension (HT; n = 47).

Results: Patients with T2DM and HT exhibited distinct EV profiles: (i) CD9, CD110, CD20, activin receptor type-2A 
(AcvRIIA), Duffy antigen receptor for chemokine, and CD44 positive EVs were upregulated in T2DM; (ii) CD9, 
Maackia amurensis agglutinin lectin binding molecules (MBM), CD20, AcvRIIA, and CD44 positive EVs were 
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upregulated in HT. By analyzing an appropriate set of three antigens or using dimensional reduction clustering, we 
were able to clearly differentiate between T2DM, HT, and control groups. In some patients, disease severity 
correlated with CD44 and CD20 in T2DM and MBM and AcvRIIA in HT.

Conclusion: Our findings demonstrate that profiling of circulating EVs via the SPRi method offers a novel approach 
for diagnosing and monitoring human diseases.

Keywords: Extracellular vesicles, surface plasmon resonance imaging, diabetes, hypertension, blood cell

INTRODUCTION
Extracellular vesicles (EVs) are nanoparticles, 50-200 nm in size, released by nearly all cell lineages and 
found in extracellular fluids, including plasma, urine, and cerebrospinal fluid[1-3]. EVs carry proteins, 
ribosomal RNA, messenger RNA (mRNA), and micro RNA (miRNA), transporting these materials to 
recipient cells. This makes EVs vital for cell-cell communication and maintaining homeostasis[4]. EVs from 
different parent cells have distinct contents and functions; for instance, EVs from immune cells convey 
antigen information[5], whereas those from tumor cells play a role in metastasis and angiogenesis[1,2,4]. Thus, 
identifying the origins of circulating EVs is crucial for understanding their biological and 
pathophysiological functions. The identification of parent cells has been achieved through various methods, 
such as flow cytometry to analyze surface molecules, protein analysis via western blot or proteomics[6], and 
transcriptome analysis[7]. To obtain disease-specific profiles of circulating EVs, we used surface plasmon 
resonance imaging (SPRi) to analyze their surface antigens and sugar chains. SPRi measures changes in 
reflected light intensity due to intermolecular binding on the biochip surface (such as ligand-antibody-
lectin, single-stranded DNAs, or drug-protein interactions)[8-12]. On a gold-coated surface, surface plasmons 
(collective oscillations of conduction electrons) interact with light to create a surface plasmon wave. Under 
total internal reflection, these surface plasmons couple with the evanescent wave, causing resonance. The 
binding of molecules to ligands on the gold-coated surface affects this resonance, leading to changes in the 
refractive index, and SPRi detects these changes in real time. As ligands attached to spotted antibodies can 
be removed by washing with a regeneration buffer, SPRi allows for repeated analysis of multiple samples, up 
to a hundred, reducing operational costs per sample[13]. Recently, Gorodkiewicz’s group has reported on the 
measurement of IL-6[14], poly(ADP-ribose) polymerase 1 (PARP-1) protein[15], and cathepsin S[16] in plasma 
using SPRi, showing the increasing application of SPRi in the medical field. EVs display ubiquitous (e.g., 
CD63, CD9, CD81) and specific markers from their parent cells on their surface membranes[2,3]. Therefore, 
analyzing the combined surface antigens on EVs offers a promising method to detect disease-specific 
changes. Several researchers have established the use of quantitative analysis of EVs with the SPRi 
method[17,18], demonstrating superior quantitative performance compared to ELISA[19]. Lopez Baltazar et al. 
conducted a detailed study on the detectability of EVs using surface plasmon resonance technique, focusing 
on the tetraspanin family of EV membrane proteins[20]. Picciolini et al. analyzed CD171, PLP1, and CD11b 
on the membrane surface of EVs in the plasma of patients with Alzheimer’s Disease using surface plasmon 
resonance technique and demonstrated that these markers are potential new biomarkers[21]. Other optical 
methods for detecting EVs are also advancing, including nano-flow cytometry, which is now commercially 
available and holds promise for the future, although it requires careful attention to labeling and nonspecific 
reactions, as verified by Brealey et al.[22]. A new optical EV detection method using surface-enhanced Raman 
scattering (SERS) is being developed[23]. Although the SPRi method has been used to analyze EVs from the 
serum of patients with tumors[18,24], there are no studies applying this technique to lifestyle-related diseases, 
such as diabetes, hypertension (HT), and cardiovascular disease, which are on the rise globally.
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Li et al. estimated that 99.8% of circulating EVs originate from hematopoietic cells[25]. If blood cell-derived 
EVs exhibit disease-specific profiles, analyzing circulating EVs could aid in diagnosis. As the global elderly 
population increases, addressing chronic diseases, such as lifestyle-related conditions and various cancers, 
becomes increasingly critical. In particular, type 2 diabetes mellitus (T2DM) and HT are common, high-risk 
conditions for atherosclerosis and vascular endothelial damage, with prevalence rates of 6.1% in 2021[26] for 
T2DM and 49%-59% of individuals aged 30-79 years in 2019 for HT[27]. Both conditions contribute to 
atherosclerosis, which can lead to cardiovascular events, stroke, and chronic kidney disease[28]. EV-related 
disruptions in homeostasis play a role in promoting atherosclerosis by causing endothelial dysfunction, 
vascular calcification, and the formation of unstable plaques or thrombi[29]. Current methods for detecting 
atherosclerosis and vascular endothelial damage include physiological tests, such as ankle-brachial index, 
cardio-ankle vascular index, and flow-mediated dilatation, but no effective blood biomarkers have yet been 
identified. We hypothesized that the profile of circulating blood cell-derived EVs reflects both common and 
specific aspects of atherogenic disease pathophysiology. In this study, we used SPRi technology to analyze 
the profiles of circulating EVs in patients with T2DM and HT.

METHODS
EV purification from serum samples for SPRi
Serum samples were collected from healthy controls (n = 18; 10 males; aged 23-70 years, median age of 41 
years, normal vital signs, and normal laboratory results) and from patients with T2DM (n = 71) and HT (n = 
47) at Takagi Hospital and International University of Health and Welfare [Table 1]. The inclusion criteria: 
all patients diagnosed with T2DM by Japanese Clinical Practice Guideline for Diabetes 2019 [plasma glucose 
levels: fasting ≥ 126 mg/dL, 2-h 75 g oral glucose tolerance tests ≥ 200 mg/dL or casual ≥ 200 mg/dL, and 
HbA1c ≥ 6.5%][30], and patients aged > 30 years diagnosed with HT by the Japanese Society of Hypertension 
(JSH) revised Guidelines for the Management of Hypertension 2014 and 2019 [office systolic blood pressure 
≥ 140 mmHg and/or diastolic blood pressure ≥ 90 mmHg][31,32]. The study included 98 patients with T2DM 
who visited the Department of Diabetes and Metabolism at Takagi Hospital between May and June 2019 
and 65 patients with HT who visited the Hypertension and Heart Failure Center at Takagi Hospital between 
January 2018 and 2020. However, 27 patients with T2DM and 18 patients with HT were excluded due to 
unavailability of required laboratory tests [Figure 1]. Informed consent was obtained orally in accordance 
with the Declaration of Helsinki, and the study was approved by the Kouhoukai Ethics Committee (No. 224 
and 333) and the Ethics Committee of the International University of Health and Welfare (18-Ifh-066). All 
participants were recruited specifically for this study. The median duration of therapy for patients with 
T2DM was 16 years (ranging from 2 to 69 years). Among the patients with T2DM, 38 were using dipeptidyl 
peptidase-4 inhibitors and 10 were using glucagon-like peptide-1 receptor agonists. By the attending 
physician, diabetic retinopathy was assessed through fundoscopy and diabetic nephropathy was diagnosed 
with urine albumin > 30 mg/gCr as an indicator[33]. Patients with HT did not receive any medication, and we 
classified them into non-risk [refined risk score (RS) < 10; n = 10], low- (RS = 21-30; n = 15), moderate- (RS 
= 31-40; n = 13), and high-(RS > 40; n = 9) groups for cardiovascular disease based on a RS method from the 
Japan Arteriosclerosis Longitudinal Study[34]. Serum samples were filtered through a 0.22-µm filter (Minisart 
RC, Sartorius, Goettingen, Germany) and stored at -80 °C until use. To isolate EVs, 25 µL of ExoQuick® 
(System Biosciences, CA, USA) was added to 100 µL of serum and incubated at 4 °C for 30 min. Following 
centrifugation at 1,500 × g at 4 °C for 30 min, the supernatant was discarded, and the EVs pellet was 
resuspended in 100 µL of 0.1% casein (C6554, Sigma-Aldrich, MO, USA) in Phosphate-buffered saline (PBS; 
9.57 mM, pH 7.35, without magnesium and calcium). The sample for SPRi analysis was prepared by diluting 
this EV solution to 40-fold.
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Table 1. Patients’ characteristics and laboratory data

Parameters Median (Range)

N 18

Age (years) 41 (23-70)

Healthy controls*

Gender (% male) 55.6

N 71

Age (years) 68 (32-93)

Gender (% male) 64.7

Hemoglobin A1c (%) 7.6 (5.3-11.0)

Glycoalbumin (%) 20.4 (12.5-36.5)

eGFR (mL/min/1.73m2) 71 (7-166)

Serum creatinine (mg/dL) 0.78 (0.34-7.08)

Type II diabetes mellitus

Urine albumin (mg/gCr) 28.7 (2.3-2,390)

N 47

Age (years) 58 (38-79)

Gender (% male) 65.9

Systolic blood pressure (mmHg) 163.5 (130-207)

Diastolic blood pressure (mmHg) 99.2 (67-134)

Brain natriuretic peptide (pg/mL) 15.3 (5.8-90.6)

Hypertension

Noradrenalin (pg/mL) 322 (142-647)

*Healthy controls had an annual medical checkup (complete blood counts, biochemical tests, urinalysis, electrocardiogram, and blood pressure) to 
ensure no abnormalities before the study. eGFR: Estimated glomerular filtration rate; N: number.

Figure 1. Flowchart of the patient selection process. T2DM: Type II diabetes mellitus; HT: hypertension.

EV measurement by SPRi
EVs were detected using OpenPlex (Label-Free Biomolecular Interaction Analyzer, Horiba Scientific). For 
each experiment, running buffer (0.1% casein in PBS) and regeneration buffer (4 M MgCl2; Nacalai Tesque, 
Kyoto, Japan) were used. A 300 µL sample was injected into the instrument at a flow rate of 25 µL/min, 
allowing EVs to interact with the ligands on the biochip. After 8 min of reaction, 300 µL of regeneration 
buffer was injected at 200 µL/min for 1 min, followed by washing the biochip with running buffer. Most 
parameters were set automatically, with only the flow rate adjusted manually. The optimal flow rate for 
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binding was 20-30 µL/min[13]. In this study, the working angle to produce total internal reflection was 
automatically set between 58.5° and 59°.

SPRi data analysis
We used Scrubber software (BioLogic Software, Canberra, Australia) to analyze the SPRi data. The anti-
mouse IgG antibody spot served as a negative control, so the signal intensities for analysis were calculated 
by subtracting the average signal from the anti-mouse IgG spot. Each ligand’s signal intensity was then 
normalized to the intensity of the anti-CD63 spot after subtracting the signal intensity of the isotype control.

Preparing biochip for SPRi
The biochip included a glass prism and a thin gold layer modified with the activated carboxylic acid, which 
reacts with free amine groups on the ligand (SPRi-Biochip CS-HD, Horiba Scientific, Kyoto, Japan)[13]. We 
selected various antibodies and lectins for detecting specific EVs, as shown in Table 2. MAM lectin 
identifies structures with terminal sialic acid in α2,3-linkage (MAM lectin binding molecules: MBM)[35]. 
Mouse IgG isotype control was used as the negative control.

Duplicate spots were prepared for each ligand, and after ligands binding, the biochip was incubated 
overnight with a 1% casein-PBS solution for blocking.

Validation of EV purification
To validate EV purification, we used ExoQuick® as described and compared it with the conventional 
ultracentrifugation method[36]. Ultracentrifugation was performed at 120,000 × g for 80 min using Optima 
TLX (Beckman Coulter, CA, USA) and an Open-Top Thinwall Polypropylene Tube (Beckman Coulter). 
Transmission electron microscopy (TEM) analysis sample preparation and observation were conducted at 
Filgen, Inc. (Nagoya, Japan). Moreover, we quantified protein levels using a bicinchoninic acid assay 
(Nacalai Tesque) and performed western blotting for EV validation. The same EVs sample (15 µL of EVs 
solution lysed with RIPA buffer: 10 µg protein/lane) was electrophoresed on a 10% sodium dodecyl sulfate 
polyacrylamide gel under non-reducing conditions, and the separated proteins were transferred to a 
polyvinylidene difluoride (PVDF) membrane (Atto Co., Tokyo, Japan). The membranes were blocked for 
60 min in EzBlock Chemi (Atto Co.). Primary antibodies for CD63 (1:1000; MBL, Tokyo, Japan) and CD81 
(1:1000; MBL) were mixed and diluted in the blocking buffer and incubated overnight at 4 °C with the 
PVDF membrane. After washing the membrane three times with tris buffered saline with tween 20, it was 
incubated with a secondary horseradish peroxidase-conjugated anti-rabbit IgG antibody (1:1000; Abcam, 
Cambridge, UK) for 2 h at room temperature (almost 25 °C). The bound secondary antibodies were then 
detected using EzWestLumi Plus (Atto Co.) and a MultiImager II ChemiBOX (BioTools, Gunma, Japan).

Statistical analysis
Uniform manifold approximation and projection (UMAP) and t-Distributed Stochastic Neighbor 
Embedding (t-SNE) were conducted using Python, and visualizations were created with Matplotlib. For 
UMAP, the parameters were set to 15 neighbors (the default value) and a minimum distance of 0.1 to 
achieve the clearest results. For t-SNE, the perplexity was set to 50. Comparisons between two groups 
(healthy controls vs. T2DM or HT) were made using the Student’s t-test, with P < 0.05 considered 
statistically significant. Pearson’s coefficients were used to evaluate correlations between molecule 
intensities. Multiple regression analysis was performed with IBM SPSS v.29 to obtain multiple correlation 
(R), R-squared, adjusted R-squared, and significance F for determining correlations among the three 
groups. Logistic regression analysis was also conducted using the same software. The sample size consisted 
of the number of samples treated during the study, with no a priori statistical sample size calculations 
performed. In this cross-sectional study, the sample size provided post hoc power calculations for each 
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Table 2. Antibody and lectin information

Target molecule Company Source Clone

CD63 FUJIFILM Wako Mouse 3-13

CD9 FUJIFILM Wako Mouse 1K

CD81 FUJIFILM Wako Mouse 17B1

CD4 Becton Dickinson Mouse RPA-T4

CD8 Becton Dickinson Mouse RPA-T8

CD25 BioLegend Mouse BC96

CD20 BioLegend Mouse 2H7

CD71 BioLegend Mouse CY1G4

CD44 BioLegend Mouse C44Mab-5

CD110 BioLegend Mouse S16017E

CD169 BioLegend Mouse 7-239

EpoR R&D Systems Mouse 38407

AcvRIIA R&D Systems Mouse 126706

TfR2 R&D Systems Mouse 353816

DARC R&D Systems Mouse 358307

Isotype control Becton Dickinson Mouse MOPC-21

MBM J-Chemical - -

EpoR: Erythropoietin receptor; AcvRIIa: activin receptor type-2A; TfR2: transferrin receptor 2; DARC: Duffy antigen receptor for chemokine; MBM: 
MAM lectin binding molecules.

signal intensity between the two groups, with a two-sided significance level (α) of 0.05 [Supplementary 
Table 1]. Post hoc power tests were conducted using G*Power software (Heinrich-Heine-Universität Dü
sseldorf, Düsseldorf, Germany). All signal intensities are shown in Figure, but spots with insufficient post 
hoc power were excluded from statistical analysis.

RESULTS
Purification and detection of serum EVs by the SPRi method
EVs were purified from serum samples of healthy controls and patients with T2DM and HT using 
ExoQuick®, a method based on polyethylene glycol (PEG) precipitation. The purified EVs solution was then 
injected into the SPRi device flow system. The size of EVs and any coprecipitated debris were confirmed via 
TEM. In Western blotting, the ExoQuick samples were analyzed in duplicate, but the phoretic images were 
discordant, indicating contaminant protein and insufficient diffusion of EVs during resuspension and lysis. 
This precipitation method was employed in subsequent experiments because it was considered an 
appropriate technique for clinical testing. It effectively purified the same quantity of EVs more rapidly, 
though it produced more debris compared to ultracentrifugation [Figure 2A]. The time courses of EV 
binding to spotted anti-CD63 antibodies on the SPRi biochip are shown in Figure 2B (Left). Because SPRi 
signal intensities vary among different antigen-antibody complexes, a baseline was established at 0 min 
when the EVs solution was injected. The average intensity of each ligand spot at 8 min was recorded as the 
result of analyzing each EV surface antigen [Figure 2B]. Moreover, Figure 2B (Central) shows the signal 
intensity of CD63 when the same healthy control serum was measured repeatedly on the same biochip for 
10 days. The signal intensity from day 2 to day 7 remained stable (mean: 1.02, upper limit: +0.088, lower 
limit: -0.098), although the signal intensity on day 1 was slightly elevated, likely due to the tendency for the 
initial measurement to yield higher values. The signal intensity remained reproducible for approximately 7 
days but began to decrease gradually afterward. Figure 2B (Right) demonstrates that washing the biochip 
does not affect the reproducibility of signal intensity. However, the average signal intensity varied from one 
biochip lot to another. Based on these data, we utilized the same biochip for a maximum of one week or for 
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Figure 2. EV purification and detection using SPRi. (A) EVs were purified using ExoQuick®, and the extent of purification was assessed 
by TEM and western blotting, compared to ultracentrifugation; (B) Two spots were prepared for each ligand, and the average of the 
maximum values from the kinetic curves was used as the quantitative measure of the ligand; (C) Kinetic curve for tetraspanin family 
proteins (CD63, CD9, and CD81), blank and isotype control, and images of each spot obtained from measuring healthy human serum 
with SPRi. Reagent control (100-fold diluted ExoQuick) was used to confirm nonspecific reactions of the reagents. Evs: Extracellular 
vesicles; TEM: transmission electron microscopy; SPRi: surface plasmon resonance imaging.

up to 100 samples. Figure 2C displays the difference in maximum signal intensity at the anti-tetraspanin 
antibody spots. Signal intensities varied based on the antigen expression level on the EV surface and the 
reactivity with the antibody clone, with maximum signal intensities of 1.89 (CD63), 0.53 (CD9), and 3.31 
(CD81) using healthy control serum. In addition, the signal intensities of the blank and isotype control spots 
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Figure 3. *Significant differences from control subjects (healthy controls) (P < 0.05). Each ligand’s measured value is normalized to the 
value of CD63. The columns represent healthy controls (blue), patients with T2DM (orange), and patients with HT (gray). (A) Antigens 
with high expression on the surface of any of the EVs. Antigens with (B) middle and (C) low expression on the surface of EVs. Values are 
shown as the mean ± SD. T2DM: Type II diabetes mellitus; HT: hypertension; Evs: extracellular vesicles.

are presented, along with the CD63 spot, which is measured using only the 100-fold dilution of the 
precipitation reagent. A signal intensity of approximately 0.1 was observed due to nonspecific reactions.

Analysis of circulating EVs in patients with T2DM and HT using SPRi
Signal intensities from SPRi analysis were normalized against CD63, a common EV marker, to account for 
variations in EV recovery rates. The ratios of normalized intensities for each surface antigen revealed 
disease-specific profiles of circulating EVs in patients with T2DM and HT compared to normal subjects 
[Figure 3]. EVs with CD9 (+), CD81 (+), activin receptor type-2A (AcvRIIA) (+), CD20 (+), and CD44 (+) 
markers were elevated in patients with T2DM and HT [Figure 3A]. Duffy antigen receptor for chemokine 
(DARC) (+) and CD110 (+) EVs increased only in T2DM, whereas MBM (+) EVs were elevated only in HT. 
TfR2 (+) and CD71 (+) EVs decreased in both T2DM and HT, whereas EpoR (+) EVs decreased only in HT. 
On the other hand, the average signal intensities of CD4, CD169, and CD25 were below 0.1 in all groups 
[Figure 3C].

Disease-specific EV profiles were clearly demonstrated by comparing the relative increases in each marker-
positive EVs in T2DM or HT to those in normal controls. In T2DM, EVs with CD9 (+), CD110 (+), 
CD20 (+), AcvRIIA (+), DARC (+), and CD44 (+) were elevated more than two-fold, and in HT, CD9 (+), 
MBM (+), CD20 (+), AcvRIIA (+), and CD44 (+) EVs showed similar increases [Table 3]. Four markers, 
CD9, CD20, AcvRIIA, and CD44, were upregulated in both T2DM and HT, with CD110 specifically 
elevated in T2DM and MBM in HT. This suggests that each disease has a distinct profile of circulating EVs.

Analysis of SPRi data using dimensionality reduction techniques
We used t-SNE and UMAP analyses to differentiate the profiles of circulating EVs among patients with HT 
or T2DM and control subjects. Under optimal conditions, T2DM, HT, and control subjects formed distinct 
clusters [Figure 4A]. UMAP analysis produced more integrated plots compared to t-SNE [Figure 4B]. These 
results indicate that patients with T2DM or HT have distinct circulating EV profiles and demonstrate that 
SPRi is an effective technology for disease identification.

A set of three EV antigens can distinguish between T2DM, HT, and control subjects
Based on these results of the profiles of circulating EVs specific to each disease, to create a clinically useful 
SPRi-based EVs assay, we evaluated 12 different sets of three EV markers for their ability to differentiate 
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Table 3. Profiles of EV markers in patients with T2DM and HT

Healthy control T2DM HT

EV markers Ratios* EV markers Ratios* EV markers Ratios*

CD81 1.131 CD20 3.178 CD20 1.950

EpoR 0.480 DARC 1.983 AcvRIIA 1.575

DARC 0.463 AcvRIIA 1.894 CD81 1.554

AcvRIIA 0.423 CD81 1.563 CD9 0.556

TfR2 0.344 CD9 1.078 DARC 0.292

CD20 0.326 CD110 0.890 MBM 0.143

CD71 0.305 EpoR 0.543 EpoR 0.127

CD8** 0.165 CD44 0.144 CD44 0.122

CD4** 0.093 CD8** 0.133 CD110 0.113

CD110 0.082 CD4** 0.111 CD71 0.052

*Ratios were calculated using normalized values with the intensity of anti-CD63 spots; **Insufficient number of specimens determined by post hoc 
power analysis. EV: Extracellular vesicle; T2DM: type II diabetes mellitus; HT: hypertension; EpoR: erythropoietin receptor; DARC: Duffy antigen 
receptor for chemokine; AcvRIIa: activin receptor type-2A; TfR2: transferrin receptor 2; MBM: MAM lectin binding molecules.

Figure 4. Cluster formation of each disease group using dimensionality reduction techniques. Visualization is provided by two 
dimensionality reduction techniques. Each node represents healthy controls (blue), patients with T2DM (orange), and patients with HT 
(green). (A) t-SNE method and (B) UMAP method. T2DM: Type II diabetes mellitus; HT: hypertension; t-SNE: t-Distributed Stochastic 
Neighbor Embedding; UMAP: uniform manifold approximation and projection.

T2DM, HT, and control subjects. After preliminary testing all sets, we selected two effective sets with the 
ability to separate three groups. The combination of CD110, EpoR, and TfR2 clearly distinguished T2DM, 
HT, and control groups [Figure 5A], as did DARC, CD71, and AcvRIIA [Figure 5B]. Other marker sets did 
not provide clear separation (data not shown). These findings indicate high expression of CD110 and 
DARC on EVs in T2DM and low expression of EpoR on EVs in both diseases [Figure 3 and Table 2]. Thus, 
using these sets of three antigens for SPRi analysis may be useful for diagnosing T2DM and HT.

Correlation with the disease severity
We examined whether the profile of circulating EVs correlated with the clinical data for each disease. In 
T2DM patients with retinopathy, the estimated glomerular filtration rate (eGFR) showed a significant 
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Figure 5. Antigens with distinct variations can differentiate between disease groups. The 3D plot displays the normalized signals of
various antigens measured by SPRi. Node represents healthy controls (red), patients with T2DM (blue), and patients with HT (green).
(A) CD110, TfR2, and EpoR; (B) DARC, AcvRIIA, and CD71. SPRi: Surface plasmon resonance imaging; T2DM: type II diabetes mellitus;
HT: hypertension; DARC: Duffy antigen receptor for chemokine; AcvRIIA: activin receptor type-2A.

Figure 6. Signal intensity changes of various antigens on the EV surface partially correlate with disease severity. (A) Correlation between
eGFR values and signal intensities of CD20 and CD44 on the EV surface in patients with diabetic retinopathy; (B) Correlation between
noradrenaline levels and signal intensities of AcvIIRA and MBM on the EV surface in patients with moderate- or high-risk cardiovascular
disease. R and R2 represent the correlation coefficient and R-squared, respectively. EV: Extracellular vesicle; eGFR: estimated glomerular
filtration rate; AcvRIIA: activin receptor type-2A; MBM: MAM lectin binding molecules.

correlation with CD44 (+) and CD20 (+) EVs [Figure 6A]. However, no correlation was noted between EV 
intensities and diabetic nephropathy [Supplementary Table 2]. In patients with moderate- or high-risk HT, 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/evcna5082-SupplementaryMaterials.pdf
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serum noradrenaline levels were positively correlated with MBM (+) EVs and negatively correlated with 
AcvRIIA (+) EVs [Figure 6B]. Logistic regression analysis also indicated an association between these EV 
antigens and the disease [Supplementary Table 3]. Multiple regression analysis, including confounding 
factors such as age and gender, showed that these EV antigens were correlated with eGFR and 
noradrenaline [Table 4].

DISCUSSION
Recent research has highlighted the clinical significance of circulating EVs in various diseases[37,38]. In this 
study, we used the SPRi method to analyze circulating blood cell-derived EVs in conditions associated with 
microvascular damages as common pathophysiologic complications. Tetraspanins, which are commonly 
found on the surface of EVs, interact with various transmembrane and cytoplasmic signaling proteins[39-42], 
making them key markers for identifying EVs through anti-CD63, CD9, and CD81 antibodies[2,4]. Therefore, 
we normalized EV profiles based on the number of CD63 (+) EVs. Our findings revealed that T2DM and 
HT have distinct EV profiles; T2DM showed a mixed pattern of commonly upregulated EVs [CD9 (+), 
CD20 (+), AcvRIIA (+), CD44 (+)] along with disease-specific upregulated EVs, such as CD110 (+), whereas 
HT displayed MBM (+) EVs.

CD9 has various biological roles depending on its binding partners, leading to variable expression levels 
across different pathological conditions, including cellular adhesion, migration, tumorigenesis, 
inflammation, and cellular senescence[43-45]. Given that T2DM and HT are risk factors for atherosclerosis, 
our data may reflect damage to vascular endothelial cells caused by atherosclerosis in these diseases. Further 
research with large cohorts and comprehensive clinical data is needed. Our results showed a notable 
increase in CD20 (+) EVs in both T2DM and HT. Macroangiopathy is a major cause of mortality in 
T2DM[46,47], and the presence of CD20 (+) lymphocytes and CD68 (+) macrophages is associated with 
neovascularization of the femoral artery in patients with T2DM[47]. B cells play a role in the development of 
type 1 diabetes mellitus and diabetic kidney disease[48]. In patients with T2DM, elevated serum IL-6 levels, 
which stimulate B cell functions, were associated with kidney damage[49]. Focusing on inflammation, we 
categorized the patients’ C-reactive protein (CRP) levels based on the presence or absence of complications. 
The median CRP values for retinopathy, nephropathy, and no complications were 0.27, 0.21, and 0.09, 
respectively. In addition, the correlation coefficients between CRP and CD20 signal intensity for these 
groups were 0.57, 0.59, and 0.59, respectively (Dara not shown). Although further investigation is necessary, 
as CRP responds to systemic inflammation and many patients with T2DM have urinary tract infections or 
other inflammatory conditions, the increase in CD20 (+) EVs observed in these patients may indicate an 
inflammatory process related to atherosclerosis. Furthermore, our data revealed higher expression of 
AcvRIIA on EVs in patients with T2DM and HT. AcvRIIA binds activin A, which is elevated in diseases 
associated with microangiopathy, including T2DM[50], T2DM with coronary heart disease[51], metabolic 
syndrome with HT[52], and heart failure[53]. Activin A promotes AcvRIIA expression[54] and erythroid 
differentiation through AcvRIIA[55]. According to The Human Protein Atlas (https://www.proteinatlas.org), 
AcvRIIA is highly expressed in skin cells but is not specific to any particular tissue. Although the specific 
cells and tissues responsible for the increase in AcvRIIA (+) EVs are not identified, our study suggests that 
these EVs could serve as potential biomarkers for microangiopathy complicated with T2DM and HT. 
CD110 (+) EVs were elevated only in T2DM in our study. CD110 is a thrombopoietin receptor found on 
megakaryocytes and platelets. Thrombopoietin binds to CD110, promoting the production of immature and 
activated platelets in blood[56,57]. Activated platelets release EVs that can damage vascular endothelial 
cells[58-60]. Previous research by Larsen et al. found significantly increased thrombopoietin levels in diabetic 
patients[61], which aligns with our finding of a significant increase in CD110 (+) EVs in T2DM [Figure 3]. 
Thus, the SPRi method may be useful for evaluating platelet-related risks in T2DM. Moreover, the miRNA 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202502/evcna5082-SupplementaryMaterials.pdf
https://www.proteinatlas.org
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Table 4. Profiles of EV markers in patients with T2DM and HT

T2DM with retinopathy (n = 21)

Beta t P 95%CI

(Constant) 3.68 0.002 61.04 227.44

Ages -0.27 -2.21 0.042* -1.39 -0.03

Gender 0.19 1.55 0.141 -3.73 23.98

CD20 -0.43 -2.19 0.043* -34.82 -0.59

CD44 0.49 2.53 0.022* 18.10 204.32

AcvRIIa -0.04 -0.34 0.741 -15.72 11.42

MBM 0.15 1.19 0.253 -104.4 369.8

T2DM with Nephropathy (n = 20)

Beta t P 95%CI

(Constant) 3.69 < 0.001 59.42 202.37

Ages -0.52 -3.98 < 0.001* -1.56 -0.51

Gender 0.29 2.25 0.030* 1.68 30.71

CD20 -0.04 -0.20 0.840 -15.34 12.57

CD44 -0.01 -0.05 0.964 -79.61 76.11

AcvRIIa -0.06 -0.45 0.656 -20.91 13.30

MBM 0.01 0.03 0.975 -255.73 263.77

HT - moderate/high-risk group (n = 22)

Beta t P 95%CI

(Constant) 1.77 0.096 -84.82 948.14

Ages 0.16 1.40 0.178 -0.91 4.55

Gender -0.09 -0.75 0.462 -94.18 44.56

CD20 -0.01 -0.10 0.920 -116.33 105.63

CD44 -0.09 -0.79 0.441 -1,017.33 462.27

AcvRIIa -0.41 -2.26 0.036* -220.04 -8.12

MBM 0.54 3.27 0.004* 33.43 153.41

HT - low-risk group (n = 25)

Beta t P 95%CI

(Constant) 4.66 < 0.001 230.45 618.48

Ages -0.02 -0.08 0.937 -1.62 1.50

Gender -0.48 -2.15 0.049* -93.87 -0.29

CD20 -0.32 -1.33 0.204 -93.98 21.827

CD44 0.14 0.49 0.628 -180.30 289.18

AcvRIIa -0.52 -2.19 0.044* -93.28 -1.42

MBM -0.21 -0.85 0.410 -371.10 160.02

*P < 0.05. Beta: standardized regression coefficient; t: t-statistic; EV: extracellular vesicle; T2DM: type II diabetes mellitus; HT: hypertension; CI:
confidence interval; eGFR: estimated glomerular filtration rate; AcvRIIa: activin receptor type-2A; MBM: MAM lectin binding molecules.

profile in platelet-derived EVs has been proposed as a relevant marker for predicting T2DM 
complications[62]. Further research into the contents of these EVs is recommended to better understand the 
pathogenetic roles of CD110 (+) EVs in T2DM.

eGFR

eGFR

NoradrenalineNoradrenaline

Noradrenaline
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CD44 (+) EVs were more than twice as abundant in T2DM and HT [Table 2] and were positively correlated 
with eGFR levels in T2DM patients with retinopathy [Figure 6A]. CD44 is a surface glycoprotein found on 
macrophages and T cells[63]. Kodama et al. found a positive relationship between soluble CD44 protein and 
HbA1c levels and insulin resistance in T2DM, noting its association with adipose tissue inflammation[64]. 
CD44 aids leukocyte adhesion to endothelial cells and stimulates chemokine release from macrophages, 
which promotes the proliferation and migration of vascular smooth muscle cells[65-67]. It is not clear if soluble 
CD44 proteins are cargo of EVs. Although CD44 (+) EVs may influence vascular function, the purification 
method used in this study did not completely remove non-EVs CD44 protein. As SPRi analysis may detect 
non-EVs CD44 protein, using a more refined purification method is recommended to confirm these 
findings. In addition, CD44 and CD20 did not correlate with biochemical data in patients with diabetic 
nephropathy. Lu et al. suggested that urinary EVs may be more effective for diagnosing diabetic 
nephropathy[68], as urine could be a better medium than serum for studying kidney disease due to the 
presence of urinary toxins and electrolyte abnormalities.

Our study is the first to reveal changes in EVs with antigens associated with erythroid lineage cells in 
T2DM. Originally identified as a blood group antigen on erythrocytes[69], DARC is classified as an atypical 
chemokine receptor 1 (ACKR1), a member of the ACKR family. This transmembrane protein does not 
interact with signal transduction pathways but functions through the uptake of extracellular molecules into 
the cytoplasm, scavenging, and transferring ligands[70,71]. Recent research also shows that DARC is expressed 
on vascular endothelium and acts as a chemokine receptor[72]. In ApoE-knockout mice on a high-fat diet, 
ACKR1 was overexpressed on red blood cells (RBCs), which accelerated atherosclerotic changes[70]. Our 
findings suggest that DARC (+) EVs could serve as useful biomarkers for detecting vascular endothelial 
damage in T2DM.

Our results showed a significant reduction in CD71 (+) and TfR2 (+) EVs in patients with T2DM. CD71 is 
equivalent to TfR1, and both TfR1 and TfR2 are transferrin-binding proteins[60]. TfR1 is generally found on 
cell surfaces and facilitates the uptake of transferrin-bound iron into cells, whereas TfR2 is specifically 
expressed on early erythroid progenitors, promoting RBC production through a complex with EpoR[73]. Our 
study identified CD20 (+), DARC (+), AcvRIIA (+), and CD110 (+) as the main populations of circulating 
EVs in T2DM, suggesting that most circulating EVs are non-erythroid. This may explain the relative 
decrease in CD71(+) and TfR2 (+) EVs. These findings highlight the need for precise nanoparticle counting 
to accurately determine EV numbers in each sample. Combining EV counting with SPRi technology is 
essential for a thorough understanding of the mechanisms behind the decrease in CD71 (+) and TfR2 (+) 
EVs.

SPRi analysis offers three key advantages: First, it requires only a small volume (150 µL) of serum. Second, 
costs are lower because the same biochip can be reused up to almost 100 times after stripping EVs bound to 
the immobilized antibody. Third, it allows for simultaneous analysis of 48 different EV markers, even if each 
marker is tested in duplicates[13]. The sensitivity of SPRi is comparable to ELISA and can be enhanced by 
using a two-antibody sandwich assay[19,74]. Although ELISA is a widely used and effective technique in 
clinical laboratories, it is costly due to its single-use nature. In contrast, SPRi allows for repeated 
measurements through biochip regeneration, making it more cost-effective and capable of comprehensive 
quantitative analysis of up to 96 antigens. Briefly, the cost is approximately $5 per sample for the SPRi in 
this study, approximately $7 per sample per antigen for the research ELISA, and $10~ per sample for the 
clinical ELISA. In terms of clinical applications, integrating SPRi with specialized analysis software is highly 
effective. This combination enables a variety of operations, including disease classification through 
dimensionality reduction and severity assessment using specific antigens in a single specimen measurement. 
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In this study, 25 EV antigens clearly separated T2DM, HT, and control subjects [Figure 4]. The time 
required to measure a single specimen is approximately 15 min, making it suitable for clinical testing. SPRi 
is also useful as a discovery tool to search for disease-related antigens. Two sets of EV markers [(CD110, 
EpoR, and TfR2) and (DARC, CD71, and AcvRIIA)] were effective in distinguishing control subjects from 
those with T2DM and HT [Figure 5]. As all these antigens are expressed by hematopoietic cells, it suggests 
that blood cell-derived EVs vary among the diseases studied. Further efforts are needed to identify effective 
EV markers for more accurate and sensitive analysis. Preventing serious cardiovascular disease is a crucial 
clinical strategy. Our study found that AcvRIIA (+) EVs had a significant negative correlation with serum 
noradrenaline levels, which are associated with atherogenesis[75]. However, MBM (+) EVs showed a 
significant positive correlation with noradrenaline levels. In patients with HT, the high sialic acid content in 
glycolipids from erythrocyte membranes may explain the increased MBM expression[76], as it is likely due to 
erythrocyte-derived EVs with elevated sialic acid content. Compared to other conventional protein analysis 
methods such as western blotting, ELISA, and flow cytometry, the primary advantage of SPRi is its label-free 
detection. This feature eliminates the need to account for antibody labeling (fluorescence, enzyme) and its 
combination for protein detection. Of course, nano-flow cytometry has the advantage of measuring both 
particle number and size. Although quantitative PCR (qPCR) is an important method for utilizing EVs as 
biomarkers because of its high detection sensitivity, quantitative internal controls have not yet been 
established, and multiple non-coding RNAs need to be measured for effective biomarker application. SPRi 
does not require the extraction of nucleic acids and can analyze multiple specific antigens in a single 
measurement.

The primary limitation of this study is the small sample size, particularly the number of healthy controls. In 
Japan, HT rates exceed 30% in people in their 40s, 50% in their 50s, and 60% in their 60s[77]. In addition, 
finding truly healthy controls of various ages who do not have T2DM or other diseases proved challenging. 
Although post hoc power analysis confirmed the power of each spot compared to the control, larger cohorts 
are needed to validate these results. Another issue is the EV purification method. The PEG-based 
precipitation used in this study also precipitates proteins and lipids, potentially increasing debris in patients 
with hyperlipidemia and hyperglobulinemia, which can affect ligand reactivity and cause nonspecific 
responses. In fact, as shown in Figure 2A, lipoproteins and contaminant proteins were not removed even 
though large vesicles were removed by the 0.22 µm filter. This resulted in some nonspecific reactions, as 
shown in Figure 2C. A similar effect has been observed at this point by Hosseinkhani et al. [78]. This may 
result in decreased sensitivity and an inability to detect low amounts of specific EVs. However, as reported 
by Hirschberg et al., the isolation of EVs using size-exclusion chromatography (SEC) results in high purity 
but requires ultrafiltration for SPRi, which raises the cost of clinical testing[79]. Improved low-cost methods 
for high-yield and high-purity EV purification are necessary. Additionally, we confirmed EVs by CD63/
CD81 protein and TEM according to MISEV guidelines[80], and our TEM data indicated that the sizes of the 
sample EVs were relatively homogeneous in this study. However, EVs are heterogeneous vesicle groups, 
such as exosomes, ectosomes, microvesicles, and Exosome-like vesicles[80]; there was an overlap in particle 
sizes among the EVs groups. Although we isolated EVs by precipitation method following filtration through 
a 0.22 µm filter, there may be heterogeneity of size of EVs between 200 and 220 nm because the definition of 
small EVs is < 200 nm. Our data require validation to confirm the purity of EVs through particle size 
analysis in further study to perform more precise quantification. It was also the limitation of this study that 
we could not confirm the quality of EV preparations using CD9 protein and calnexin, which are the 
markers to estimate EV purity[81]. In addition, the distribution of amino groups, particularly lysine residues, 
throughout the antibody raises concerns about the uniformity of antibody binding to the biochip. It is 
possible to address this problem by coating biochips and modifying antibodies, which presents a significant 
challenge for our future endeavors. As other potential external factors, the dysregulated release of EVs from 
damaged organs, as a complication of the diseases, influences EV signatures. Recently, bacterial EVs in 
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circulating blood have been highlighted as a biomarker for infectious diseases[82], whereas these vesicles can 
affect the signature of human EVs through nonspecific reactions. This study focused on T2DM and HT, 
which are major diseases that promote atherosclerosis. Further EVs analysis in various diseases is needed to 
determine diseases-specific EV signatures by the SPRi technology.

In conclusion, we used SPRi to analyze serum EVs from patients at high risk for atherosclerosis and 
demonstrated the clinical value of the EV signatures obtained. Our findings indicated that the EV signatures 
vary between T2DM and HT and correlate with disease progression. Notably, changes in blood cell-derived 
EVs were prominent in these patients. Although blood cell-derived EVs can fluctuate in hematopoietic 
diseases[83] and immune disorders[84], our study showed that these EVs also change in patients with T2DM 
and HT independently of such conditions. Most current tests for T2DM assess tissue damage that has 
already occurred, and tests for HT are not adequately predictive of disease progression. If EVs released 
during cellular injury could be detected before tissue damage, they could serve as biomarkers for the early 
detection of disease progression and the prediction of tissue damage. That is, the use of EV as a biomarker 
has the potential to improve prognostic factors compared to current clinical tests. If adopted clinically, the 
SPRi method could enable a comprehensive and cost-effective analysis of EV surface markers with high 
sensitivity. Our study highlights the potential of SPRi for profiling blood cell-derived circulating EVs as a 
new tool for diagnosing and monitoring various diseases.
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