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Abstract
As the number of people with neurological disorders increases, movement rehabilitation becomes progressively im-
portant, especially the active rehabilitation training, which has been demonstrated as a promising solution for im-
proving the neural plasticity. In this paper, we developed a 5-degree-of-freedom rehabilitation robot and proposed a
zero-force control framework for active rehabilitation training based on the kinematics and dynamics identification.
According to the robot motion characteristics, the fuzzy PID algorithm was designed to further improve the flexibil-
ity of the robot. Experiments demonstrated that the proposed control method reduced the Root Mean Square Error
and Mean Absolute Error evaluation indexes by more than 15% on average and improves the coefficient of determi-
nation (𝑅2) by 4% compared with the traditional PID algorithm. In order to improve the active participation of the
post-stroke rehabilitation training, this paper designed an active rehabilitation training scheme based on gamified
scenarios, which further enhanced the efficiency of rehabilitation training by means of visual feedback.

Keywords: Upper limb exoskeleton rehabilitation robot, rehabilitation, zero force control, fuzzy control, virtual reality

1. INTRODUCTION
With the ageing of the population in society, the number of elderly people with movement disorders caused by
stroke, spinal cord injury, traumatic brain injury, and deterioration of limb function is increasing [1]. Patients
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with movement disorders are prone to complications such as muscle wasting, vascular stenosis, and decreased
cardiopulmonary function without the proper rehabilitation training for a long period. To avoid complications
and benefit motor function recovery, such patients need to undergo exercise rehabilitation after acute phase
management such as clinical surgery and medication to restore limb motor function and improve self-care
ability [2]. Relevant medical literature shows that with early detection and scientific treatment of patients with
movement disorders and limb rehabilitation training, the human nervous system can repair and reconstruct
the damaged nerves [3], and there would be a high probability of recovery for patients with mild symptoms,
and basic daily life functions can be realised for patients with more severe symptoms. Therefore, rehabilitation
training plays a crucial role in the recovery of patients with movement disorders. Traditional clinical rehabili-
tation training usually requires professional therapists to provide individual or group rehabilitation guidance
to patients [4]. However, in China, rehabilitation remains in the initial development stage, facing challenges
such as the majority of patients needing rehabilitation, a long training cycle for physicians, and a shortage of
professional rehabilitation practitioners.

Therefore, rehabilitation robots have become a research hotspot in the field of robotics [5]. They can not only
reduce the physical burden of therapists but also save medical resources and reduce the cost of rehabilitation
training. Their advantages over traditional manual training methods include: (a) They have the advantage
of repeated training over a long period; (b) The robot-assisted rehabilitation can ensure the consistency of
postural accuracy and intensity of each training session; (c) They have the freedom of time for rehabilitation
training without the influence of manual trainers; (d) The convenience of data recording only requires the
rehabilitation physiotherapist to give training advice on data testing, reducing the cost of hiring a long-term
rehabilitation physiotherapist. It can be seen that robotic rehabilitation training has obvious advantages over
traditional manual rehabilitation training. The research on rehabilitation robots is of great academic and prac-
tical significance.

This study focuses on the current development status of upper limb rehabilitation robots, which can be clas-
sified into two categories based on their mechanical structure: end-effector-based and exoskeleton-based [4].
Representative examples of end-effector-based robots include MIT-Mannus [6], Mirror Image Motion Enabler
(MIME) [7,8], GENTLE/s [9], and others. This structural type cannot independently drive individual joints of
the upper limb. In contrast, exoskeleton-based robots mimic the physiological structure of the human limbs,
with joint layouts corresponding to those of the human body. Consequently, they can simultaneously guide
coordinated movements of various joints [10]. Robots, such as ARMin [11,12], Harmony [13], “u-Rob” [14], and
RUPERT [15], fall into the category of exoskeleton robots. Rehabilitation training can be broadly divided into
passive and active training stages. In the passive training process, the robot takes an active role in executing
movements, and the patient is in a passive state, allowing the robot to guide the affected limb through cor-
responding training actions to achieve rehabilitation goals [16]. However, this training process is limited to
patients without muscle strength. Continuous passive training methods do not significantly improve the limb
motor function of patients. Utilising robots as assistants to actively involve patients in rehabilitation training
proves to be a more effective rehabilitation approach [17]. Active training emphasises the rehabilitation robot
following the movement intent of a patient through corresponding assistive control, where the patient takes
the lead, thereby more effectively eliciting spontaneous participation in rehabilitation training [18]. Due to the
substantial joint reduction ratio and the lack of the ability for reverse driving in exoskeleton robots, patients
cannot alter the robot motion trajectory using their own strength [19]. Therefore, achieving assistive control of
exoskeleton robots in an active training mode becomes a challenging problem [13].

Rehabilitation robots prioritize the estimation of continuous control motion intent in active rehabilitation
training. This method can be broadly categorised into three types: the interaction force-based, the electromyo-
graphic (EMG) signal-based, and the desired trajectory-based methods. The interaction force-based motion
intent estimation method combines force/torque sensors with impedance control. It measures interaction
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forces using external joint torque sensors or end-effector six-dimensional sensors to identify the motion in-
tent and subsequently conduct active rehabilitation training. Kim et al. used force sensors to obtain interac-
tion forces [20], while Radke et al. employed a nonlinear disturbance observer based on a dynamic model to
estimate interaction forces [21]. The estimation of EMG signal-based motion intent involves establishing the
relationship between EMG signals and muscle forces using the Hill muscle model, combined with a skeletal
model, to calculate joint torques. Rosen et al. implemented this method’s control on a two-axis robot [22].
Hashemi and Ison, on the other hand, directly established the mapping relationship between EMG signals and
joint torques using deep learning approaches [23,24]. The desired trajectory-based motion intent estimation
acquires the expected trajectory of a robot through interaction information and tracks it. Khan et al. used
neural networks to establish a mathematical model between interaction information and the desired trajec-
tory, achieving human-robot cooperative control [25]. In terms of active motion intent recognition, due to the
inconsistency and susceptibility of EMG signals to external factors such as electrode position, sweat, and hu-
midity, the desired trajectory method requires constructing a complex expected trajectory model. Therefore,
this paper adopts the interaction force-based motion intent estimation method, installing joint torque sensors
at the joints to detect human-robot interaction forces without additional devices.

Zero-force control is the foundation for implementing active training, and traditional zero-force control pri-
marily includes two methods: position control-based and torque control-based. In position control-based
zero-force control, the robot operates in position control mode, leveraging external sensors as feedback units
for force information. This method allows for precise detection of external force magnitude, providing higher
sensitivity and stability. Direct teleoperation functionality is achieved by tracking position information, and ex-
ternal force detection requires external sensors or conversion through joint current values. Precise calculation
of the dynamic model is needed, and the method demands high sensor accuracy but exhibits poor robust-
ness [26,27]. In torque control-based zero-force control, the robot operates in torque control mode, eliminating
external sensors and only requiring compensation for gravity and friction in the dynamic model [28,29]. How-
ever, challenges arise in overcoming inertial forces, motor internal reducer transmission losses, and other un-
certainties during motion. For patients with movement disorders, especially those with weak muscle strength,
overcoming the robot’s inertial forces and other impediments for rehabilitation training is challenging. There-
fore, this method falls short of meeting the requirements for active training. The precision of dynamic model
parameter identification is compromised due to uncertainties such as friction and internal motor reducer
transmission losses [30].

In this paper, firstly, under the zero force control of the robot, a form based on the combination of outer-loop
PID feedback and feedforward control is proposed. The robot works in the torque control mode, calculates
the interaction force by computing the dynamics model using external torque sensors, and obtains the com-
pensation value of the feedforward torque by means of the outer-loop control, which not only provides the
compensation torque of the external force but also overcomes the inaccuracy of the dynamics model and im-
proves the robustness of the system. Meanwhile, an active rehabilitation training method based on outer-loop
fuzzy PID control is further proposed to address the shortcomings of ordinary PID control. The traditional
PID method has limitations in compensating torque with fixed parameters, which may not be suitable for all
patients, particularly those at different stages of rehabilitation treatment. Fuzzy PID control is more suitable
for the active rehabilitation training function compared to the normal PID control method [31]. First, it is more
robust to system nonlinearity and uncertainty and can better overcome the influence of uncertainty factors in
the dynamics model. Secondly, it is more responsive to the system and can respond faster to the motor inten-
tion of a patient [32], which, in turn, enables the patient to provide less interaction force to complete the active
rehabilitation training and improves the rapidity and suppleness of the system.

This paper is organised as follows. Section 2 describes the rehabilitation robot device and modelling method.
Section 3 presents the active training method based on outer-loop PID and its fuzzy control improvement
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Figure 1. Block diagram of robot system operation.

algorithm. Section 4 gives the results of the validation experiments. Section 5 designs a gamified scenario-
based active rehabilitation training scheme based on the improved algorithm, and finally, Section 6 gives the
conclusions of this paper and the direction of future work.

2. ROBOTIC DEVICE MODELLING
Upper-limb rehabilitation robots are divided into two categories: end-traction and exoskeleton [33]. End-pull
robots interact with the hand or arm of a patient through an end-effector to drive other upper limb joints
to move. The exoskeleton robot imitates the human physiological structure, and the joint distribution corre-
sponds to the human joints, which can guide the movement of all human joints at the same time and provide
comprehensive joint movement information and targeted training [10].

Therefore, we developed a 5-degree-of-freedom exoskeleton robot, in which the shoulder is represented by
three articulated motor couplings, and the elbow and wrist are each controlled by a single motor. Each motor
joint is equipped with a joint torque sensor, where the large arm linkage and the small arm linkage are set
as adjustable structures in order to adapt to the arm length of the patient. The shoulder joints of upper limb
exoskeletons are usually represented by three vertically aligned rotary joints. In order to enhance the range
of motion while avoiding mechanical singularities and interference with the human body, our shoulder joint
consists of three rotary joints aligned at an acute angle, and the angles between the axes are set as 60 degrees.

The robot hardware device adopts an industrial computer as the robot control system operation platform, and
the motor controller is connected to the industrial computer through the EtherCAT bus protocol, which has
better clock synchronisation than the common Ethernet connection technology. In terms of software, Twin-
CAT3 software is used, running on the industrial control machine. At the same time, CSharp upper computer
interaction software is developed to achieve data transfer through ADS communication; Unity3D gamification
scene technology is developed to achieve synchronisation ofmovements throughTCP/IP communication. The
above hardware selection and data interaction methods constitute the control system of this robot. The block
diagram of the robot system operation is shown in Figure 1. The robot is modelled, and the structure is shown
in Figure 2.

AModified Denavit-Hartenberg (MDH) parameter construction method is used to build theMDH parameter
table [Table 1]. 𝛼𝑖−1, 𝑎𝑖−1, 𝑑𝑖 , and 𝜃𝑖 denote the connecting rod torsion angle, connecting rod length, joint
angle, and joint offset, respectively. Row 𝑠 of the table represents the transformation relationship from the
base coordinate to the 0 coordinate system. The units of 𝑎𝑖 and 𝑑𝑖 are in millimetres.
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Figure 2. Robot model.

Table 1. MDH parameters

𝒊 𝜶𝑖 𝒂𝑖 𝒅𝑖 𝜽𝑖

s 0 0 0 30
1 90 0 0 𝜃1 − 19.14712
2 -60 0 0 𝜃2 + 70.5288
3 60 0 102.74 𝜃3 − 109.4712
4 0 270 0 𝜃4 + 90
5 -90 0 -195 𝜃5

MDH: Modified Denavit-Hartenberg.

2.1 Kinematic analysis
According to the parameter table, the coordinate transformation relationship between the joints can be ex-
pressed in the form of a rotation matrix and a position matrix; the rotation matrix is given as

𝑆
5𝑅 = 𝑍𝛾𝑋𝛼0𝑍𝜃1′ 𝑋𝛼1𝑍𝜃2′ 𝑋𝛼2𝑍𝜃3′ 𝑍𝜃4′ 𝑋𝛼4𝑍𝜃5 (1)

and the position absolute matrix is defined as

𝑠
5𝑃 = 𝑍𝛾𝑋𝛼0𝑍𝜃1′ 𝑋𝛼1𝑍𝜃2′


0

−𝑠𝛼2𝑑3
𝑐𝛼2𝑑3

 + 𝑍𝛾𝑋𝛼0𝑍𝜃1′ 𝑋𝛼1𝑍𝜃2′ 𝑋𝛼2𝑍𝜃3′


𝑎3
0
0

 +
𝑍𝛾𝑋𝛼0𝑍𝜃1′ 𝑋𝛼1𝑍𝜃2′ 𝑋𝛼2𝑍𝜃3′ 𝑍𝜃4′


0
𝑑5
0


(2)

Thederivation and transformation of the forward and inverse kinematics of a robot can be achieved through the
rotation and position matrices, realising the mutual mapping between the exoskeleton robot’s joint space and
under the Cartesian space. Through the forward and inverse kinematics resolution, it completes the execution
of the trainedmotion along the pre-set desired trajectory, for example, shoulder joint adduction and abduction,
forward and backward flexion and extension, internal and external rotation movements, elbow flexion and
extension movements, and wrist turning movements. In the passive training mode, the purpose of the robot
controller is to reduce the trajectory tracking error, so that the patient learns the correct movement pattern,
usually in the form of traditional closed-loop control combined with feedforward compensation.

2.2 Identification of dynamical model parameters
Whether it is the feedforward compensation function in passive training or the interactive force-assisted con-
trol function in active training, it is necessary to establish the kinetic model of the rehabilitation robot to
calculate the moment information in the motion state, and this paper adopts the method of kinetic identifica-
tion to obtain the kinetic parameters of the robot and complete the construction of the model. Because the
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fifth joint of the robot device has a lightweight mechanical structure and works in the moment mode with
almost zero resistance, the kinetic model is not established for this joint, and this operation can reduce the
complexity of the robot model and improve the model accuracy. Therefore, the dynamics model of this robot
is a 4-degree-of-freedom model.

2.2.1 Kinetic model construction
The Newton-Euler method is used to build a dynamics model for this robot. Compared with the Lagrangian
modellingmethod, this approach calculates through the inter-joint force andmotion relationship layer by layer,
the physical meaning is clear, and it does not involve derivation operation, so that the results can be obtained
quickly and the calculation efficiency is high [34]. The standard form of its expression is given as

𝜏=𝑀 (𝑞) ¥𝑞 + 𝐻 (𝑞, ¤𝑞) + 𝐺 (𝑞) + 𝜉 (𝑞, ¤𝑞, ¥𝑞) (3)

where 𝑞, ¤𝑞, ¥𝑞 represent the position, velocity and acceleration vectors of the joint, respectively, 𝜏 denotes the
joint torque vector, 𝑀 (𝑞) is the mass matrix, 𝐻 (𝑞, ¤𝑞) is the centrifugal and Koch force vectors, 𝐺 (𝑞) denotes
the gravitational moment, and 𝜉 (𝑞, ¤𝑞, ¥𝑞) denotes the other compensating moment parameters.

2.2.2 Linearisation of the model
The kinetic parameters of the robot are represented in the kinetic model in a nonlinear combination, which
makes it difficult to identify the kinetic parameters. Through the parallel axis theorem, the coordinate system of
the inertial parameter in the nonlinear term is coordinate transformed to complete the linearisation process [35].
The force and moment expressions in the kinetic model are given in

𝑖 𝑓𝑖=𝑖+1
𝑖𝑅𝑖+1 𝑓𝑖+1 + 𝑚𝑖 𝑖 ¤𝜔𝑖×𝑖𝑃𝐶𝑖 + 𝑚𝑖 𝑖𝜔𝑖 ×

(𝑖𝑤𝑖×𝑖𝑃𝐶𝑖

)
+ 𝑚𝑖 𝑖 ¤𝑣𝑖

𝑖𝑛𝑖 =
𝑖
𝑖+1 𝑅

𝑖+1𝑛𝑖+1+𝑖𝑃𝑖+1 ×𝑖𝑖+1 𝑅
𝑖+1 𝑓𝑖+1+𝑖𝑃𝐶𝑖 × 𝑚𝑖 𝑖 ¤𝑣𝑖+𝑖𝜔𝑖×𝑖 𝐼𝑖 𝑖𝜔𝑖+𝑖 𝐼𝑖 𝑖 ¤𝜔𝑖

(4)

where 𝑓 , 𝑛 are the force and moment on the articulated linkage, 𝑖+1
𝑖 𝑅 is the coordinate transformation matrix,

¤𝑣, 𝜔, ¤𝜔 represents the linear acceleration, angular velocity, and angular acceleration of the articulated linkage
of the rehabilitation robot, respectively, 𝑖𝑃𝑖+1 is the vector from the origin of the coordinate system of the 𝑖𝑡ℎ
articulated linkage (i.e., the 𝑖 coordinate system) to the origin of the coordinate system of the 𝑖+1𝑡ℎ articulated
linkage,𝑚 is themass of the articulated linkage, and 𝑖𝑃𝐶𝑖 represents the centre ofmass of the articulated linkage.
𝐼 denotes the inertia tensor matrix. The identification equation for the kinetic parameters can be expressed as:

𝜏𝑠 = 𝐻 (𝑞, ¤𝑞, ¥𝑞)𝜃 (5)

where 𝐻 (𝑞, ¤𝑞, ¥𝑞) ∈ 𝑅𝑚×𝑛 denotes the observation matrix; 𝑚 and 𝑛 denote the number of kinetic parameters
in the kinetic parameter set and the number of robot rods, respectively. 𝜃 ∈ 𝑅𝑚×1 is the set of dynamics
parameters. Since some columns of 𝐻 (𝑞, ¤𝑞, ¥𝑞) are always zero and some columns have a linear relationship,
no matter what value of 𝑞, ¤𝑞, ¥𝑞 is taken, 𝐻 cannot make the columns full rank, and thus 𝜃 cannot be solved
uniquely by the least-squares method. In this section, we use the 𝑄𝑅 decomposition method. The matrix 𝐻
is decomposed to full rank, and the result of the decomposition is used to restructure the inertia parameters.
The following formula can be obtained:

𝜏 = �̃�𝑃𝐵𝑎𝑠𝑒 (6)

where �̃� is the matrix of column full-rank coefficients obtained from the full-rank decomposition of 𝐻. 𝑃𝐵𝑎𝑠𝑒
is the minimum inertia parameter after reorganisation.

2.2.3 Fourier excitation trajectory
In the realm of robot dynamics parameter identification, the judicious linearisation of the model ensures the
unique convergence of identification results toward the target values. Discrepancies between target and true
values primarily stem from kinematic parameter deviations and measurement noise. Rational design of iden-
tification excitation trajectories serves to mitigate the impact of measurement noise on results and enhance
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the iterative speed of target parameter convergence, thereby elevating identification accuracy. Atkeson et al.
employed a fifth-degree polynomial method as the excitation trajectory in joint space [36]. However, due to
the coupled relationship between joints in the joint space of the rehabilitation robot investigated in this study,
this method is not suitable. Swevers introduced, for the first time, an excitation trajectory model based on
Fourier series [37]. This trajectory possesses periodicity, smoothness, and strong robustness, making it widely
applicable in future research. Therefore, this paper adopts the Fourier series method for obtaining the excita-
tion trajectory, optimising the trajectory parameters based on the matrix condition number, and ultimately
obtaining a relatively ideal excitation trajectory. The signal-to-noise ratio of the data is improved by averag-
ing through multiple samples, enhancing data quality. The overdetermined equations used in the parameter
identification process for a periodic excitation trajectory model composed of a finite number of Fourier series
terms are formulated, as given in

T =


𝜏 (𝑡1)
𝜏 (𝑡2)
...

𝜏 (𝑡𝑁 )


=



𝐻𝑀

(
q (𝑡1) ,

.q (𝑡1) ,
..q (𝑡1)

)
𝑛×𝑁b

𝐻𝑀

(
q (𝑡2) ,

.q (𝑡2) ,
..q (𝑡2)

)
𝑛×𝑁𝑏

...

𝐻𝑀

(
q (𝑡𝑁 ) ,

.q (𝑡𝑁 ) ,
..q (𝑡𝑁 )

)
𝑛×𝑁𝑏


Xmin = H𝜏Xmin (7)

where 𝐻𝑀 represents the regression matrix, 𝑋𝑚𝑖𝑛 denotes the minimum parameter set to be identified, and 𝐻𝜏
corresponds to the vector of filtered torque sampling data. The form of the excitation trajectory is specified as
per

𝑞𝑖 (𝑡) = 𝑞𝑖0 +
𝑁∑
𝑛=1

𝑎𝑖𝑛
𝑛𝜔 𝑓

sin
(
𝑛𝜔 𝑓 𝑡

)
− 𝑏𝑖𝑛
𝑛𝜔 𝑓

cos
(
𝑛𝜔 𝑓 𝑡

)
(8)

where 𝑞𝑖0, 𝑎𝑖𝑛, 𝑏𝑖𝑛 represent the coefficients of the fitted trajectory, 𝜔 𝑓 is the fundamental frequency of the
Fourier series, 𝑁 is the order, and excitation trajectory of each joint comprises (2𝑁 +1) parameters. This study
adopts a 5th-order Fourier series, with 11 parameters needing determination for the excitation trajectory of
each individual joint during a single run. The specific constraints on the trajectory are outlined in

|𝑞𝑖 (𝑡) | ≤ 𝑞max ∀𝑖, 𝑡
| ¤𝑞𝑖 (𝑡) | ≤ 𝑣max ∀𝑖, 𝑡
| ¥𝑞𝑖 (𝑡) | ≤ 𝑎max ∀𝑖, 𝑡
𝑞𝑖 (𝑡0) = 𝑞𝑖

(
𝑡 𝑓
)
= 0 ∀𝑖, 𝑡

¤𝑞𝑖 (𝑡0) = ¤𝑞𝑖
(
𝑡 𝑓
)
= 0 ∀𝑖, 𝑡

¥𝑞𝑖 (𝑡0) = ¥𝑞𝑖
(
𝑡 𝑓
)
= 0 ∀𝑖, 𝑡

(9)

where A denotes the maximum values of the angle, angular velocity, and angular acceleration for each joint,
with the equality conditions ensuring that the states at the start and end times of the trajectory period are
both 0. For the optimisation function design problem of such excitation trajectory models, the quality of the
excitation trajectory is related to the ill-conditioning of the observation matrix. Therefore, optimising the
excitation trajectory is achieved by using the condition number of the observation matrix as the criterion. A
smaller condition number is favourable, as it reduces the susceptibility to the impact of errors introduced by
self-noise when solving parameters using the least squares method. The condition number is given as

𝑐𝑜𝑛𝑑 (𝜓) = 𝜎max(𝜓)
𝜎min(𝜓)

(10)

Here, 𝜎max(𝜓) and 𝜎min(𝜓) respectively represent the maximum and minimum singular values of the matrix
𝜓. The objective function for optimising the excitation trajectory parameters is to minimise the condition
number of the regressionmatrix in the dynamicmodel. As a multi-constraint nonlinear optimisation problem,
the trajectory is optimised using the fmincon function in the MATLAB optimisation toolbox, solving for the
44 parameters in the excitation trajectory. The excitation trajectory plot is illustrated in Figure 3.
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Figure 3. Incentive trajectory motion curve.

Figure 4. Identification flow chart.

According to the motion curves in Figure 3, it can be seen that the excitation trajectory of the robot meets
the optimisation conditions of the objective function, and the condition number of the regression matrix after
the convergence of the objective function is 88.78 < 100. This is consistent with the results of the related
experiments of this category at national and international standards.

2.2.4 Parameter identification and validation
In accordance with the weighted least squares method, the solution under the minimum parameter set is
obtained, as given in

𝑋𝑊𝐿𝑆 =
(
𝐻𝑇Σ−1𝐻

)−1
𝐻𝑇Σ−1Γ (11)

where Σ−1 represents the covariance matrix of the torque measurement value noise standard deviation, 𝐻 is
the observation matrix, Γ is the torque measurement value vector, and𝑊𝑊𝐿𝑆 is the identification vector. The
identification process for the robotic dynamic parameters in the context of rehabilitative robotics is illustrated
in Figure 4. The identification model of the robot is determined by the minimum parameter set and the cor-
responding regression matrix, while the input positions of the robot control law are dictated by the excitation
trajectory. Due to the real-time nature of motion data, a first-order low-pass filter is applied to filter the mo-
tion data. Ultimately, the identification results based on a fifth-order Fourier series excitation trajectory are
presented in Figure 5. The figure illustrates the mathematical dynamic model predicting torque for the iden-
tification trajectory, with the predicted torque (depicted by the solid orange line), actual torque (depicted by
the solid blue line), and the error between the two (depicted by the solid green line). It is evident from the
figure that the computed torque values closely follow the trend of the actual values, confirming the accuracy
of the identification model. The overall assessment of the accuracy of the identification results is determined
through the Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics [Table 2]. The RMSE
is defined as

RMSE =

√√√√√ 𝑛total∑
𝑖=1

(
𝑋𝑖, calc − 𝑋𝑖, act

)
𝑛total

(12)
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Figure 5. Parameter identification result diagram.

Table 2. Parameters of RMSE/MAE indicators table

Joint1 Joint2 Joint3 Joint4

RMSE 0.422 0.492 0.469 0.246
MAE 0.335 0.377 0.364 0.198

RMSE: Root Mean Square Error; MAE: Mean Absolute Error.

where 𝑛𝑡𝑜𝑡𝑎𝑙 represents the number of data points, and 𝑋𝑖, calc, 𝑋𝑖, act denote the calculated and actual values
for the 𝑖 − 𝑡ℎ data point, respectively. The MAE is defined as:

𝑀𝐴𝐸 =
1
𝑁

𝑁∑
𝑖=1

|𝜏𝑖 − 𝜏𝑖 | (13)

where 𝜏𝑖 represents the actual observed values, 𝜏𝑖 represents the predicted values, and 𝑁 represents the number
of samples.

Upon computation, the overall RMSE for the joint identification results is calculated to be 1.629 Nm, with an
overall MAE of 1.274 Nm and a torque average error rate of 6.65%. These results align with the identification
requirements.
In the context of robot dynamics parameter identification, parameter validation stands as an indispensable
step. It not only scrutinises the entire identification process for potential errors but also ensures the accuracy
of the obtained dynamic parameters, laying a foundation for subsequent active rehabilitation training. In this
study, a third-order Fourier series trajectory model is employed to generate a new trajectory distinct from
the identification process. This trajectory ensures that the validation trajectory is entirely different from the
excitation trajectory during parameter identification and exhibits as substantial motion as possible. Its results
using the third-order Fourier series are illustrated in Figure 6.

As shown in the figure above, after the validation of the parameter identification by using the new excitation
trajectory, the relative error of the moment of the validated trajectory is 7.62%, and this validation method
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Figure 6. Joint identification verification results.

proves the high accuracy of the identified parameter values and the good moment prediction effect when
applied to the robot dynamics.

3. ACTIVE TRAINING METHOD BASED ON OUTER LOOP PID
The ideal state for assistive control in exoskeleton robots is to enable the motion of an operator without inter-
ference from the robot, commonly referred to as ”transparent” control [38,39]. In this study, torque sensors are
integrated at the joints of the rehabilitative robot, allowing real-time monitoring of the torque exerted by the
robot. This facilitates the extraction of human-robot interaction forces, subsequently serving as input for the
controller to execute the assistive control of the exoskeleton robot.

In traditional zero-force control, precision dynamic models are required for position-based zero-force con-
trol, imposing high demands on sensor accuracy and exhibiting poor robustness. In torque-based zero-force
control, although external sensors are not needed, and only gravity and friction compensation are required,
uncertainties such as inertial forces and motor transmission losses prevent it from meeting the requirements
of active training.

To address the shortcomings of traditional zero-force control methods in active rehabilitation training, a strat-
egy based on outer-loop PID control is proposed, incorporating joint torque sensors at the robot joints. This
approach utilises external sensors to calculate interaction forces, obtaining compensation values for feedfor-
ward torque through outer-loop control. This not only provides compensation torque for external forces but
also enhances the robustness of robots to inaccuracies in the dynamic model. Through this control method,
the smoothness of the active rehabilitation training process can be improved.

Although traditional outer-loop PID algorithms address the issue of insufficient torque output from the dy-
namic model, they exhibit limitations in compensating for torque due to fixed parameters. This approach
may not be universally suitable for all patients, especially those in different stages of rehabilitation treatment.

http://dx.doi.org/10.20517/ir.2024.08


Tong et al. Intell Robot 2024;4:125-45 I http://dx.doi.org/10.20517/ir.2024.08 Page 135

Figure 7. Improved control structure diagram.

Fuzzy PID control presents significant advantages in two aspects: firstly, it demonstrates enhanced robustness,
effectively handling system nonlinearity and uncertainties to overcome uncertainties in the dynamic model.
Secondly, it results in a faster system response, enabling a quicker capture of the motion intent of a patient.
Consequently, patients can accomplish active rehabilitation training with reduced interaction forces, enhanc-
ing the responsiveness and flexibility of systems. The improved network structure diagram using the fuzzy
control algorithm is illustrated in Figure 7. The joint actuators of the system operate in torque mode, and the
control system expression is given as

𝜏𝑑 (𝑡) = 𝐾𝑝 · 𝑒(𝑡) + 𝐾𝑑 · (𝑒(𝑡) − 𝑒(𝑡 − 1)) + 𝜏𝑐 (𝑡) (14)

𝑒(𝑡) = 𝜏𝑒𝑥𝑡 (𝑡) − 0 (15)

𝜏𝑒𝑥𝑡 (𝑡) = 𝜏𝑠 (𝑡) − 𝜏𝑑 (𝑡) (16)

Fuzzy control is a novel intelligent control method based on fuzzy set theory, linguistic variables, and logic
reasoning. Its essence lies in utilising expert experience to simulate human behaviour for decision-making
and control [40]. Here, 𝑒 represents the input error, and 𝑒𝑐 represents the error change rate. Fuzzy rehabilita-
tion robot interaction force input error and error change rate are fuzzified to obtain the fuzzy subset 𝐸, 𝐸𝐶.
Through fuzzy relations and logical reasoning, the output set {Δ𝑘 𝑝,Δ𝑘𝑖,Δ𝑘𝑑} is derived. The output is then
defuzzified to transform it into precise values {Δ𝑘 𝑝,Δ𝑘𝑖,Δ𝑘𝑑} which are added to the conventional PID pa-
rameters. Finally, the values of 𝑘 𝑝, 𝑘𝑖 and 𝑘𝑑 are obtained and transmitted to the robot joints, realising active
rehabilitation training for the robot.

In this control framework, the traditional outer-loop PID control is used as the basis of this paper’s framework,
and the outer-loop PID control is improved with fuzzy algorithms so that the parameters in the PID control
are variable. The errors of human-robot interaction force and zero-target torque are taken as inputs, processed
through the fuzzy PID controller to calculate the required compensation force. This compensation force is
then added to the torque calculated by the dynamic model, enabling the robot system to operate in torque
mode. This process achieves torque compensation and facilitates the active rehabilitation training.

The entire process of the fuzzy control algorithm consists of four stages: fuzzification of input and output
variables, design of fuzzy control rules, logical inference, and defuzzification, to achieve precise control of
the rehabilitation robot. The fuzzy control input variables include {𝐸, 𝐸𝐶}, and the output variables include
{Δ𝑘 𝑝 ,Δ𝑘𝑖 ,Δ𝑘𝑑}. Fuzzy subsets are defined as [𝑁𝐵, 𝑁𝑀, 𝑁𝑆, 𝑍𝑂, 𝑃𝑆, 𝑃𝑀, 𝑃𝐵], representing large negative,
medium negative, small negative, zero, small positive, medium positive, and large positive. The membership
table for input and output variables is obtained through triangular membership functions. In this paper, the
fuzzy control is applied to PID parameter correction. In accordance with previous experimental experiences,
the derived inference rules are presented in Tables 3-5.
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Table 3. 𝑒, 𝑒𝑐, Δ𝑘𝑝 affiliation table

Output 𝑬𝐶

PB PB PM PM PS ZO ZO
PB PB PM PS PS ZO NS
PM PM PM PS ZO NS NS

𝐸 PM PM PS ZO NS NM NM
PS PS ZO NS NS NM NM
PS ZO NS NM NM NM NB
ZO ZO NM NM NM NB NB

Table 4. 𝑒, 𝑒𝑐, Δ𝑘𝑖 affiliation table

Output 𝑬𝐶

PB PB PM PM PS ZO ZO
PB PB PM PS PS ZO NS
PM PM PM PS ZO NS NS

𝐸 PM PM PS ZO NS NM NM
PS PS ZO NS NS NM NM
PS ZO NS NM NM NM NB
ZO ZO NM NM NM NB NB

Table 5. 𝑒, 𝑒𝑐, Δ𝑘𝑑 affiliation table

Output 𝑬𝐶

PB PB PM PM PS ZO ZO
PB PB PM PS PS ZO NS
PM PM PM PS ZO NS NS

𝐸 PM PM PS ZO NS NM NM
PS PS ZO NS NS NM NM
PS ZO NS NM NM NM NB
ZO ZO NM NM NM NB NB

Its trigonometric affiliation function is defined as

𝑓 (𝑥; 𝑎, 𝑏, 𝑐) =


0, 𝑥 ≤ 𝑎

𝑥−𝑎
𝑏−𝑎 𝑎 ≤ 𝑥 ≤ 𝑏
𝑐−𝑥
𝑐−𝑏 𝑏 ≤ 𝑥 ≤ 𝑐

0, 𝑐 ≤ 𝑥


(17)

Fuzzy inference involves deriving new conclusions based on existing fuzzy conditions or assumptions, with
the Mamdani inference method being a commonly used approach. The algorithm involves a direct product
operation for fuzzy implications𝑄𝑖 𝑗 (𝐸, 𝐸𝐶,Δ𝑀) as a fuzzy set 𝐸′

𝑖 , 𝐸𝐶
′
𝑖 , 𝑀

′
𝑖 𝑗 , based on theminimumconstraint

relation. Here, 𝐸 represents the error, 𝐸𝐶 is the error change rate, and 𝑀 is an adjustment value. The specific
algorithm involves direct product operations, where 𝑖 = 1 · · · 7, 𝑗 = 1 · · · 7 represent fuzzy set linguistic values,
expressed as

𝑄𝑖 𝑗 (𝐸, 𝐸𝐶,Δ𝑀) ∈ 𝐸′
𝑖 × 𝐸𝐶′

𝑗 × Δ𝑀′
𝑖 𝑗 (18)

For a discrete domain fuzzy set 𝐸′
𝑖 , 𝐸𝐶

′
𝑗 ,Δ𝐾

′
p𝑖 𝑗 represented as a matrix, it can be expressed as

𝐷𝑖 𝑗 (𝐸, 𝐸𝐶) = 𝐸′
𝑖 × 𝐸𝐶′

𝑗 = 𝐸
′
𝑖
𝑇Λ𝐸𝐶′

𝑗 (19)

𝑄𝑖 𝑗 (𝐸, 𝐸𝐶,Δ𝑀) = 𝐷𝑖 𝑗 (𝐸, 𝐸𝐶)Λ𝑀′
𝑖 𝑗 (20)

where 𝐷𝑖 𝑗 (𝐸, 𝐸𝐶) represents the transformation of the first-row elements into columns, and subsequent rows
follow suit. If the controller has 𝑛 fuzzy rules, the fuzzy relation 𝑄 is constructed from 𝑛 fuzzy implication
relations 𝑄𝑖 𝑗 , defined as

𝑄 =
𝑖=7, 𝑗=7⋃
𝑖=1, 𝑗=1

𝑄𝑖 𝑗 (𝐸, 𝐸𝐶,Δ𝑀) (21)
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Figure 8. Fuzzy controller input-output relationship diagram.

By mapping 𝑒 and 𝑒𝑐 to the corresponding control parameters 𝑘 𝑝 , 𝑘𝑖 , 𝑘𝑑 according to the fuzzy rule table,
and subsequently applying defuzzification using the method of maximum membership, the fuzzy inference is
refined. With 𝑘 𝑝 as an example, precise values in the form of {Δ𝑘 𝑝 ,Δ𝑘𝑖 ,Δ𝑘𝑑} are obtained, as illustrated by
𝑘 𝑝 = max 𝑓𝑀

(
Δ𝑘p

)
,Δ𝑘p ⊂ 𝑀 .

In accordance with the practical considerations in rehabilitation, the adjustment magnitude of the interaction
force in the conventional PID control method should not be excessively large, and the adjustment rate is typi-
cally set to a low value. Therefore, the proportional coefficients for the first three joints are set to 5. To enhance
joint response speed and eliminate steady-state error, the integral coefficient is set to 0.1. Additionally, to
suppress joint oscillations, the derivative coefficient is set to 5. Given the smaller mass of the fourth joint and
its faster tracking response, the integral coefficient is set to 0. After incorporating a fuzzy controller into the
PID control, during the parameter adjustment process, the maximum value of torque error is set to ±10 N,
and the maximum rate of its change is set to ±20 N/s, based on the torque variation during joint operation.
According to the fuzzy subset configuration, each breakpoint is set to 1/3 of the maximum specified error.
Subsequently, the membership values for each fuzzy interval are calculated using a triangular membership
function. In summary, the input-output relationship of this fuzzy controller is shown in Figure 8.

In accordance with the aforementioned reasoning process, the error between human-robot interaction force
and the system’s zero torque, along with the rate of change of interaction force error, serves as inputs to the
fuzzy controller. The change in PID parameters, computed as output, is used to dynamically adjust the PID
parameter values in real time during the active rehabilitation training process. This aims to accelerate the
response speed of a system and enhance the rehabilitation flexibility.

4. EXPERIMENTAL VERIFICATION
Training was conducted using two active rehabilitation control methods: one based on the conventional
external-loop PID algorithm and the other based on the external-loop fuzzy PID algorithm. Data from joint
torque sensors and computed data from dynamic identification were recorded during the training process,
as illustrated in Figures 9-12. The data collected from the joint torque sensors were left unfiltered to ensure
real-time accuracy.

In the active training process, the blue curve represents the torque data collected by the joint torque sensor,
the orange curve represents the torque data calculated from dynamic model parameter identification, and
the green curve represents the error between sensor torque data and calculated torque data, representing the
additional interactive force provided by the patient. Simultaneously, the torque data curves of fuzzy control
and conventional control at the torque direction transition are locally magnified. The local graph shows the
proposed fuzzy PID control method in this paper effectively reduces the phenomenon of sudden changes when
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Figure 9. Comparison of joint1 torque data.

Figure 10. Comparison of joint2 torque data.

Figure 11. Comparison of joint3 torque data.

the torque changes direction. This is attributed to the stronger robustness of the fuzzy controlmethod to system
nonlinearity and uncertainty, resulting in faster system response. Additionally, the system can adaptively adjust
PID parameters, enabling a quicker response to the motion intention of a patient, thereby allowing the patient
to provide smaller interactive forces for active rehabilitation training. This enhances its agility and smoothness.
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Figure 12. Comparison of joint4 torque data.
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Figure 13. Comparison of 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 and 𝑅2 for normal and fuzzy control diagrams. RMSE: RootMean Square Error; MAE:Mean Absolute
Error.

Due to the fact that each action cycle in active rehabilitation training is genuinely captured by the patient,
despite maintaining consistency in rehabilitative movements, it remains challenging to ensure complete uni-
formity in each instance of the action. Therefore, this paper conducts an overall experimental comparison of
rehabilitative actions in active training based on fuzzy and conventional PID control. The evaluation of this
experiment involves comparing and analyzing the results using three performancemetrics: 𝑅𝑀𝑆𝐸 ,𝑀𝐴𝐸 , and
Coefficient of Determination (𝑅2). The expression for the 𝑅2 score is given as

𝑅2 =

𝑛∑
𝑖=1

( �̂�𝑖 − �̄�)2

𝑛∑
𝑖=1

(𝑦𝑖 − �̄�)2
(22)

where �̂�𝑖 denotes the predicted value of the data, 𝑦𝑖 represents the true value of the data, and �̄� stands for the
average value of the data. The results of the experimental comparison are shown in Figure 13.

As illustrated in the above figure, the purple and blue sections represent the RMSE andMAE evaluationmetrics
for torque data under fuzzy control and conventional control methods, respectively. It can be observed that the
performance of the fuzzy control method for all four joints is superior to the conventional control method. The
calculations indicate an average reduction of 15% in RMSE and MAE values for the four joints, accompanied
by an average increase of 4% in coefficient of determination.

5. GAMIFICATION SCENARIO TRAINING PROGRAMME DESIGN
The emergence of rehabilitation robots has the potential to enhance rehabilitation efficiency, mitigate the im-
pact of uncertainties associated with rehabilitation practitioners, and concurrently reduce costs. However, the
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Figure 14. Gamification scenarios.

Figure 15. Virtual reality training 3D trajectory.

integration of robots does not necessarily address the drawbacks of prolonged and monotonous training cy-
cles in the rehabilitation process. This monotony can lead to reduced patient motivation, thereby affecting the
overall effectiveness of the training. The combination of virtual reality (VR) technology and robots offers a
promising solution to boost rehabilitation motivation [41].

This paper presents the development of a wooden box placement game with visual feedback based on VR
technology. The game involves arranging the wooden boxes on a numerical wall in correspondence with
the numbers on each box. The rehabilitation robot operates in active training mode, allowing patients to
actively engage in rehabilitation by manipulating the robot. During this process, the robot control system
continuously reads the joint angles and performs real-time forward kinematics analysis to obtain the end-
effector position. This information is transmitted to the Unity client via TCP/IP communication, enabling
the mapping of the end-effector position of a robot onto the virtual hand model in the scene. The interactive
feature is realised by touching the boxes with the virtual hand, simulating the action of grabbing a box. Moving
the box to the designated numerical wall completes one placement action. This process is repeated for nine
boxes, constituting one interactive training session. The scene is illustrated in Figure 14.The 3D effect is shown
in Figure 15. The range of motion projection is depicted in Figure 16.
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Figure 16. Range of motion projection.
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Figure 17. Virtual reality training movement data.

Table 6. Virtual reality training indicator evaluation table

Max angle (deg) Min angle (deg) Max velocity (deg/s) Min velocity (deg/s)

Joint1 50.15 -45.54 40.40 -45.69
Joint2 56.57 -64.22 70.30 -40.40
Joint3 60.10 -20.32 26.30 -35.20
Joint4 105.68 0.0 29.17 -42.17

Table 7. Joint angle/velocity diagram for gamified scenario training

Joint1 Joint2 Joint3 Joint4

RMSE 0.973 1.224 1.489 0.881
MAE 0.791 0.986 1.124 0.786

By picking up the crates in different positions and placing them in the specified positions, the joint movement
range of the patient can be trained in awide range. The 3D effect diagramof themovement range is presented in
Figure 15, and the projection of the movement trajectory in three planes is shown in Figure 16; the movement
range of the human joint end can reach 616 mm in the X direction, 412 mm in the Y direction, and 488 mm
in the Z direction. The magnitude of motion of the robot joint angles is shown in Figure 17. The kinematic
moment data is displayed in Figure 18. The amplitude of motion of the first four joints during an interaction
training session is demonstrated in Table 6.

The RMSE and MAE evaluation metrics are shown in Table 7. Through the above experiments, it can be
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Figure 18. Virtual reality training moment data.

illustrated that the use ofVR technology and the design of gamified scenes for active rehabilitation training have
significant effects. Firstly, through visual feedback, intuitively completing the process of placing the wooden
box can motivate patients to take the initiative to complete and enhance their motivation for rehabilitation;
secondly, by setting the initial position of the wooden box in the gamified scene, the range of activities of
the patient’s motor rehabilitation can be adjusted according to the individual’s rehabilitation situation. The
method enhances the relevance and precision of rehabilitation training. Finally, during the execution of one
rehabilitation training cycle, the movement moment curve of the patient is presented in Figure 18, and the
average absolute error is shown in Table 7, with joints 1 and 4 less than 0.8 Nm, joint 2 less than 1 Nm, and
joint 3 less than 1.2 Nm, which are in line with the rehabilitation training needs.

6. CONCLUSIONS
This paper proposes an active rehabilitation training method based on a 5-degree-of-freedom exoskeleton re-
habilitation robot. Meanwhile, a gamified rehabilitation training program with a VR component is designed
for upper limb rehabilitation. The robot modelling, including the MDH parameter table, kinematic rotation
and position matrices calculation, is established first to achieve the passive training. The active rehabilitation
method is built upon the traditional zero-force control algorithm by installing torque sensors at the robot
joints, which can capture the interaction forces between the patient and the robot. An outer-loop PID control
is designed to obtain the feedforward torque compensation values. This method can not only provide com-
pensation torque for zero-force control but also address the issue of inaccurate dynamic models, so as to en-
hance system robustness. Furthermore, dynamic parameters are obtained through the dynamic identification
method that uses a Fourier series excitation trajectory. The dynamics model obtained from the identification
is used for the feedforward compensation function in passive training and the interactive force-assisted con-
trol in active training. In practical application, the fixed PID parameters may not be suitable for patients at
different stages of rehabilitation; thus, a fuzzy control algorithm is designed. Fuzzy PID control demonstrates
flexibility and robustness in active rehabilitation training, adapting well to nonlinearities and uncertainties,
thereby improving system response speed and flexibility. Experiments show that the fuzzy control method
reduces the RMSE and MAE evaluation indexes by more than 15% on average and improves the correlation
coefficient by 4% compared with the traditional PID algorithm. Moreover, the new method effectively reduces
the error surge phenomenon when torque commutation occurs. Finally, based on the proposed outer-loop
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fuzzy PID-based active control method, a visually guided gamified rehabilitation training program is designed.
This program enhances the efficiency of robot-assisted rehabilitation andmakes it more interesting for patients
in traditional rehabilitation training due to the monotonous training environment.
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