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Abstract
The introduction of immune checkpoint inhibitors (ICIs) has revolutionized the treatment landscape for numerous 
tumor types, including cervical and endometrial cancers. Multiple ICIs against programmed cell death-1 (PD-1), 
programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) have 
demonstrated encouraging outcomes in controlled clinical studies for advanced cervical and endometrial cancers. 
For advanced cervical cancer, approved ICIs as second-line treatment include cemiplimab, nivolumab, and 
pembrolizumab as single agents. In the first-line treatment setting, options include pembrolizumab alone or in 
combination with bevacizumab, as well as atezolizumab combined with a backbone platinum-based chemotherapy 
plus bevacizumab. Additionally, for locally advanced cervical cancer, pembrolizumab is recommended alongside 
concurrent chemoradiotherapy. For endometrial cancer, pembrolizumab monotherapy, pembrolizumab in 
combination with lenvatinib, and dostarlimab are currently approved as second-line treatment options. Moreover, 
either dostarlimab or pembrolizumab can be added to first-line platinum-based chemotherapy for mismatch repair 
deficient malignancies. Although the inclusion of these agents in clinical practice has led to improved overall 
response rates and survival outcomes, many patients still lack benefits, possibly due to multiple intrinsic and 
adaptive resistance mechanisms to immunotherapy. This review aims to highlight the rationale for utilizing ICIs and 
their current role, while also delineating the proposed mechanisms of resistance to ICIs in cervical and endometrial 
cancer.
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INTRODUCTION
Recently, immunotherapy has drastically transformed the management of many solid and hematologic 
malignancies[1-5]. immune checkpoint inhibitors (ICIs) function by blocking inhibitory signals in immune 
cells that are mediated by the programmed cell death-1 (PD-1), its ligand [programmed death-ligand 1 
(PD-L1)], and the cytotoxic T cell lymphocyte-associated antigen 4 (CTLA-4), which typically hinder 
antitumor immunity when activated, aiming to reinstate the antitumor activity of immune cells[6-8].

In 2017, pembrolizumab was approved as the first tumor-agnostic, histology-independent treatment for 
second-line therapy of microsatellite instability-high (MSI-H)/mismatch repair deficient (dMMR) 
malignancies[9]. In this phase II study involving 86 patients with advanced MSI-H/dMMR solid tumors, 21% 
experienced a complete response (CR), reaching an objective response rate (ORR) of 53%. Notably, the 15 
patients with endometrial cancer (EC) included in this trial presented similar outcomes to those of the 
overall trial population. Then, in 2020, the phase II KEYNOTE-158 study confirmed the approval of 
pembrolizumab for non-colorectal MSI-H/dMMR tumors[10]. Among the 27 tumor types evaluated in this 
trial, EC had the highest ORR at 57.1%. These results led to subsequent studies further evaluating the role of 
ICIs in multiple cancer types, including cervical cancer (CC) and EC.

This review aims to highlight the rationale for employing ICIs and their current role, as well as to describe 
the proposed mechanisms of resistance to ICIs in CC and EC.

CERVICAL CANCER
Rationale for ICIs
CC ranks as the fourth most commonly diagnosed cancer globally and is the fourth leading cause of cancer-
related mortality among women[11]. In resource-constrained settings, the burden of CC is higher, where 
access to screening and treatment is limited[11]. Despite being among the most preventable cancers, CC still 
causes a substantial number of cancer deaths in women because of the ineffective treatment options 
available for women with locally advanced and metastatic CC[12]. CC is primarily attributable to infection by 
the human papillomavirus (HPV), with approximately 70% of cases related to the high-risk genotypes 16 
and 18[13]. The primary carcinogenic mechanism after HPV infection involves the incorporation of essential 
HPV oncoproteins (E6 and E7) into the human genome. E6 leads to the inhibition of p53, blocking 
apoptosis, while E7 inhibits the retinoblastoma tumor suppression protein, leading to cell cycle arrest[14]. 
Furthermore, somatic mutations of the host genome and DNA methylation associated with HPV infection 
leading to a high mutational tumor burden (TMB) have also been described as an essential aspect of CC 
oncogenesis[15-18]. Finally, approximately 88% of locally advanced CC are PD-L1-positive with a cut-off value 
of ≥ 1% as assessed by immunohistochemistry on tumor cells, and 96% of cases exhibit some degree of PD-
L1 staining (> 0% positive staining within the tumor)[19]. These mechanisms provide rationale regarding the 
immunogenicity of CC and suggest the potential role of ICIs in this gynecological malignancy.

Advanced cervical cancer
Second-line setting
Several trials have demonstrated encouraging activity and survival benefits with the employment of ICIs for 
advanced and/or recurrent CC, leading to the inclusion of these agents in clinical practice guidelines and 
approval for their use by international regulatory agencies [Figure 1].

The phase II KEYNOTE-158 study assessed the activity of pembrolizumab across multiple cancers, 
including 98 patients with previously treated advanced CC (Cohort E)[20]. After a median follow-up period 
of 36.9 months, the ORR was 14.3%, and all patients had a PD-L1 combined positive score (CPS) score ≥ 1. 
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Figure 1. Overall and progression-free survival for ICI alone or plus chemotherapy for the treatment of advanced/recurrent CC. ICI: 
Immune checkpoint inhibitor; CC: cervical cancer.

The entire study population’s median progression-free survival (PFS) and median overall survival (OS) were 
2.1 and 9.3 months, respectively[21].

In the randomized phase III EMPOWER-Cervical 1/GOG-3016/ENGOT-cx9 trial, 608 women with 
metastatic CC that had progressed following platinum-based chemotherapy were randomized to receive 
either cemiplimab monotherapy or chemotherapy selected by the investigator[22]. The study achieved its 
primary endpoint, showing a median OS of 12 months for the cemiplimab group compared to 8.5 months 
for the standard of care arm [hazard ratio (HR) 0.69; 95% confidence interval (CI) 0.56-0.84; P < 0.001]. This 
survival benefit was observed independently of the histological subtype and PD-L1 status. The ORR (16.4% 
compared to 6.3%; P < 0.001) and the median PFS (2.8 months compared to 2.9 months; HR 0.75; 95%CI 
0.63-0.89; P < 0.001) were also improved with cemiplimab. Moreover, patients with PD-L1 ≥ 1% who 
received cemiplimab demonstrated longer OS and higher ORR. Overall, adverse events (AEs) grade ≥ 3 were 
observed in 45% of the patients in the cemiplimab group and 53.4% of those in the control group, with a 
lower frequency of grade ≥ 3 anemia (12% vs. 27%) and grade ≥ 3 neutropenia (1% vs. 9%) in patients treated 
with immunotherapy. These results led to the approval of cemiplimab for the treatment of CC by the 
European Medicines Agency (EMA).

The phase I/II trial CheckMate 358 explored the efficacy of nivolumab alone and in combination with 
ipilimumab in treating virus-associated cancers, including patients with recurrent/metastatic CC (≤ 2 prior 
lines of systemic therapy)[23]. Patients were randomized to receive either nivolumab 240 mg every two weeks, 
nivolumab 3 mg/kg every two weeks and ipilimumab 1 mg/kg every six weeks (N3+I1), or nivolumab 
1 mg/kg and ipilimumab 3 mg/kg every three weeks for four cycles, followed by nivolumab 240 mg every 
two weeks for two years (N1+I3), or until disease progression, unacceptable side effects, or withdrawal of 
consent[24]. ORR was 26% for nivolumab monotherapy, 31% for N3+I1, and 40% for N1+I3, irrespective of 
PD-L1 status. The DOR was not reached with nivolumab monotherapy, 24.4 months with the N3+I1 
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regimen, and 34.1 months with the N1+I3 regimen. Median OS was 21.6, 15.2, and 24.7 months, 
respectively. The frequency of grade ≥ 3 immune-mediated AEs was < 6% for nivolumab monotherapy, < 7% 
for N3+I1, and < 6% (except for hepatitis 16%) for N1+I3. These findings indicated that chemotherapy-free 
treatment regimens with nivolumab, either alone or combined with ipilimumab, provided sustained 
responses with manageable AEs in patients[25].

A phase II trial, conducted in an open-label manner, evaluated the efficacy of a combination therapy 
consisting of balstilimab (an anti-PD1 agent) and zalifrelimab (an anti-CTLA-4 agent) as second-line 
treatment for women with advanced CC[26]. Among 125 women with measurable disease, ten patients 
achieved complete responses and 22 partial responses, reaching an ORR of 25.6%, with 64.2% of patients 
sustaining a response at 12 months. Among women with tumors showing PD-L1 expression, the ORR 
reached 32.8%, while 9.1% for those lacking PD-L1 expression. The predominant AEs were low-grade 
(G1-2), including hypothyroidism, diarrhea, fatigue, and nausea. The overall incidence of (G ≥ 3) AEs was 
20%. Therefore, this combination proved to be a promising regimen with enduring clinical activity and 
manageable toxicity in women with advanced CC.

First-line setting
The phase III trial KEYNOTE-826, a randomized, placebo-controlled study, investigated the incorporation 
of pembrolizumab into platinum-based chemotherapy, with or without bevacizumab, as first-line treatment 
in 617 women with persistent, recurrent, or metastatic CC[27]. The study demonstrated that adding 
pembrolizumab improved PFS and OS, its dual primary endpoints. In the intention-to-treat analysis, the 
pembrolizumab group showed a median PFS of 10.4 months compared to 8.2 months in the placebo group 
(HR 0.61; 95%CI 0.50-0.74; P < 0.001), and a median OS of 26.4 months compared to 26.8 months in the 
placebo group (HR 0.63; 95%CI 0.52-0.77; P < 0.001). In patients with PD-L1 positive tumors, the 
pembrolizumab arm demonstrated a median PFS of 10.5 months vs. 8.2 months in the placebo arm (HR 
0.57; 95%CI 0.47-0.71; P < 0.001) and a median OS of 28.6 months compared to 16.5 months in the placebo 
arm (HR 0.60; 95%CI 0.49-0.74; P < 0.001)[28]. All protocol-specified subgroups for PFS and OS, including 
age, race, ECOG, PD-L1 status, bevacizumab use, and stage at diagnosis, favored the pembrolizumab group. 
Grade ≥ 3 AEs occurred in 82% of the study population treated with pembrolizumab and 75% in the placebo 
group. Among the most common grade ≥ 3 AEs were anemia, affecting 30% in the pembrolizumab group 
and 27% in the placebo group, and neutropenia observed in 12% and 10%, respectively. The outcomes of the 
KEYNOTE-826 trial demonstrated significant improvements in both PFS and OS by incorporating 
pembrolizumab into platinum-based chemotherapy with or without bevacizumab for patients with 
advanced CC as first-line treatment, leading to regulatory approval.

Finally, the recently published BEATcc study evaluated adding atezolizumab to platinum-based 
chemotherapy and bevacizumab among 410 patients with previously untreated metastatic, persistent, or 
recurrent CC[29]. Patients were randomized to receive standard platinum-based chemotherapy and 
bevacizumab with or without atezolizumab. The study showed a PFS of I 13.7 months in the experimental 
arm compared to 10.4 months in the standard arm (HR 0.62; 95%CI 0.49-0.78; P < 0.0001). Moreover, the 
median OS was 32.1 months in the atezolizumab group vs. 22.8 months in the chemotherapy group (HR 
0.68; 95%CI 0.52-0.88; P = 0.0046). Although the incidence of grade ≥ 3 AEs was similarly high in both 
groups, affecting 79% of patients in the atezolizumab group and 75% in the chemotherapy arm, grade ≤ 2 
diarrhea, arthralgia, pyrexia, and rash were higher among patients in the atezolizumab group. Thus, 
incorporating atezolizumab into standard platinum-based chemotherapy with bevacizumab plus for 
metastatic, persistent, or recurrent CC significantly improved PFS and OS and could be another first-line 
treatment option.
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Locally advanced cervical cancer
Given the clinically meaningful survival benefit observed with immunotherapy-containing regimens in the 
advanced setting, incorporating these agents is currently being investigated in the locally advanced setting. 
The efficacy and safety of adding durvalumab during and after concurrent chemoradiotherapy (CCRT) was 
evaluated in the phase III randomized CALLA trial among women with locally advanced CC. Initial results 
indicated that adding durvalumab to CCRT did not result in a statistically significant improvement in PFS 
(HR 0.84; 95%CI 0.65-1.08; P = 0.174) or OS (HR 0.78; 95%CI 0.65-1.10; P = 0.156) compared to CCRT 
alone[30].

The ENGOT-cx11/KEYNOTE-A18 trial investigated the role of adding pembrolizumab concurrently and 
following CCRT in 1,060 women with high-risk locally advanced CC and assessed different pembrolizumab 
regimens administered concurrently with and following CCRT[31]. The primary outcomes were PFS and OS. 
After a median follow-up of 17.9 months, the 24-month PFS rate was 68% in the pembrolizumab-CCRT 
arm compared to 57% in the placebo-CCRT arm (HR 0.70; 95%CI 0.55-0.89; P = 0.0020). The 24-month OS 
rate was 87% in the pembrolizumab-CCRT arm and 81% in the placebo-CCRT arm (HR 0.73; 95%CI 
0.49-1.07). Grade ≥ 3 AEs were recorded at 75% in the pembrolizumab-CCRT arm and 69% in the placebo-
CCRT arm.

The negative outcome of the CALLA study compared to the positive results of KEYNOTE-A18 may be 
attributed to several factors, including patient characteristics, PD-L1 status, sample sizes, and follow-up. 
Firstly, 66% of women in the CALLA study had FIGO 2009 III-IVA stage and 74% node-positive disease, 
whereas in the KEYNOTE-A18 trial, these proportions were 56% and 84%, respectively. Additionally, 
disparities in PD-L1 positivity rates may have contributed. A post hoc subgroup analysis in the CALLA trial 
showed that women expressing higher PD-L1 tumor area positivity had a lower risk of progression with 
durvalumab treatment. Conversely, KEYNOTE-A18 did not show enrichment in treatment effect based on 
PD-L1 positivity. Furthermore, differences in sample sizes and follow-up durations could have played a role. 
CALLA had a smaller sample size (n = 770) and longer median follow-up (18.5 months) compared to 
KEYNOTE-A18 (n = 1,060, 17.9 months). While cross-trial comparisons should be approached cautiously, 
these factors highlight the importance of interpreting results within the context of trial design and 
participant demographics.

Finally, the ATOMICC trial, a currently ongoing, randomized, open-label, phase II study, is assessing the 
activity of TSR-042 (anti-PD1) as maintenance therapy for women with high-risk locally advanced CC 
following CCRT[32].

ENDOMETRIAL CANCER
Rationale for ICIs
EC is the most frequent gynecologic malignancy[11]. Almost two-thirds of women diagnosed with EC present 
with stage I disease, with 5-year OS rates reaching approximately 95%[33]. In the advanced setting, standard 
first-line chemotherapy provides limited benefit, with a PFS of only 13 months[34]. EC is classified into four 
molecular subtypes: polymerase ε (POLE) mutant (ultramutated), MSI-H (hypermutated), copy number 
low, and copy number high[35]. POLE-mutated and MSI-H tumors represent approximately 40% of all EC 
cases among these subtypes. They are considered to have high genomic instability and immunogenic 
phenotypes, harboring more tumor-specific neoantigens and increased amounts of tumor-infiltrating 
lymphocytes (TILs), resulting in upregulation of compensatory immune checkpoint mechanisms and the 
overexpression of PD-1 and PD-L1[36,37]. These findings led to the investigation of ICIs as a possible 
treatment for EC.
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Second-line setting
Multiple trials have demonstrated encouraging activity and survival benefits with ICIs in this setting, 
resulting in the approval of these agents for routine clinical practice [Figure 2].

ICIs as single-agent 
Pembrolizumab was examined across various advanced cancers in the phase II KEYNOTE-158 basket 
study. Patients diagnosed with EC regardless of MSI status (Cohort D) and patients with any MSI-H/
dMMR advanced solid tumor (excluding colorectal cancer), including EC (Cohort K), were enrolled[38]. In 
the 90 patients with MSI-H/dMMR EC subgroup, the ORR was 48% with a median PFS of 13.1 months. 
Additionally, the median DOR and OS were not reached. Although 76% of the AEs were of any grade, only 
12% were grades 3-4. Thus, pembrolizumab demonstrated high clinical activity with promising survival 
benefits and manageable toxicity among previously treated women with advanced MSI-H/dMMR EC. 
Following these findings, the Food and Drug Administration (FDA) granted approval for pembrolizumab 
monotherapy for individuals with advanced MSI-H/dMMR EC who experienced disease progression 
following previous systemic therapy.

The open-label phase I GARNET study investigated dostarlimab (500 mg every three weeks for four cycles, 
followed by 1,000 mg every six weeks) in individuals with advanced solid tumors. This trial included two 
cohorts of patients diagnosed with EC: those with MSI-H/dMMR tumors (cohort A1, n = 153) and those 
with microsatellite stable (MSS)/mismatch repair proficient (pMMR) tumors (cohort A2, n = 161)[39]. In 
cohort A1, the ORR was 45.5%, with 23 complete responses and 42 partial responses, whereas in cohort A2, 
the ORR was notably lower at 15.4%, with only four complete responses. The median DOR was not reached 
in cohort A1 (38.9 months to not reached) and was 19.4 months (8.2 months to not reached) in cohort A2. 
The median PFS was 6.0 months (4.1 to 18.0 months) for cohort A1 and 2.7 months (2.6 to 2.8 months) for 
cohort A2. Regarding OS, the median was not reached (ranging from 27.1 months to not reached) in cohort 
A1, while cohort A2 was 16.9 months (ranging from 13 to 21.8 months). In both cohorts, 80.9% of patients 
presented grade 1-2 AEs, the most frequent being fatigue, diarrhea, and nausea, and 19.1% of patients 
experienced a grade 3 AE. Hence, dostarlimab demonstrated sustained response rates in women with both 
MSI-H/dMMR and MSS/pMMR EC and a manageable safety profile. As a result of these findings, 
dostarlimab was authorized by EMA and FDA for the treatment of patients with recurrent or advanced EC 
expressing MSI-H/dMMR after progression to platinum-based chemotherapy.

ICIs plus multikinase inhibitors 
While MSI-H/dMMR EC accounts for only 16% of recurrent disease cases[40], and responses and survival 
benefits with immunotherapy alone have been limited in patients with MSS/pMMR disease[41,42], recent 
studies have uncovered possible strategies to overcome this challenge. The vascular endothelial growth 
factor (VEGF) fosters tumor proliferation and aids in metastasis across various tumor types, by stimulating 
angiogenesis[43]. Blocking VEGF may effectively overcome ICI resistance through vascular normalization, 
and recruitment and proliferation of immune-suppressing cells, including myeloid and regulatory T cells[44]. 
The KEYNOTE-146/Study 111, a phase Ib/II clinical trial, assessed the combination of pembrolizumab and 
lenvatinib, showing promising results in patients with EC[45].

In the phase III KEYNOTE-775 study, individuals with advanced EC who had undergone ≥ 1 previous line 
of platinum-based chemotherapy were randomly assigned to either lenvatinib (20 mg daily) alongside 
pembrolizumab (200 mg administered every three weeks) or the investigator’s choice of chemotherapy 
(doxorubicin or paclitaxel)[46]. The two primary outcomes of PFS and OS were assessed in all comers and 
patients with pMMR tumors. Out of the 827 women enrolled, 697 were diagnosed with pMMR tumors, 

Recurrent, advanced, and metastatic endometrial cancer
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Figure 2. Overall and progression-free survival for ICI alone or plus lenvatinib in the second-line treatment of EC. ICI: Immune checkpoint 
inhibitor; EC: endometrial cancer.

while 130 had dMMR tumors. Among those with pMMR tumors, median PFS was 6.7 and 3.8 months with 
pembrolizumab-lenvatinib and chemotherapy, respectively (HR 0.60; 95%CI 0.50-0.72). Similarly, the 
median OS was 18.0 months with lenvatinib and pembrolizumab vs. 12.2 months with physician’s choice 
chemotherapy (HR 0.70; 95%CI 0.58-0.83). In the entire study population, both median PFS (7.3 vs. 3.8 
months, HR 0.56; 95%CI 0.48-0.66) and OS (18.7 vs. 11.9 months, HR 0.65; 95%CI 0.55-0.77) were 
significantly longer in the experimental arm. Grade ≥ 3 AEs occurred more frequently in the 
pembrolizumab and lenvatinib arm (90.1%) compared to the chemotherapy arm (73.7%)[47]. Hence, the 
combined use of lenvatinib and pembrolizumab enhanced both PFS and OS in all women with advanced 
EC as a second-line treatment, encompassing those with pMMR disease. These outcomes prompted the 
EMA approval of pembrolizumab in conjunction with lenvatinib for treating advanced or recurrent EC in 
patients who have received ≥ 1 line of platinum-based chemotherapy. Furthermore, the FDA approved this 
combination in the second-line setting for patients with MSI-H/dMMR EC.

ICIs plus poly (ADP-ribose) polymerase inhibitors 
Combining ICIs with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) may be another treatment 
option, as these agents have been demonstrated to augment PD-L1 expression and neoantigen burden in 
preclinical studies[48]. The investigator-initiated, multicenter, phase II DOMEC trial examined the efficacy 
and safety of combining durvalumab with olaparib in women with metastatic or recurrent EC who had 
received ≥ 1 previous line of platinum-based chemotherapy or were not able or unwilling to undergo 
chemotherapy[49]. PFS at six months was 34% (17/50 patients), and ORR was 16% with only one complete 
response. The median PFS and OS were 3.4 and 8.0 months, respectively.

Similarly, another investigator-initiated, open-label, single-arm, phase II study evaluated the potential 
efficacy and safety of combining avelumab with talazoparib in recurrent pMMR EC[50]. The co-primary 
endpoints consisted of ORR and 6-month PFS. Among 35 patients analyzed, the ORR was 11.4%, with four 



Page 8 of Martinez-Cannon et al. Cancer Drug Resist 2024;7:23 https://dx.doi.org/10.20517/cdr.2023.12017

patients achieving partial responses, and the 6-month PFS rate was 22.9%. The most frequently reported 
grade ≥ 3 AEs included anemia (46%), thrombocytopenia (29%), and neutropenia (11%). Patients with 
homologous recombination deficiency (HRD)-positive tumors demonstrated higher rates of clinical benefit 
and longer PFS than those with HRD-negative tumors. PD-L1 status, TMB, and TILs were not associated 
with clinical benefits from avelumab plus talazoparib.

First-line setting
ICIs plus chemotherapy 
The promising outcomes from studies examining the efficacy of ICIs in the second-line setting prompted 
numerous trials investigating various ICIs in the first-line [Figure 3]. In part 1 of the phase III RUBY trial, 
494 women with stage III-IV or recurrent EC were randomly assigned to receive either dostarlimab or 
placebo, in addition to standard carboplatin and paclitaxel, followed by maintenance therapy with either 
dostarlimab or placebo for up to three years[51]. Among the MSI-H/dMMR population, a statistically 
significant and clinically meaningful improvement in PFS was reported (not reached in the dostarlimab 
group vs. 7.7 months in the placebo group; HR 0.28; 95%CI 0.16-0.50). In the overall population, the median 
PFS was 11.8 months for those receiving dostarlimab and 7.9 months for those on placebo (HR 0.64; 95%CI 
0.51-0.80; P < 0.001)[52]. In the MSS/pMMR population, the estimated 24-month PFS was higher with 
dostarlimab (28.4%) compared to placebo (18.8%), though the advantage appeared smaller (HR 0.76; 95%CI 
0.59-0.98). Additionally, after a median follow-up of 37.2 months, the median OS in the overall population 
was 44.6 months with dostarlimab vs. 28.2 months with placebo (HR 0.69; 95%CI 0.54-0.89; P = 0.002). In 
the dMMR/MSI-H group, the median OS was not reached in the dostarlimab arm, while it was 31.4 months 
in the placebo arm (HR 0.32; 95%CI 0.17-0.63; P = 0.002). In the pMMR/MSS population, the median OS 
was 34 months for those treated with dostarlimab compared to 27 months for those receiving placebo (HR 
0.79; 95%CI 0.60-1.04; P = 0.049)[53]. The most frequent AEs were comparable between the dostarlimab and 
placebo groups.

The NRG-GY018 trial enrolled 816 women with measurable stage III or IVA disease, or stage IVB or 
recurrent EC, to receive pembrolizumab or placebo alongside paclitaxel and carboplatin every three weeks 
for six cycles, followed by up to 14 additional cycles every six weeks[54]. Similarly to the RUBY Part 1 study, 
an unprecedented benefit in the dMMR group treated with the addition of the ICI was reported (12-month 
PFS of 74% vs. 38%; HR 0.30; 95%CI 0.19-0.48; P < 0.001). For the pMMR group, the median PFS was 13.1 
months for the pembrolizumab group vs. 8.7 months for the placebo group (HR 0.54; 95%CI 0.41-0.71; P < 
0.001). Adding pembrolizumab to chemotherapy did not result in increased toxicity, and the occurrence of 
immune-mediated AEs was consistent with those observed in previous studies.

In the AtTEnd phase III study, 551 women with either advanced/metastatic or recurring EC were randomly 
assigned (2:1 ratio) to carboplatin and paclitaxel with the anti-PD-L1 atezolizumab or placebo, followed by 
maintenance until disease progression[55]. In the dMMR subgroup, the addition of atezolizumab resulted in 
improved PFS (HR 0.36; 95%CI 0.23-0.57; P = 0.0005), with the median PFS not being reached in the 
atezolizumab arm vs. 6.9 months in the placebo group. In the overall population, the median PFS was 10.1 
months for the atezolizumab group compared to 8.9 months for the placebo group (HR 0.74; 95%CI 0.61-
0.91; P = 0.0219). Grade ≥ 3 AEs were observed in 66.9% of patients in the atezolizumab arm compared to 
63.8% in the placebo arm.

The outcomes from the aforementioned trials have prompted shifts in the management of advanced EC in 
the first-line setting. Nonetheless, the ongoing KEYNOTE-C93 (NCT05173987) and DOMENICA 
(NCT05201547) trials are investigating monotherapy ICI approaches in patients with dMMR/MSI-H EC.
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Figure 3. Overall and progression-free survival with ICI plus chemotherapy for the first-line treatment of advanced/recurrent EC. ICI: 
Immune checkpoint inhibitor; EC: endometrial cancer.

ICIs plus multikinase inhibitors 
Given the proven efficacy of pembrolizumab and lenvatinib in the second-line setting, this combination was 
also investigated in the first-line setting in the phase III ENGOT-en9/LEAP-001 trial[56]. Participants were 
randomized to receive lenvatinib 20 mg daily along with pembrolizumab 200 mg every three weeks or to 
undergo treatment with paclitaxel at a dose of 175 mg/m2 plus carboplatin at an AUC 6 administered every 
three weeks. The primary endpoints were PFS and OS evaluated in both the pMMR and intention-to-treat 
populations. After a median follow-up duration of 38.4 months, in the pMMR subgroup, the comparison 
between lenvatinib plus pembrolizumab and chemotherapy did not show statistically significant non-
inferiority for OS (HR 1.02; 95%CI 0.83-1.26; non-inferiority P = 0.2459875). In patients with advanced or 
recurrent EC, the first-line treatment with lenvatinib and pembrolizumab did not meet the predetermined 
statistical criteria for either OS or PFS compared to chemotherapy. However, the safety profile continued to 
be manageable and in line with that previously observed with this combination.

ICIs plus PARP inhibitors 
The DUO-E was a 3-arm phase III trial in patients with advanced or recurrent EC, investigating the 
combination of carboplatin and paclitaxel alongside durvalumab, followed by maintenance treatment with 
durvalumab with or without olaparib in the first-line setting[57]. In the intention-to-treat analysis, both the 
durvalumab and the durvalumab plus olaparib arms exhibited statistically significant improvements in PFS 
compared to the control arm. Specifically, the durvalumab arm showed a PFS of 10.2 months compared to 
9.6 months in the control group (HR 0.71; 95%CI 0.57-0.89; P = 0.003), while the durvalumab plus olaparib 
arm demonstrated a PFS of 15.1 months compared to 9.6 months in the control arm (HR 0.55; 95%CI 0.43-
0.69; P < 0.0001). In prespecified, exploratory subgroup analyses, a PFS benefit was observed in the dMMR 
population, with HRs of 0.42 (95%CI 0.22-0.80) in the durvalumab arm and 0.41 (95%CI 0.21-0.75) in the 
durvalumab plus olaparib arms compared to the control arm. Similarly, in the pMMR population, a PFS 
benefit was also demonstrated, with HRs of 0.77 (95%CI 0.60-0.97) in the durvalumab arm and 0.57 (95%CI 
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0.44-0.73) in the durvalumab plus olaparib arm compared to the control arm. The interim OS results, with 
approximately 28% maturity, indicated a trend toward enhanced OS with durvalumab (HR 0.77; 95%CI 
0.56-1.07; P = 0.120) and durvalumab plus olaparib (HR 0.59; 95%CI 0.42-0.83; P = 0.003) compared to the 
control group.

Finally, in RUBY part 2, the efficacy and safety of dostarlimab in combination with carboplatin-paclitaxel, 
followed by dostarlimab and niraparib, was assessed in 291 women diagnosed with recurrent or advanced 
EC[58]. With a median follow-up of 19 months, the median PFS was 14.5 months in the dostarlimab-
niraparib group compared to 8.3 months in the chemotherapy-alone group (HR 0.60; 95%CI 0.43-0.82; P = 
0.0007). In the MSS/pMMR subgroup, the median PFS was 14.3 months in the dostarlimab-niraparib arm 
and 8.3 months in the chemotherapy-alone arm (HR 0.63; 95%CI 0.44-0.91; P = 0.006). In an exploratory 
analysis of the MSI-H/dMMR population, the median PFS was not reached in the dostarlimab-niraparib 
arm, while it was 7.9 months in the chemotherapy-alone arm (HR 0.48; 95%CI 0.24-0.96; P = 0.0174). 
Grade ≥ 3 AEs were documented in 84% of patients in the dostarlimab group and 49% in the placebo group. 
The most common events included nausea (59.7% vs. 50%), fatigue (52.4% vs. 42.7%), and anemia (49.7% vs. 
47.9%).

Treatment after progression to ICIs
Data regarding treatment after progression to ICIs among patients with advanced EC are scarce. A phase II 
clinical trial assessed the activity of combining nivolumab and cabozantinib, a multitargeted tyrosine kinase 
inhibitor known for its potent activity against VEGF receptor 2, in 20 individuals with EC who experienced 
disease progression following immunotherapy[59]. Combining cabozantinib and nivolumab as ICI 
rechallenge resulted in an ORR of 25%, with seven patients achieving stable disease, leading to a median 
DOR of 5.5 months. However, the best treatment approach after the failure of ICIs in EC has yet to be 
defined, and many trials assessing new agents and strategies are ongoing.

Localized endometrial cancer
Following the important positive results of using ICI with chemotherapy for the treatment of advanced/
recurrent EC, its role has been investigated in the adjuvant setting. Particularly, pembrolizumab is under 
investigation in combination with adjuvant chemotherapy, with or without radiotherapy, in women with 
newly diagnosed, high-risk EC (ENGOT-en11/GOG-3053/KEYNOTE-B21 trial). This study is designed 
with dual primary endpoints, encompassing disease-free survival and OS. Enrollment for this trial started in 
December 2020 and is presently ongoing[60].

Furthermore, the Refining Adjuvant treatment IN endometrial cancer Based On molecular features 
(RAINBO) program is investigating four adjuvant treatment strategies tailored to the four molecular 
subtypes according to the TCGA classification. This program aims to increase cure rates by incorporating 
novel targeted therapies or safely de-escalating treatment[61]. The RED phase III trial is comparing adjuvant 
CCRT followed by two years of olaparib vs. adjuvant CCRT alone in women with p53 abnormal stage I-III 
EC. In the GREEN phase III trial, adjuvant radiotherapy with concurrent and adjuvant durvalumab for one 
year is compared to radiotherapy alone in women with dMMR stage II (with lymphovascular space 
invasion) or stage III EC. The ORANGE segment is a phase III trial aimed at treatment de-escalation for 
patients lacking a specific molecular profile, focusing on estrogen receptor-positive stage II (with LVSI) or 
stage III EC and comparing radiotherapy followed by progestin for two years to adjuvant chemoradiation. 
Lastly, the BLUE part is a phase II trial investigating treatment de-escalation in adjuvant therapy for women 
with POLE-mutated stage I-III EC, assessing the omission of adjuvant treatment (no adjuvant treatment or 
radiotherapy alone for higher-risk disease).
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MECHANISMS OF RESISTANCE
Although ORR and survival outcomes have improved with the inclusion of these agents into clinical 
practice, a substantial percentage of patients with CC and EC still do not experience benefits, possibly due to 
multiple intrinsic and adaptive resistance mechanisms to immunotherapy[62].

Intrinsic resistance mechanisms to ICIs in CC may include lack of response in pMMR tumors[63], T cell 
exhaustion due to chronic viral infections[64], and immunosuppressive tumor microenvironment[65]. 
Conversely, patients who initially respond to ICIs may later encounter adaptative resistance, leading to 
disease progression or recurrence. Adaptive mechanisms of resistance in CC include the upregulation of 
alternative immune checkpoint signaling pathways[66]. Potential targets for maximizing the effect of anti-
PD-1 antibodies involve blocking CTLA-4 and T-cell immunoreceptors with immunoglobulin and ITIM 
domain (TIGIT) co-inhibitory signals, thus creating a synergistic effect[67,68].

The approach of dual checkpoint blockade targeting both PD-1 and CTLA-4 has proven to enhance clinical 
outcomes compared to sole anti-PD-1 monotherapy across various types of solid tumors[69]. Inhibiting PD-1 
restores the responsiveness of tumor-reactive T cells6 while blocking the CTLA-4 pathway activates effector 
T cells and diminishes their down-regulating function[70]. Therefore, targeting the dual blockade of these 
separate yet mutually reinforcing mechanisms could effectively counter resistance observed to ICI 
monotherapy, both in CC and other solid tumors.

Conversely, TIGIT, an immune checkpoint receptor found on both natural killer (NK) cells and T cells, 
reduces the activity of these immune cells by interacting with its ligand poliovirus receptor (PVR), located 
on antigen-presenting or tumor cells[62]. Furthermore, TIGIT expression in CD8+ T lymphocytes in patients 
with CC is elevated compared to patients without CC and induces the exhaustion of CD8+ T lymphocytes 
through NF-κB inhibition and extracellular signal-regulated kinase (ERK) activation, leading to the 
downregulation of cytokine production. Both in vivo and in vitro investigations have shown that blocking 
TIGIT reinstates CD8+ T cells’ ability to produce cytokines and that combining TIGIT and PD-1 inhibitors 
shows even greater activity than blocking TIGIT alone[71]. Currently, ongoing studies are evaluating novel 
treatment strategies for CC, including combinations of ICIs and adoptive cell therapy to overcome such 
mechanisms of resistance [Table 1].

For EC, some proposed mechanisms for resistance to immunotherapy include the major histocompatibility 
complex (MHC), heterogenous expression of PD-1, and Janus kinase 1 (JAK1)/signal transducer and 
activator of transcription 1 (STAT1) mutations[72].

ICIs enhance adaptive antitumor immune responses and require cytotoxic T cells’ presence and activation 
through various mechanisms, including MHC class I[73]. MHC class I loss prevents antigen recognition by 
neoantigen-specific CD8+ T cells, which may lead to resistance to PD-1 inhibitors regardless of PD-1 
expression[74]. In a study by Friedman et al., 46% of dMMR and 25% of PD-L1-positive endometrial tumors 
lost MHC class I expression[74]. Thus, further research investigating the role of MHC class I loss on 
resistance to immunotherapy is needed.

Regarding MHC class II, lymphocyte activation gene-3 (LAG-3), an immune inhibitory receptor found 
mainly on activated T and NK cells, has been recognized as its primary ligand, hindering the activation of 
CD4+ helper T cells[72]. Studies have demonstrated that fibrinogen-like protein 1 (FGL-1), a critical ligand 
for LAG-3, can trigger T-cell suppression, facilitating tumor immune evasion[75]. Furthermore, in vitro 
experiments have shown that LAG-3 diminishes the activity of CD8+ T cells in the vicinity of tumors and 
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Table 1. Ongoing trials in advanced cervical cancer

Trial Phase Novel treatment Setting Primary 
endpoint

Estimated enrollment 
(n)

Monotherapy

FERMATA (NCT03912415) III BCD-100 1st line OS 316

Dual checkpoint blockade

NCT05033132 II Balstilimab +/- zalifrelimab 2nd line PFS 177

RaPiDS (GOG-3028) 
(NCT03894215)

II Balstilimab +/- zalifrelimab 2nd line ORR 200

NCT04380805 II Cadonilimab (PD-1/CTLA-4 bispecific 
antibody)

2nd line ORR 30*

NCT04982237 III Cadonilimab 1st line PFS and OS 440

Combination with anti-TIGIT inhibitors

KEYVIBE-001 (NCT02964013) I Vibostolimab +/- pembrolizumab 2nd line RP2D 392

SKYSCRAPER-04 
(NCT04300647)

II Atezolizumab +/- tiragolumab 2nd line ORR 172*

Adoptive cell therapy

NCT03108495 II LN-145 1st and 2nd 
line

ORR and safety 189

*Actual enrollment. OS: Overall survival; PFS: progression-free survival; ORR: objective response rate; PD-1: programmed cell death-1; CTLA-4: 
cytotoxic T lymphocyte-associated antigen 4; TIGIT: T-cell immunoreceptors with immunoglobulin and ITIM domain.

decreases cytokine production through its interaction with galectin-3 (GAL-3).[76] Research has shown that 
LAG-3 plays a role in evading the immune system’s responses across various solid tumors, including EC[77]. 
In a retrospective study involving 421 EC patients conducted by Zhang et al., LAG-3 expression in immune 
cells was more prevalent in patients exhibiting high-risk characteristics, including high-grade tumors, those 
classified in the ESMO-ESTRO-ESGO high-risk group, advanced or metastatic EC, and cases with 
lymphovascular space invasion. Additionally, higher LAG-3 expression was noted in patients with the 
POLE-mutated and dMMR molecular subtypes[77]. Thus, LAG-3 could potentially be a candidate target for 
immunotherapy in POLE-mutated and dMMR EC alone or in combination with PD-1/PD-L1 blockade to 
enhance the immunotherapeutic effect. Nevertheless, additional investigations are required to comprehend 
the specific mechanisms regulating LAG-3 and its biological significance in EC.

Heterogenous expression of PD-1 within the tumor microenvironment could also sustain resistance against 
PD-1/PD-L1 antibodies and could potentially be overcome by targeting alternative immune molecules such 
as T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), either in conjunction with or 
as an alternative to PD-1 blockade[78]. TIM-3 is an immune checkpoint present in various immune cell types 
and holds significant importance in regulating immune responses and tolerance through modulation[79]. 
TIM-3 expressed on Th1, Th17, monocytes, dendritic cells, and macrophages enhances regulatory T cell 
numbers and contributes to depletion of CD8(+) tumor-infiltrating T cells[80]. In a study by Moore et al., 
immunohistochemistry was performed on 75 endometrial tumors comprising 25 cases with mutL homolog 
1 (MLH1) promoter hypermethylation, 25 non-hypermethylated dMMR cases, and 25 pMMR cases to 
assess the expression of TIM-3 in the tumor and the microenvironment[81]. Most cases (77%) displayed 
TIM-3 tumoral expression of at least 1%. However, dMMR tumors exhibited a higher prevalence of 
moderate to robust immune cell expression than pMMR cases (66% vs. 12%, P = 0.00002). These findings 
propose a possible use for TIM-3 antibodies in a subgroup of patients with EC, including those with pMMR 
tumors not currently considered for ICI monotherapy.
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JAK1 becomes activated by cytokines such as interferon-gamma (IFNγ), influencing various cellular 
functions, including immune response and cell growth, through the JAK/STAT pathway[82]. It has been 
demonstrated that JAK1 mutant gynecological cancer cell lines lacked the ability to phosphorylate STAT1 
tyrosine in response to IFNγ, preventing the stimulation of antigen-processing machinery components, 
including low molecular weight peptide-2 (LMP2) and transporter associated with antigen processing-1 
(TAP1)[83]. This impairment in antigen presentation and processing, due to reduced LMP and TAP protein 
expression, correlates with diminished human leukocyte antigen (HLA) class I upregulation and resistance 
to cytotoxic T cell-mediated lysis[84]. Thus, JAK1/STAT1 mutations lead to declined effector immune cell 
activation and hindered antigen-presenting mechanisms[85,86]. Micro-satellite frameshift insertions and 
deletions are the critical forms of JAK1/STAT1 mutations present in EC[87] and can be found in 
approximately 47% of dMMR tumors[85]. Hence, assessing these and other potential biomarkers could be 
pertinent in identifying EC patients who might not benefit from ICIs.

Moreover, the processes related to microsatellite instability could influence responses to ICIs. Microsatellite 
instability can result from mutations in the MMR genes (germline and somatic mutations) and methylation 
of the MLH1 gene promoter[88]. In a phase II trial assessing pembrolizumab in patients with MSI-H 
recurrent EC, it was observed that the TMB was significantly higher in Lynch/Lynch-like tumors [median, 
2,939 mutations/megabase (Mut/Mb)] compared to sporadic tumors (median, 604 Mut/Mb; P = 0.0076). 
The ORR was 100% in patients with Lynch/Lynch-like disease, contrasting with 44% in sporadic tumors. 
Additionally, patients with Lynch/Lynch-like EC exhibited improved 3-year PFS and OS rates compared to 
those with sporadic EC[89]. Contrary to these results, a post hoc analysis from patients in cohort A1 of the 
GARNET trial found no differences in ORR according to Lynch/Lynch-like vs sporadic EC subgroup 
analysis[39,90]. Similarly, an exploratory analysis of the NRG-GY018 study did not prove a different benefit 
from incorporating pembrolizumab into chemotherapy according to the mechanism of mismatch repair 
loss[91].

CONCLUSIONS
ICIs have drastically shifted the treatment and outcomes of women with advanced CC and EC by providing 
improved response rates and long-lasting benefits in PFS and OS. Several trials have resulted in the approval 
of multiple treatment choices, including ICI monotherapy and/or combined with targeted agents in the 
first- and second-line settings of CC and EC. These encouraging results have prompted ongoing trials 
evaluating these agents in earlier lines and the (neo)adjuvant setting. However, intrinsic and acquired 
resistance mechanisms to ICIs and how to overcome such resistance still pose a significant unmet need for 
treating patients with these malignancies. Further research addressing these questions remains a crucial area 
of active investigation. Finally, identifying predictive biomarkers of response and/or resistance may lead to a 
better selection of patients with CC and EC who may benefit from these treatments.
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