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Abstract
Studies of carcinogenic metabolism have shown that cancer cells have significant metabolic adaptability and that 
their metabolic dynamics undergo extensive reprogramming, which is a fundamental feature of cancer. The 
Warburg effect describes the preference of cancer cells for glycolysis over oxidative phosphorylation (OXPHOS), 
even under aerobic conditions. However, metabolic reprogramming in cancer cells involves not only glycolysis but 
also changes in lipid and amino acid metabolism. The mechanisms of these metabolic shifts are critical for the 
discovery of novel cancer therapeutic targets. Despite advances in the field of oncology, chemotherapy resistance, 
including multidrug resistance, remains a challenge. Research has revealed a correlation between metabolic 
reprogramming and anticancer drug resistance, but the underlying complex mechanisms are not fully understood. 
In addition, small extracellular vesicles (sEVs) may play a role in expanding metabolic reprogramming and 
promoting the development of drug resistance by mediating intercellular communication. The aim of this review is 
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to assess the metabolic reprogramming processes that intersect with resistance to anticancer therapy, with 
particular attention given to the changes in glycolysis, lipid metabolism, and amino acid metabolism that 
accompany this phenomenon. In addition, the role of sEVs in disseminating metabolic reprogramming and 
promoting the development of drug-resistant phenotypes will be critically evaluated.

Keywords: Small extracellular vesicles, metabolic reprogramming, drug resistance, neoplasms, glycolysis, lipid 
metabolism, amino acid metabolism

INTRODUCTION
Small extracellular vesicles (sEVs), commonly known as “exosomes”, are lipid bilayer-enclosed vesicles with 
diameters ranging from 30 to 160 nm[1]. These vesicles can sequester bioactive molecules, including 
proteins, nucleic acids, and lipids, thereby safeguarding them from degradation[2]. The biogenesis of sEVs 
involves a meticulously orchestrated biological sequence, commencing with the invagination of cellular 
membranes to form early endosomes. This process is subsequently followed by further invagination of 
endosomal membranes and culminates in the formation of intraluminal vesicles, which eventually form late 
endosomes or multivesicular bodies (MVBs). The cargo sorting within this process may either be 
contingent upon the endosomal sorting complex required for transport machinery or may proceed 
independently thereof[3]. In the usual course of events, MVBs coalesce with lysosomes, leading to their 
degradation. However, a subset of MVBs fuses with the plasma membrane, thereby releasing intraluminal 
vesicles into the extracellular milieu. During this transit and release, members of the small GTPase RAB 
family - Rab27a, Rab27b, Rab35, and Rab7 - in conjunction with the soluble N-ethylmaleimide-sensitive 
factor attachment protein receptor complex play key regulatory roles in the sorting and targeted transport 
of vesicles to secretory organelles[4,5].

Numerous cell types, including cancer cells, have the capacity to generate and secrete sEVs. These sEVs 
facilitate intercellular communication by transporting specific biomolecules[6]. Increasing evidence has 
suggested that within the context of the tumor microenvironment (TME), neoplastic cells engage in 
interactions with neighboring cells via the release of sEVs. These interactions are key in the modulation of 
various facets of tumor biology, including tumor proliferation, progression, angiogenesis, and immune 
evasion, and increase tumor aggressiveness and metastatic potential[7,8]. Recent investigations have focused 
primarily on elucidating the impact of sEVs on the biological attributes of tumors and immune cells. 
However, emerging data indicate that the contents of sEVs may also influence the metabolic status of 
recipient cells and potentially contribute to the propagation of chemotherapeutic drug resistance[9-11]. 
Nevertheless, the precise mechanisms underlying the sEVs-mediated transmission of chemotherapy 
resistance remain incompletely understood.

In recent years, the examination of oncogenic metabolism has garnered widespread interest within the 
scientific community. Neoplastic cells demonstrate a remarkable capacity for metabolic adaptation in 
nutrient-depleted environments, procuring essential nutrients to facilitate tumoral expansion. In contrast to 
those of nonmalignant cells, the metabolic dynamics of cancer cells are subject to extensive reprogramming, 
which supports the acquisition and sustenance of malignant traits. Consequently, such metabolic 
reprogramming is increasingly recognized as a fundamental hallmark of cancer[12]. Otto Warburg was the 
pioneer in defining metabolic dysregulation in cancer cells, noting their greater propensity for glucose 
uptake than their nontransformed counterparts. Additionally, he reported that glycolytic activity in cancer 
cells predominates over oxidative phosphorylation (OXPHOS), even in the presence of ample oxygen, and 
this phenomenon has become known as the Warburg effect[13]. Although glycolysis is less efficient than 
OXPHOS in energy conversion, it enables more rapid production of adenosine triphosphate (ATP) and 
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fosters the biosynthesis of nucleotides, amino acids, nicotinamide adenine dinucleotide phosphate 
(NADPH), and other biomolecules required for cellular proliferation[14]. Subsequent investigations revealed 
that the phenomenon of metabolic reprogramming in cancer extends beyond the Warburg effect, as it 
includes extensive alterations in glucose, amino acid, and lipid metabolism[15,16]. Through the exploration of 
metabolic reprogramming in neoplastic contexts, the molecular mechanisms governing these metabolic 
shifts could be elucidated, and potential therapeutic targets for cancer treatment could be identified.

Recent advancements in oncology have significantly expanded the spectrum and accessibility of 
pharmaceutical interventions for neoplastic diseases. Despite this progress, the incidence of 
chemotherapeutic resistance has increased, and multidrug resistance poses a formidable challenge to the 
efficacy of antineoplastic regimens[17,18]. Chemotherapeutics are designed to suppress the proliferation of 
heterogeneous tumor cell populations by exerting environmental stress. However, a subpopulation of cells 
may evolve mechanisms to circumvent therapeutic pressures, thereby diminishing their susceptibility to 
these agents. A multifaceted array of processes contributes to the development of therapeutic tolerance 
within tumors. For example, malignant cells can actively remove cytotoxic compounds through increased 
expression of ATP-binding cassette (ABC) transporters, effectively sequestering these agents away from 
intracellular targets[19,20]. Furthermore, enhanced capacities for DNA damage recognition and repair, 
induction of epithelial-to-mesenchymal transitions, alterations in drug target sequences, dysregulation of 
epigenetic landscapes, and perturbations in microRNA (miRNA) profiles have all been implicated in 
fostering a state of treatment resilience[21,22]. Recent studies have revealed a significant correlation between 
the reprogramming of neoplastic metabolism and the acquisition of resistance to chemotherapeutics[23,24]. 
However, the intricate underlying mechanisms regulating this relationship remain elusive. This review aims 
to thoroughly assess the metabolic reprogramming processes related to the development of cancer 
resistance, with a particular emphasis on the changes in glycolysis, lipid metabolism, and amino acid 
metabolism that accompany this phenomenon. Additionally, the role of sEVs in promoting metabolic 
reprogramming and facilitating the development of drug-resistant phenotypes will be critically evaluated.

METABOLIC REPROGRAMMING REGULATES SENSITIVITY TO ANTITUMOR THERAPY
Reprogramming of glucose metabolism
Alterations in glucose utilization significantly alter the rate of glycolysis, a key metabolic pathway implicated 
in the development of chemotherapeutic resistance[25,26]. Compelling evidence has shown that glucose 
activates the cyclic GMP-AMP synthase/stimulator of interferon gene (cGAS/STING) signaling axis by 
preserving the expression of TREX2. This in turn stimulates NSUN2, which promotes tumorigenesis and 
fosters resistance to immunotherapy[27]. An increase in glucose metabolic flux concurrently increases 
cardiolipin synthesis via increased glycerolipid biosynthesis. The resulting accumulation of cardiolipin 
decreases radiation-induced apoptosis through the inhibition of cytochrome c release, conferring a survival 
advantage to neoplastic cells. Central to these metabolic adaptations is the mTORC1/hypoxia-inducible 
factor-1α (HIF-1α)/SREBP1 signaling pathway, which orchestrates this metabolic reprogramming. Targeted 
interventions aimed at mTORC1 or the cardiolipin synthetic pathway may thus represent a strategy to 
sensitize tumors to radiation therapy[28]. Conversely, the emulation of glucose deprivation through the use of 
glutaminase (GLS) inhibitors increases the susceptibility of intrahepatic cholangiocarcinoma to 
chemotherapy, indicating the potential for metabolic modulation as an adjunct to conventional anticancer 
regimens[16]. Notably, a recent report by Park et al. reported that glucose deprivation triggers compensatory 
activation of the glycolytic pathway mediated by ELAVL2/4, thereby increasing tumor resistance to 
chemotherapy[29]. These findings indicate that glycolytic metabolism activation may increase chemotherapy 
resistance or radiotherapy resistance to tumor therapy.
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Emerging evidence from recent investigations has elucidated the pivotal role of glucose transporters 
(GLUTs) and glycolytic enzymes in conferring resistance to chemotherapy[30]. Notably, ALKBH5, an N6-
methyladenosine (m6A) demethylase, is significantly upregulated in breast cancer cells resistant to HER2-
targeted therapies. This study revealed that ALKBH5 increases glycolysis in drug-resistant breast cancer 
cells by promoting m6A demethylation of GLUT4 messenger RNA (mRNA), thereby increasing GLUT4 
expression[31]. Lactate dehydrogenase A (LDHA) is a crucial enzyme involved in both glycolysis and 
gluconeogenesis that plays a fundamental role in modulating tumor resistance to pharmacological 
interventions[32]. Acylphosphatase 1 (ACYP1) interacts with HSP90 to regulate the expression and stability 
of the oncogene cellular Myc (c-Myc). ACYP1 exacerbates the Warburg effect through activation of the 
Myc/LDHA axis, contributing to its tumor-supportive effects. Combinatorial targeting of ACYP1 alongside 
lenvatinib has been demonstrated to substantially mitigate lenvatinib resistance and impede tumor 
progression[33]. Furthermore, the circular RNA (circRNA) ARHGAP29 has been identified as a molecule 
capable of augmenting LDHA expression via its interaction with insulin-like growth factor 2 mRNA-
binding protein 2 and c-Myc[34]. The long noncoding RNA (lncRNA) DIO3OS preserves the integrity of the 
LDHA 3’ untranslated region (3’UTR) and upregulates LDHA expression through its interaction with 
PTBP1, thereby stimulating glycolysis in drug-resistant breast cancer cells[35]. Additional glycolytic enzymes, 
including hexokinase (HK)[36-38], 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase[39,40], fructose 
diphosphate aldolase[41,42], phosphoglycerate kinase (PGK)[43,44], and pyruvate kinase (PK)[45-47], have been 
implicated in the development of antineoplastic drug resistance, indicating the importance of glycolytic 
reprogramming in the evolution of treatment-refractory cancers.

The activation of specific signaling pathways and oncogenic transcription factors has been shown to 
modulate glucose metabolism and confer drug resistance in cancerous cells. Thus, the PI3K-protein kinase 
B (AKT) pathway and key transcription factors, such as HIF-1α and c-Myc, play crucial roles[48-54]. PGK1 has 
been implicated in the proliferation of renal clear cell carcinoma and the development of sorafenib 
resistance, facilitated by the acceleration of glycolysis and the concomitant activation of the CXCR4/
extracellular regulated protein kinase (ERK) signaling axis[55]. AKT increases glucose uptake by increasing 
the amount of GLUT1 and GLUT4 transporters in the membrane. Furthermore, AKT contributes to the 
phosphorylation of HK-2, thereby stimulating its translocation to the mitochondria. The lncRNA HIF1A-
AS1 promotes the interaction between AKT and YB1, which in turn increases the translation of HIF1α. 
Additionally, HIF1α can directly engage with the HIF1α response element within the HIF1A-AS1 promoter 
region, thereby increasing HIF1A-AS1 transcription. This cyclic positive feedback mechanism between the 
two entities amplifies glycolysis and increases resistance to gemcitabine[56]. In nasopharyngeal carcinoma 
cells, CENP-N forms a complex with AKT, impacting tumor cell glucose metabolism and promoting 
malignant progression[57]. The AKT inhibitor afuresertib, when used in conjunction with carboplatin and 
paclitaxel, exhibited promising outcomes in a phase I clinical trial for the treatment of recurrent platinum-
resistant ovarian cancer[58]. These findings collectively suggest that the reprogramming of glycolysis 
mediated by oncogenic transcription factors or signaling pathways increases tumor cell survival and 
promotes the progression of cancer [Figure 1].

Lactic acid is a product of glycolysis and has been increasingly recognized for its role in the development of 
drug resistance. Tumor cells exhibit increased rates of glucose uptake and lactate secretion, even under 
oxygen-replete conditions, a phenomenon referred to as aerobic glycolysis or the Warburg effect[59]. 
Notably, the accumulation of high concentrations of lactic acid not only remodels the TME but also serves 
as an alternative metabolic substrate for cancer cells, contributing to immunosuppression and therapeutic 
resistance[60]. Comparative analyses revealed that compared with their parental MCF-7 counterparts, 
tamoxifen-resistant MCF-7 cells exhibit increased levels of glycolytic enzymes and increased tolerance to 
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Figure 1. Glucose metabolic reprogramming regulates sensitivity to antitumor therapy. cGAS/STING: Cyclic GMP-AMP 
synthase/stimulator of interferon gene; ERK/AKT: extracellular regulated protein kinases/protein kinase B; HK2: hexokinase 2; PGK1: 
phosphoglycerate kinase 1; PKM2: pyruvate kinase M2; HIF-1α: hypoxia-inducible factor-1α; PEKB3: phosphofructokinase-2/fructose-
2,6-biphosphatase 3; LDHA: lactate dehydrogenase A; c-Myc: cellular Myc; ALODA: aldolase A.

growth environments with elevated lactic acid levels. Monocarboxylic acid transporter 1 (MCT1) and 
LDHB are key mediators that facilitate the influx of lactic acid and its conversion back to pyruvate, 
respectively[61]. Additionally, Feng et al. reported that the glycolytic enzyme phosphoglycerate mutase 1 
contributes to paclitaxel resistance by facilitating the production of pyruvate and/or lactic acid[62]. These 
findings indicate the critical influence of dysregulated glycolysis and the associated accumulation of lactic 
acid in the development of a resistant tumor phenotype, highlighting potential vulnerabilities for targeted 
intervention in cancer therapy.

Lipid metabolism reprogramming
The reprogramming of lipid metabolism is frequently observed in aggressive tumors and is closely related to 
both the responsiveness to and tolerance of antitumor therapies[15]. The de novo synthesis of lipids confers 
resistance to tumor cells, facilitating their growth and survival through various mechanisms. Evidence 
suggests that the metabolic shift of ovarian cancer cells from glycolytic dependency to a reliance on fatty 
acid (FA) metabolism increases their capacity to endure the oxidative stress induced by cisplatin[63]. Fatty 
acid synthase (FASN) is an integral enzyme in de novo FA synthesis. It is upregulated in drug-resistant 
tumor cells and contributes to therapeutic resistance by modulating the polyunsaturation of membrane 
lipids[64-71]. Central adipose-derived transcription factors play pivotal roles in regulating genes involved in 
cholesterol and FA metabolism. Inhibitors that target central adipose-derived transcription factors have 
been shown to increase lipid peroxidation and reverse drug resistance in melanoma cells[72]. Furthermore, 
targeting acetyl-CoA carboxylase-1 has demonstrated efficacy in curtailing tumor growth within patient-
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derived xenografts exhibiting resistance[73]. Additionally, G protein-coupled receptor 120 (GPR120) 
increases the synthesis of FA, which activates GPR120 signaling through positive feedback. This 
upregulation of GPR120 via the AKT/NF-κB pathway increases the expression of the ABC transporter, 
which reduces the intracellular concentrations of chemotherapeutic agents, culminating in 
chemoresistance[74]. Arachidonic acid (ARA), released from membrane phospholipids, is metabolized to the 
active metabolite eicosanoid acid by two rate-limiting enzymes through the action of cytoplasmic 
phospholipase A2α (cPLA2α). Cyclooxygenase (COX) generates prostaglandins (PG), prostacyclins, and 
thromboxanes, while lipoxygenase (LOX) catalyzes the production of leukotrienes (LT) and hydroxy-
eicosatetraenoic acid (HETE)[75]. Once secreted, these compounds act in either an autocrine or paracrine 
fashion on the producing cells or adjacent cells, respectively, thereby mediating tumor promotion and 
progression[76-83]. Moreover, elevated cholesterol levels within lipid rafts have been shown to diminish the 
inhibitory effect of gefitinib on EGFR tyrosine kinases, thereby causing chemoresistance[84]. Notably, when 
tumors are in the early stages and more reliant on cholesterol for sustaining oncogenic signaling, statins can 
effectively curb cancer initiation and proliferation by inhibiting cholesterol synthesis[85]. In summary, the 
abnormal synthesis of novel FAs and cholesterol provides tumor cells with a continuous supply of 
membrane precursors, signaling molecules, and energy substrates, enabling rapid tumor growth even under 
conditions of nutrient limitation and hypoxia. The reprogramming of lipid anabolic pathways alters the 
responsiveness of tumors to treatment, ultimately culminating in drug resistance.

Lipid uptake and oxidative metabolism are pivotal in the development of drug resistance among tumors[86]. 
Similar to glycolysis, the absorption of exogenous FAs is facilitated by dedicated transporters, with notable 
examples including FA translocases, FA transport proteins, and FA binding proteins[87-89]. In a prostate 
cancer-prone Pten-/- mouse model, FA translocase has been shown to facilitate FA uptake and storage, 
significantly impacting fatty acid oxidative (FAO) metabolism and reversing increases in acylcarnitines, 
monoacylglycerols, and phospholipid hydrolysates induced by Pten deficiency[90]. Alicea et al. reported that 
inhibiting FA transport protein 2 diminishes lipid uptake and mitochondrial function, effectively restoring 
melanoma cell sensitivity to BRAF/MEK inhibitors[91]. Carnitine palmitoyl transferase (CPT) I and II are 
rate-limiting enzymes for mitochondrial FA transport and play key roles in FAO[92-96]. Inhibition of FAO by 
etomoxir or genetic ablation of CPT1A/CPT2 markedly inhibited the ERK1/2 pathway and increased the 
responsiveness of breast cancer cells to radiotherapy[97]. Peroxisome proliferator-activated receptor γ is a 
transcription factor that governs genes related to lipid metabolism and is thought to promote FAO upon 
activation, thereby inducing chemoresistance[98]. Adipocytes neighboring tumor sites can protect cancer cells 
from antineoplastic agents by increasing FAO and secreting soluble factors that modulate the sensitivity of 
HER2-positive breast cancer cells to lapatinib[99]. Triacylglycerol (TAG) serves as the primary storage form 
for excess intracellular FAs within lipid droplets (LDs)[100]. These TAGs undergo hydrolysis and 
decomposition through a sequence of three cytoplasmic lipase-mediated reactions, known as neutral 
lipolysis, yielding FAs and glycerol[101]. Research has indicated that inhibiting this metabolic pathway can 
impact metastasis formation, either by directly targeting lipase-mediated enzymes such as monoacylglycerol 
lipase (MAGL) and hormone-sensitive lipase (HSL), or indirectly by affecting long-chain acyl-CoA 
synthetases (ACSL), which facilitate the activation of long-chain FAs[102-104]. Moreover, the development of 
resistance to anticancer therapies is closely linked to the assimilation of exogenous cholesterol. Cisplatin-
resistant ovarian cancer cells exhibit decreased expression of farnesyl diphosphate synthase and OSC and 
increased expression of low-density lipoprotein receptors, indicating a reduction in cholesterol biosynthesis 
and a concomitant increase in extracellular cholesterol uptake. Notably, lipid deprivation has been shown to 
increase the sensitivity of resistant cells to cisplatin[105]. Targeting the transporters and key enzymes involved 
in lipid uptake and oxidative consumption is a potential strategy for restoring the therapeutic sensitivity of 
cancer cells.
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Lipid storage significantly impacts antitumor treatment efficacy and disease prognosis. Increased intake of 
exogenous FAs leads to increased FA storage in LDs[106,107]. LDs sequester excess FAs in the form of TAG and 
sterol esters. In response to the lipid toxicity and lipid peroxidation induced by anticancer therapy, LDs can 
isolate excess free FAs and maintain lipid homeostasis. LDs increase the aggressiveness and drug resistance 
of tumor cells by mitigating cellular stress[108-112]. Indeed, the levels of LDs and their colocalization with 
mitochondria are significantly greater in chemotherapy-resistant breast cancer cell lines than in parental 
cells[113]. In an ovarian cancer xenotransplantation model treated with bevacizumab, lipid metabolism was 
upregulated, and LD accumulation was increased. Inhibiting the uptake of exogenous lipids reduces LD 
accumulation and enhances the antitumor effect of bevacizumab[114]. Stearoyl-CoA desaturase 1 (SCD1) is a 
key enzyme in the synthesis of monounsaturated FAs. In non-small cell lung cancer (NSCLC) cell lines 
susceptible to EGFR mutations, SCD1 expression is elevated, thereby increasing the intracellular LD 
content. Additionally, oleic acid, the enzymatic product of SCD1, can inhibit the cytotoxic effects of 
gefitinib and osimertinib in EGFR-activated mutant cell lines. Inhibitors of lipid metabolism can reverse 
these biological effects and increase the sensitivity of NSCLC cell lines to gefitinib[115,116]. In summary, lipid 
metabolism and lipid storage in LDs are not only adaptive mechanisms for tumor cells to cope with 
therapeutic stress but also potential therapeutic targets, and their modulation may be of great value for 
improving the efficacy of antitumor therapy and disease prognosis.

Recent investigations have elucidated the role of lipid metabolism in the progression of malignant tumors, 
particularly through its regulation of ferroptosis, an iron-dependent, nonapoptotic form of cell death 
primarily driven by excessive lipid peroxidation within cellular membranes[117]. In human pancreatic ductal 
adenocarcinoma (PDAC) cells, pyruvate dehydrogenase kinase 4 inhibits FA peroxidation by restricting 
pyruvate oxidation and FA synthesis, thereby preventing ferroptosis[118]. Lee et al. reported that 
sequestration of excess polyunsaturated FAs such as TAG within LDs during cell cycle arrest leads to the 
inhibition of ferroptosis[119]. Furthermore, SCD1-mediated FA desaturation and FA-binding protein-4-
mediated LD biogenesis play pivotal roles in circumventing oxidative stress-induced ferroptosis in tumor 
cells[120]. Recently, the induction of ferroptosis in tumor cells has emerged as a promising anticancer 
strategy[121]. Luo et al. successfully reversed the ferroptosis resistance induced by the deletion of long-chain 
ACSL4 through the targeted delivery of ferroptotic lipids, such as arachidonic acylphosphatidyl 
ethanolamine[122]. Therefore, a more comprehensive understanding of the molecular mechanisms 
underlying dysregulated lipid metabolism and ferroptosis may reveal novel approaches for preventing 
resistance to cancer treatment [Figure 2].

Amino acid metabolic reprogramming
Amino acid metabolism is integral to cell biomass production, energy generation, and the maintenance of 
redox homeostasis. Dysregulation of amino acid metabolism within tumor cells supports their metabolic 
needs and aids in coping with therapeutically induced stress[123]. Metabolic reprogramming of glutamine is a 
frequent occurrence in cancer and ranks second only to glycolysis in its significance [Figure 3][124-132]. Ying 
et al. reported that transcriptome-based glutamine metabolism scores serve as robust prognostic indicators 
and are closely correlated with overall survival, responsiveness to immunotherapy, and the extent of 
immune cell infiltration[133]. Glutamine metabolism is closely related to nucleotide biosynthesis. In cells that 
are resistant to radiation, glycolysis, mitochondrial OXPHOS, and tricarboxylic acid cycle activity are 
reduced, and the capacity for glutamine assimilation is increased. Notably, glutamine synthetase promotes 
radioresistance by facilitating DNA repair and nucleotide metabolism[134]. Furthermore, nutrient deprivation 
has been shown to significantly disrupt the processing of precursor ribosomal RNA, leading to the 
accumulation of immature rRNA. Following amino acid deprivation, replenishment with glutamine alone 
can activate the p53 pathway, causing tumor cell apoptosis[135]. In addition to nucleotide biosynthesis, 
glutamine metabolism plays a pivotal role in regulating redox balance. In head and neck squamous cell 
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Figure 2. Lipid metabolic reprogramming regulates sensitivity to antitumor therapy. a: Fatty acid β-oxidation. b: De novo lipogenesis. c: 
Eicosanoid synthesis. d: Neutral lipolysis. e: Lipid ROS and ferroptosis. ACLY: ATP-citrate lyase; ACC1: acetyl-CoA carboxylase; FASN: 
fatty acid synthase; SCD: stearoyl-CoA desaturase; AMPK: adenosine 5’-monophosphate (AMP)-activated protein kinase; CPT: 
carnitine palmitoyl transferase; JNK: c-Jun N-terminal kinase; HER: human epidermal growth factor receptor; MAPK: mitogen-activated 
protein kinase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; EGFR: epidermal growth factor receptor; AKT: 
protein kinase B; JAK2/STAT3: Janus kinase 2/signal transducer and activator of transcription 3; PI3K: phosphatidylinositol 3-kinase.

carcinoma cells, the uptake of glutamine and the activity of glutamate dehydrogenase are inhibited by 
sulfapyridine, promoting mitochondrial metabolism and increasing the levels of reactive oxygen species 
(ROS), which culminate in oxidative damage[136]. The expression of the SLC1A5 variant, under the 
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Figure 3. Glutamine metabolic reprogramming regulates sensitivity to antitumor therapy. SLC1A5: Solute carrier family 1 member 5; 
ASCT2: alanine, serine, cysteine-preferring transporter 2; SLC7A11: solute carrier family 7 member 11; GLS: glutaminase; cMyc: cellular 
Myc; GS: glutamine synthetase; MAPK: mitogen-activated protein kinase; P53: tumor protein p53; HIF2α: hypoxia-inducible factor 2 
alpha; YAP1: yes-associated protein 1; Wnt: wingless-related integration site; ASNS: asparagine synthetase; mTORC1: mechanistic 
target of rapamycin complex 1; SREBP1: sterol regulatory element-binding protein-1; SCD5: stearoyl-coenzyme A desaturase 5.

regulation of HIF-2α, promotes glutamine transport into the mitochondria, a process that increases ATP 
production and glutathione synthesis, which leads to gemcitabine resistance in pancreatic cancer cells[137]. 
Additionally, increased GLS1 activity has been demonstrated to increase redox signaling in hepatocellular 
carcinoma (HCC). Moreover, glutamine deprivation or treatment with GLS inhibitors may impede tumor 
progression by increasing intracellular ROS levels[138]. Glutamine metabolism also governs oxidative 
metabolic processes. Hu et al. reported that ASS1 induces erastin resistance in NSCLC cells via activation of 
the mTORC1-SREBP1-SCD5 pathway, promoting the reductive carboxylation of glutamine[139]. Notably, 
dietary intake of glutamine has proven effective in slowing melanoma growth, prolonging survival, and 
increasing responsiveness to BRAF inhibitor therapy. Elevated concentrations of glutamine and its 
downstream metabolite, alpha-ketoglutaric acid, within tumors lead to histone H3K4me3 hypomethylation, 
thereby inhibiting the activation of oncogenic pathways[140,141]. In summary, the dysregulation of glutamine 
metabolism within tumor cells confers therapeutic resistance by modulating nucleotide synthesis, ROS 
production, and ATP production.
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Accumulating evidence suggests that regulating methionine metabolism to maintain equilibrium in 
nucleotide pools and redox states within cancerous and immune cells could resensitize tumors to 
chemotherapeutic agents. Methionine plays a pivotal role as a component of the folate cycle and provides 
the necessary precursor substances for the biosynthesis of purines and pyrimidines. In colorectal cancer 
patient-derived xenograft models characterized by RAS mutations, restricting methionine intake increases 
tumor cell susceptibility to 5-fluorouracil[142]. This increased sensitivity is proposed to result from the 
increased consumption of homocysteine and 5,10-methylene tetrahydrofolate by tumor cells, a process that 
inhibits folate cycling and nucleotide synthesis[143]. Single-carbon metabolism provides methyl groups for 
cellular methylation reactions. Stem cells are dependent on MAT2A enzymes to catalyze the synthesis of the 
methyl donor S-adenosylmethionine from methionine, a process essential for the maintenance of 
epigenomic stability. Investigations have revealed that methionine metabolism and MAT2A-mediated 
methylation are significantly increased in tumor-initiating cells, resulting in a reliance on exogenous 
methionine[144]. Methionine deprivation impedes cancer stem cells (CSCs) by reducing S-
adenosylmethionine levels. The combination of methionine depletion with MAT2A inhibition represents a 
promising therapeutic strategy for targeting drug-resistant CSCs[145].

Aspartic acid serves as a precursor for the tricarboxylic acid cycle, aids in maintaining the redox equilibrium 
of NAD+/NADH and contributes to nucleotide biosynthesis. Its role becomes critical when the electron 
transport chain is compromised, as it supports cell proliferation and significantly correlates with tumor cell 
resistance to pharmacological agents. In estrogen receptor (ER)-positive breast cancer cells, endocrine 
therapy resistance has been linked to increased activity of the SLC1A2 transporter. This facilitates the 
uptake of acidic amino acids, leading to elevated intracellular levels of aspartate and glutamate[146]. L-
asparaginase (ASNase) is a cornerstone in the treatment of acute lymphoblastic leukemia. However, it is 
often associated with severe toxic side effects despite its impressive therapeutic efficacy. Sun et al. reported 
that SLC1A3, a transporter protein responsible for the transport of aspartic acid and glutamate, is a 
potential mediator of ASNase resistance in tumor cells[147]. This protein can counteract ASNase-induced 
depletion of aspartic acid and glutamate, conferring resistance to the cytotoxic effects of the drug.

Furthermore, research has indicated that amino acids, such as asparagine[148-150], leucine[151], isoleucine[152], 
valine[153-155], and serine[156-158], modulate tumor sensitivity to chemotherapeutic agents. In summary, amino 
acids not only sustain cancer cell survival by regulating redox homeostasis and promoting anabolic 
pathways but also assist cancer cells in adapting to therapeutic stress by influencing epigenetic modifications 
and providing metabolic intermediates generated through energy-producing processes. Consequently, an 
in-depth understanding of the mechanisms underlying amino acid metabolism related to treatment 
resistance could provide a foundational molecular basis for the design of more efficacious antineoplastic 
treatment strategies.

SEVS REGULATE THE ANTITUMOR THERAPEUTIC RESPONSE THROUGH METABOLIC 
REPROGRAMMING
Tumor cell metabolic reprogramming involves a diverse array of regulatory molecules, such as transporters, 
pivotal enzymes, signaling cascades, and oncogenic products. sEVs, which are pivotal conduits for 
intercellular communication, have been demonstrated to contain molecular constituents implicated in 
metabolic reprogramming. The role of these vesicles in modulating tumor sensitivity to therapeutic 
intervention remains elusive, and this role could be a potential regulatory mechanism that significantly 
impacts the responsiveness of cancers to treatment [Table 1].
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Table 1. sEVs cargoes involved in cancer cell metabolism and chemoresistance

Cargo type sEVs cargo Cancer Type Donor cells Recipient cells Biological behavior Ref.

Hsp70 Breast cancer Adriamycin-resistant
MCF-7

Adriamycin-
sensitive MCF-7

Inhibited respiration, 
promoted glycolysis, and 
enhanced adriamycin 
resistance

[159]

PKM2 NSCLC A549 A549 Enhanced glycolytic flux and 
cisplatin resistance

[10]

PKM2 Glioma Hypoxic temozolomide-
resistant U251

Sensitive U251, 
TAMs

Promoted glycolysis and 
temozolomide resistance

[162]

PKM2 NSCLC Hypoxic cisplatin-
resistance A549

Sensitive A549, 
CAFs

Promoted glycolysis and 
cisplatin resistance

[163]

TPI, PGK, ENO, 
PKM, LDHA

Ovarian cancer Hypoxic CAOV-3 Normoxic CAOV-3 Promoted glycolysis and 
carboplatin resistance

[164]

ALDOA, 
ALDH3A1

Lung cancer Irradiated A549 A549 Promoted glycolysis [165]

LMP1 Nasopharyngeal 
carcinoma

CNEI-LMP1 (a stable 
LMP1-integrated cell 
line)

Fibroblasts, HK1 Promoted glycolysis in CAFs, 
inhibited glycolysis and 
promoted OXPHOS in tumor 
cells

[166]

ITGB4 Breast cancer MDA-MB-231 CAFs Promoted glycolysis in CAFs [167]

PD-L1 NSCLC LLC Macrophages Promoted glycolysis and 
inhibited OXPHOS

[168]

MTTTP Colorectal cancer Adipocytes SW480, HCT116 Reduced ferroptosis, and 
promoted chemoresistance 
to oxaliplatin

[172]

ACADM Pancreatic cancer Pancreatic cancer cell 
lines

NA Reduced ferroptosis, 
chemoresistance to 
gemcitabine

[173]

YAP1 Prostate cancer EnzaR LNCaP Promoted lipid metabolism 
and enzalutamide resistance

[174]

GSTP1 Breast cancer Adriamycin-resistant 
MCF-7

Chemosensitive 
MCF-7

Promoted glutamine 
metabolism and adriamycin 
resistance

[175]

Protein

GLS1 Gastric cancer Trastuzumab resistant 
NCI N87 and 
trastuzumab resistant 
SNU216

Macrophages Promoted glutamine 
metabolism, and 
trastuzumab resistance

[176]

miR-522 Gastric cancer CAFs SGC7901, MKN45 Inhibited lipid metabolism 
and ferroptosis and 
promoted cisplatin and 
paclitaxel resistance

[179]

miR-21-5p, miR-23a-
3pand miR-125b-5p

Lung cancer Paclitaxel-resistant 
A549

Chemosensitive 
A549

Promoted unsaturated FA 
synthesis and paclitaxel 
resistance

[180]

miR-3173-5p Pancreatic cancer CAFs PANC-1,BXPC-3 Inhibited ferroptosis and 
promoted gemcitabine 
resistance

[178]

miR-21-3p, miR-21-
5p and miR-891-5p

Ovarian cancer Ovarian cancer cell line NA Promoted glycolysis and 
carboplatin resistance

[181] 

miR-21-5p Ovarian cancer Cisplatin-resistant 
SKOV3

Cisplatin-sensitive 
SKOV3

Promoted glycolysis and 
cisplatin resistance

[182]

miRNA

miR-3679-5p Lung cancer M2 macrophage A594 Promoted glycolysis and 
cisplatin resistance

[183]

HISLA Breast cancer TAMs MDA-MB-231 Promoted glycolysis and 
resistance to docetaxel

[184]

SNHG3 Breast cancer CAFs MCF-7, 
                                                                                                                             MD-MBA-453

Promoted glycolysis and 
inhibited OXPHOS

[185]

LncRNA

LncFERO Gastric cancer SGC7901, MKN45 SGC-CSC, 
                                                                                                                            MKN-CSC

Inhibited ferroptosis and 
promoted cisplatin 
resistance

[186]

Inhibited glycolysis and 
improved sensitivity to 5-

CircRNA Circ_0094343 Colorectal cancer NCM460 HCT116 [187]
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fluorouracil, oxaliplatin, and 
doxorubicin

Circ_0008928 NSCLC NA NA Promoted glycolysis and 
cisplatin resistance

Circ_0002130 NSCLC NA NA Increased glucose uptake, 
glycolysis and osimertinib 
resistance

Circ_0005963 Colorectal cancer Oxaliplatin-resistant 
SW480

SW480 Enhanced glycolysis and 
oxaliplatin resistance

CircZNF91 Pancreatic cancer Hypoxic BxPC-3, 
hypoxic SW1990

Normoxic BxPC-3, 
normoxic SW1990

Promoted glycolysis and 
gemcitabine tolerance

CircDLGAP4 Neuroblastoma Doxorubicin -resistant 
neuroblastoma cells

Doxorubicin 
-sensitive 
neuroblastoma 
cells

Promoted glycolysis and 
doxorubicin resistance

mRNA VEGF/VEGFR mRNA Acute myeloid 
leukemia

HL-60, U937 HUVECs Promoted glycolysis 
and arabinoside 
cytopyrimidin resistance

Phosphorylated 
signaling protein

p-ERK, p-AKT Colorectal cancer LoVo, HCT116 HSC Promoted lactate 
metabolism and irinotecan 
resistance

Lipid Acid 
sphingomyelinase

Multiple 
myeloma

Drug-resistant U266 Chemosensitive 
JJN3

Promoted sphingolipid 
metabolism and melphalan 
and bortezomib resistance

sEVs: Small extracellular vesicles; PKM2: pyruvate kinase M2; NSCLC: non-small cell lung cancer; TAMs: tumor-associated macrophages; CAFs: 
cancer-associated fibroblasts; PGK: phosphoglycerate kinase; LDHA: lactate dehydrogenase A; HK1: hexokinase 1; OXPHOS: oxidative 
phosphorylation; CSC: cancer stem cell; miRNA: microRNA; lncRNA: long noncoding RNA; HISLA: HIF1α-stabilizing LncRNA; circRNA: circular 
RNA; mRNA: messenger RNA; VEGF: vascular endothelial growth factor; VEGFR: vascular endothelial growth factor receptor; HUVECs: human 
umbilical vein endothelial cells; HSC: hematopoietic stem cell.

Exosomal proteins
Proteins are the primary constituents of exosomes and play a pivotal role in modulating the glycolytic 
activity of tumor cells. Chemotherapy-resistant cells can confer resistance to chemosensitive cells by 
transferring exosomes containing Hsp70, which impairs mitochondrial function and increases glycolysis[159]. 
Complementary investigations have revealed a marked upregulation of pyruvate kinase M2 (PKM2) 
expression in exosomes derived from drug-resistant tumor cells. Elevated PKM2 expression increases 
glucose uptake and lactate production, contributing to chemotherapy resistance in tumor cells[10,160,161]. 
Notably, the increased expression of PKM2 within exosomes not only causes drug resistance in 
chemosensitive tumor cells but also influences macrophages and cancer-associated fibroblasts within the 
tumor immune microenvironment. This phenomenon has significant implications for the development of 
therapeutic strategies and furthers our understanding of immune responses[162,163]. Furthermore, hypoxia-
induced PKM2 in exosomes has been suggested to inhibit tumor cell apoptosis, a process contingent upon 
the PKM2/BCL2 axis[163]. In another study, hypoxic conditions were found to increase resistance to 
carboplatin in ovarian cancer cell lines, an effect associated with the metabolic reprogramming of ovarian 
cells toward the glycolysis and FA synthesis pathways. Consistent with this finding, exosomes isolated from 
hypoxia-stimulated OvCar cell lines, as well as plasma from patients with recurrent ovarian cancer, display 
significantly increased expression of glycolysis-related enzymes[164]. Additionally, the role of exosomal 
metabolic enzymes, such as ALDOA, ALDH3A1[165], LMP1[166], ITGB4[167], and PD-L1[168], in mediating 
cancer treatment resistance through glycolysis regulation has been extensively documented.

sEVs are instrumental in modulating lipid metabolism, which is pivotal for augmenting tumor sensitivity to 
therapeutic interventions. Exosomes originating from adipocytes can be internalized by tumor cells, thereby 
fostering cancer cell proliferation and migration[169]. Lazar et al. discovered that proteins associated with 

[188]

[189]

[46]

[190]

[191]

[192]

[193]

[11]
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FAO are packaged within exosomes derived from adipocytes[170]. Upon uptake by melanoma cells, these 
exosomes enhance lipid metabolism in the cancer cells, facilitating tumor invasion and metastasis. 
Additionally, research indicates that extracellular vesicles from adipose tissue aid in the transport and 
oxidation of FAs in cancer cells by supplying necessary enzymes and substrates, consequently 
reprogramming the lipid metabolism of these cells[171]. Zhang et al. reported that sEVs originating from 
adipocytes contain elevated levels of microsomal triglyceride transfer protein[172]. Moreover, microsomal 
triglyceride transfer protein expression in colorectal cancer cells was significantly correlated with ferroptosis 
and sensitivity to the antineoplastic agent oxaliplatin. These effects are due to the inhibition of 
polyunsaturated FAs and the regulation of lipid ROS levels. Additionally, variations in ferroptosis and ROS 
levels were noted in exosomes from pancreatic cancer cells with different sensitivities to gemcitabine. The 
presence of acyl-CoA dehydrogenase medium chains in exosomes was shown to increase the consumption 
of unsaturated FAs, thereby affecting ferroptosis via the modulation of the glutathione peroxidase 4 and 
mevalonate pathways[173]. Lee et al. reported the presence of YAP1 in enzalutamide-resistant cell lines and in 
sEVs isolated from patient serum[174]. Their study underscored the role of YAP1 in regulating genes 
associated with cancer stemness and lipid metabolism. Notably, enzalutamide-resistant cell lines derived 
from parent cells treated with sEVs present increased tumorigenic potential, lipid metabolic activity, and 
robust resistance to enzalutamide.

Exosomes contribute to chemotherapy resistance by transporting key enzymes involved in amino acid 
metabolism. Yang et al. reported that the levels of glutathione S-transferase P1 (GSTP1) within exosomes 
were significantly greater in Adriamycin-resistant breast cancer cells than in their chemosensitive 
counterparts[175]. Apoptosis assays and immunofluorescence staining of clinical samples from patients 
undergoing neoadjuvant chemotherapy revealed that GSTP1 expression was markedly greater in patients 
with progressive disease (PD) or stable disease (SD) than in those who achieved partial response (PR) or 
complete response (CR). Correspondingly, the serum exosome levels of GSTP1 were also substantially 
greater in the PD/SD cohort than in the PR/CR cohort, indicating a potential role for exosomal GSTP1 in 
modulating tumor responsiveness to chemotherapeutic agents. Moreover, Hu et al. reported that gastric 
cancer cells could increase glutamine metabolism by releasing microvesicles enriched with GLS1[176]. This 
process was shown to influence M2 macrophage polarization and angiogenesis within the TME, 
culminating in the acquisition of trastuzumab resistance in HER2-positive gastric cancer cells.

Exosomal noncoding RNAs
miRNAs
miRNAs are a class of noncoding RNAs that are typically 20-22 nucleotides in length and modulate gene 
expression posttranscriptionally by binding specifically to the mRNA sequences of target proteins, leading 
to mRNA degradation or translational inhibition[177]. Exosomes derived from cancer-associated fibroblasts 
encapsulate miR-3173-5p and miR-522, subsequently transferring them to tumor cells. These miRNAs have 
been shown to suppress iron-dependent cell death mediated by lipid peroxidation in tumor cells, thereby 
conferring chemoresistance[178,179]. Additionally, exosomal miRNAs, such as miR-21-5p, miR-23a-3p, and 
miR-125b-5p, have been found to inhibit FA synthesis by modulating the TGFβ/SMAD2 pathway, thereby 
sensitizing tumor cells to paclitaxel therapy[180]. In two separate studies, miR-21-5p was demonstrated to 
activate glycolysis and upregulate drug transporters and detoxification enzymes, contributing to 
chemotherapy drug resistance[181,182]. Notably, miR-21-5p and miR-891-5p have also been implicated in the 
upregulation of proteins involved in DNA repair mechanisms[181]. Wang et al. reported that exosomes 
released by M2 macrophages increase the resistance of lung cancer cells to cisplatin through the transfer of 
miR-3679-5p. The mechanism underlying this effect involves miR-3679-5p promoting c-Myc protein 
stability and augmenting glycolysis by downregulating the E3 ubiquitin ligase NEDD4 analog NEDD4L[183].
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lncRNAs
lncRNAs exceed 200 nucleotides in length and are crucial for modulating tumor responsiveness to 
therapeutic interventions. sEVs secreted by breast cancer-associated tumor macrophages (TAMs) transfer a 
specific lncRNA, HIF1α-stabilizing lncRNA (HISLA), to breast cancer cells. This transfer facilitates the 
stabilization of HIF1α, thereby increasing aerobic glycolysis. This increase results in antiapoptotic effects 
and fosters chemotherapy resistance in tumor cells[184]. Furthermore, Chen et al. reported that lactic acid, a 
glycolytic end-product, upregulates HISLA expression within macrophages, revealing the dynamic 
relationships and communication between TAMs and tumor cells within the TME[184]. Clinically, HISLA 
expression in TAMs was significantly correlated with therapeutic response and overall survival among 
breast cancer patients, indicating that HISLA is a potential prognostic biomarker and a valuable adjunct for 
guiding therapeutic decision-making. Related findings have demonstrated that tumor-associated fibroblasts 
(CAFs) engage in crosstalk with breast cancer cells via the secretion of exosomes, which promote glycolytic 
metabolism and proliferation in tumor cells. Mechanistic insights revealed that the lncRNA SNHG3 
sequesters miR-330-5p, thereby modulating mitochondrial OXPHOS and glycolysis through the targeted 
regulation of the pyruvate kinase PKM1/2[185]. Additionally, Zhang et al. reported that lncFERO, which 
originates from gastric cancer cells, promotes lipid metabolism and ferroptosis in gastric CSCs via the 
hnRNPA1/SCD1 signaling axis[186]. Both in vitro and in vivo evidence confirm that chemotherapeutic agents 
increase the packaging of lncFERO into exosomes and its subsequent release into the extracellular milieu by 
upregulating hnRNPA1 expression. This process increases the desiccation tolerance of gastric cancer cells, 
resulting in increased resistance to chemotherapy.

circRNAs
circRNAs encapsulated within exosomes have been implicated in the regulation of immune evasion and the 
progression of malignant tumors through their involvement in metabolic regulation. Li et al. reported that 
exosome-derived circ_0094343 modulates glycolysis via the miR-766-5p/TRIM67 axis, thereby increasing 
the chemosensitivity of tumor cells[187]. In another study, the expression of circ_0008928 in serum exosomes 
was significantly elevated in patients with cisplatin-resistant NSCLC. Further investigations revealed that 
circ_0008928 increases glycolysis and decreases cisplatin sensitivity through the miR-488/HK2 signaling 
pathway[188]. Ma et al. reported that the expression levels of circ_0002130 were markedly increased in the 
serum exosomes of patients with osimertinib-resistant NSCLC[189]. The underlying mechanism involves 
circ_0002130 increasing the expression of GLUT1, HK2, and LDHA by sponging miR-498. These factors are 
all associated with glucose metabolism, leading to increases in glucose uptake, lactate production, and the 
extracellular acidification rate, indicating increased glycolysis. Thus, circ_0002130 influences osimertinib 
sensitivity by modulating tumor cell glycolysis, suggesting its potential as a target to impact the drug 
response. Additionally, circ_0005963 has been shown to increase glycolysis and ATP production in 
oxaliplatin-resistant cells via the miR-122/PKM2 signaling axis. This process not only increases tumor cell 
survival but also promotes the transfer of chemotherapy resistance to cells that are otherwise sensitive to 
chemotherapeutic agents[46]. Exosomes derived from hypoxic pancreatic cancer cells increase glycolysis and 
chemical tolerance in normoxic cells by delivering circZNF91, which functions as a miR-23b-3p sponge. 
Thus, SIRT1 expression is upregulated, and the HIF-1α protein is stabilized. The presence of circ_ZNF91 in 
exosomes enables signaling between tumor cells under hypoxic and normoxic conditions, thereby 
promoting resistance to gemcitabine chemotherapy in pancreatic cancer. The mechanism involves 
circ_ZNF91 increasing both the transcriptional activity and stability of HIF-1α, resulting in increased 
glycolysis in recipient pancreatic cancer cells and, consequently, resistance to gemcitabine 
chemotherapy[190]. Furthermore, circDLGAP4, which is carried by sEVs, plays a significant role in 
neuroblastoma chemotolerance. The authors of this study posit that circDLGAP4 promotes glycolysis and 
doxorubicin resistance in tumor cells via the miR-143/HK2 axis[191].
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Other regulators affecting metabolism in exosomes
Regulators of sEVs-mediated metabolic reprogramming include mRNAs and phosphorylated signaling 
proteins. For example, sEVs derived from acute myeloid leukemia cells have been shown to increase 
glycolysis in human umbilical vein endothelial cells (HUVECs) and increase the expression of vascular 
endothelial growth factor receptors (VEGFRs). This results in vascular remodeling and causes therapeutic 
resistance in tumors. The underlying mechanism for these effects is the transfer of VEGF and VEGFR 
mRNAs via sEVs[192]. Another study demonstrated that under normoxic conditions, exosomes from 
colorectal tumors stimulate interleukin-6 (IL-6) secretion by hepatic stellate cells within the metastatic liver 
microenvironment through the activation of p-ERK and p-AKT. IL-6, in turn, upregulates the expression of 
MCT1 and LDHB, which promote lactic acid metabolism in adjacent tumor cells under hypoxic conditions. 
This culminates in the development of chemotherapy resistance in tumor cells[193]. Elevated lactate levels 
within tumor tissue trigger the MRE11 lactylation, facilitating DNA damage repair and bolstering cancer 
cells’ resilience to chemotherapy[194]. Additionally, the expression of acidic sphingomyelinase (ASM) was 
significantly increased in multiple myeloma cell lines following treatment with melphalan or bortezomib, as 
well as in the exosomes they released. Experimental evidence suggests that ASM-enriched exosomes confer 
drug resistance to chemosensitive cells, highlighting the potential role of ASM in tumor defense 
mechanisms[11].

In summary, the protein and noncoding RNA contents of exosomes significantly influence the 
reprogramming of glycolysis, FA metabolism, and amino acid metabolism in tumor cells. Exosomes 
facilitate intercellular communication, enabling the transfer of drug-resistant phenotypes among cells. 
Elucidating the specific mechanisms underlying these processes will lay the groundwork for targeted tumor 
therapy, chemotherapy sensitization, and the utilization of exosomes as diagnostic and prognostic tools.

CLINICAL APPLICATION OF EXOSOMES TARGETING METABOLIC REPROGRAMMING IN 
TUMORS
Diagnostic biomarkers
An increasing body of research has indicated the considerable potential of sEVs in oncological diagnostics, 
prognostic evaluation, and monitoring of treatment efficacy. In patients with NSCLC, the expression level of 
circ_ARHGAP10 in serum-derived exosomes is markedly elevated compared with that in healthy control 
individuals. The upregulation of this molecule is correlated with increased expression of GLUT1 and LDH, 
both of which are pivotal modulators of glycolysis. Consequently, increased expression of circ_ARHGAP10 
may influence tumor energy metabolism and the TME by increasing both the expression of these proteins 
and glycolytic activity[195]. Tang et al. reported that the expression levels of six pivotal glycolytic enzymes 
were significantly increased in salivary exosomes from patients with HPV-linked oropharyngeal cancer[196]. 
These enzymes include ALDOA, GAPDH, LDHA/LDHB, PGK1, and PKM1/2. This discovery reveals a 
novel role for salivary exosomes in modulating the interplay between glucose metabolism and HPV-driven 
oropharyngeal cancer and suggests their utility as biomarkers for the diagnosis of this disease. Additionally, 
exosome contents related to glycolysis, such as PKM2 and circPDK1, are also considered potentially 
valuable for cancer diagnosis[196,197].

Extensive alterations in the lipid composition of exosomes originating from cancer cells have been reported, 
indicating their potential utility as biomarkers for cancer screening[198]. For example, lipid metabolism in 
exosomes derived from HCC patients is markedly distinct from that in exosomes derived from non-liver 
cancer patients. Specifically, there is a significant increase in the levels of lipid molecules, such as 
sphingosine, diacylglycerol, lysophosphatidic acid, and (O-acyl)-1-hydroxy FA, whereas the levels of 
sulfatides and acylGlcSitosterol esters are reduced[199]. Tao et al. reported that, compared with those in 
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healthy individuals, serum-derived exosomes in pancreatic cancer patients exhibit substantial lipidomic 
shifts involving 20 lipid species[200]. Notably, the levels of certain lipid species, including LysoPC (22:0), 
phosphatidylcholine (PC) (P-14:0/22:2), and phosphatidylethanolamine (PE) (16:0/18:1), were significantly 
correlated with clinical tumor stage, the levels of the tumor markers CA19-9 and CA242, and tumor 
diameter. Notably, the level of PE (16:0/18:1) was also significantly associated with overall survival. 
Furthermore, the glycerophospholipid choline PC (16:0/0:0) is expressed at significantly higher levels in 
exosomes from melanoma CSCs than in those from their differentiated counterparts, positioning it as a 
potential biomarker for melanoma diagnosis[201]. These findings underscore a potential relationship between 
perturbations in lipid metabolism within cancer patient-derived exosomes and disease progression, 
suggesting that these lipid species could serve as promising biomarkers for early-stage tumor detection.

Prognostic biomarkers
As previously reported, the expression of exosomal HISLA is closely related to tumor glycolysis. Moreover, 
elevated HISLA expression serves as a valuable indicator for assessing tumor histological grade, clinical 
stage, lymph node metastasis, and HER2 subtypes. Specifically, in breast cancer patients who exhibit PD or 
SD during treatment, HISLA expression levels were markedly greater than those observed in patients who 
achieved partial or complete remission[184]. Furthermore, an investigation revealed a significant enrichment 
of glycolytic pathway proteins within exosomes secreted by ovarian cancer cells under hypoxic conditions. 
These findings suggest that these proteins could predict ovarian cancer recurrence in clinical settings[164].

Qi et al. reported that the expression level of miR-3173-5p in exosomes was significantly greater in PDAC 
tissues than in adjacent normal tissues, concomitant with the significant suppression of its presumptive 
target gene ACSL4[178]. In PDAC patients undergoing chemotherapy, the expression of miR-3173-5p in 
tumor tissues was notably increased posttreatment compared with pretreatment levels. These observations 
implicate miR-3173-5p in the promotion of cancer malignancy. Additionally, ACSL4 expression has been 
recognized as an effective predictor of 5-year survival in pancreatic cancer patients. In another study, 
piRNA-17560, which is present in exosomes derived from senescent neutrophils, increased the expression 
of obesity-associated proteins, thereby inducing resistance in breast cancer cells to the chemotherapy agent 
docetaxel. Notably, plasma levels of piR-17560 are significantly greater in patients who exhibit poor 
responses to chemotherapy than in those who exhibit favorable responses[202]. These findings suggest that 
exosomes may be promising diagnostic and prognostic biomarkers for cancer therapy by targeting 
metabolic reprogramming.

Exosomes as therapeutic targets
To combat drug resistance mediated by sEVs, two primary strategies can be employed to increase the 
efficacy of chemotherapy: (1) diminishing their concentration within the TME by inhibiting the biogenesis 
and release of exosomes; and (2) neutralizing the resistance-promoting molecules, such as RNAs, proteins, 
or metabolites, carried by exosomes, thereby undermining their protective influence on tumor cells. In this 
section, we focus on targeting exosomal contents to modulate tumor metabolism and therapeutic resistance.

Exosomes have garnered significant attention as potential therapeutic targets in the field of tumor therapy. 
Pan et al. reported that the lncRNA IGFL2-AS1 could promote sunitinib resistance by regulating 
autophagy[203]. Using a patient-derived xenograft model of sunitinib-refractory metastatic renal cell 
carcinoma, the authors demonstrated that the delivery of antisense oligonucleotides against IGFL2-AS1 via 
chitosan-coated solid lipid nanoparticles effectively reversed drug resistance. As previously discussed, 
exosomes play a pivotal role in metabolic reprogramming within tumors. We hypothesize that targeting 
specific regulatory mechanisms could impede cancer progression by modulating metabolic 
pathways[185,191,192,204]. For example, circ_0005963 induces oxaliplatin resistance in colorectal cancer cells by 
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activating the miR-122/PKM2 signaling axis, thereby promoting glycolysis and ATP production. Further 
studies revealed that exosomes containing si-circ_0005963 could be efficiently produced by transfecting 
small interfering RNAs into HEK293T cells. Treatment with exo-si-circ_0005963 counteracted oxaliplatin 
resistance in CRC cells in vitro by inhibiting the aforementioned pathways[46]. circCCT3 is upregulated in 
clinical HCC tissues and influences glucose metabolism in HCC cells by regulating HK2. Coptisine can 
inhibit the expression of circCCT3 in CAF exosomes, thereby inhibiting the malignant progression of 
HCC[205]. Another study revealed that TAMs mediate aerobic glycolysis and chemoresistance in tumor cells 
via lncRNAs that shuttle HIF1α to breast cancer cells. Targeting the silencing of HISLA in TAMs to 
abrogate secretory HISLA in sEVs significantly impedes the ability of sEVs to induce resistance to apoptosis 
in tumor cells under chemotherapy[184].

Exosomes can render tumor cells less susceptible to treatment by inhibiting ferroptosis induced by lipid 
peroxidation. Du et al. successfully encapsulated the ferroptosis inducer erastin and the photosensitizer 
Rose Bengal into exosomes via ultrasonic technology[206]. The engineered drug-carrying exosomes (Er/
RB@ExosCD47) generated through this approach potently induced ferroptosis in tumor cells upon laser 
activation at a wavelength of 532 nm both in vitro and in vivo.

Importantly, exosomes play a significant role in tumor progression, positioning them as viable therapeutic 
targets with multiple advantages. Despite numerous in vitro investigations exploring the use of exosomes in 
cancer treatment, clinical trials remain scarce. We postulate that a targeted therapeutic approach aimed at 
impeding exosome production and metastasis could potently hinder tumor progression, particularly 
metastasis. The concurrent targeting of exosomes and cancer cells has led to promising outcomes in 
combating cancer progression, suggesting a potential future therapeutic strategy for tumor management.

Engineered exosomes for drug delivery
sEVs are not only a research hotspot in the field of tumor diagnosis and treatment but also show significant 
potential in the field of targeted drug delivery. These nanoscale particles have unique biological properties. 
With diameters of less than 200 nm, they are capable of crossing the blood-brain barrier. Their lipid bilayer 
membranes and internal space allow for the encapsulation of molecules or drugs, and they demonstrate very 
low immunogenicity. Their surface can be modified by physical or chemical methods and can be effectively 
endocytosed by target cells, thereby mediating intracellular signaling. Owing to these advantages, exosomes 
have received much attention as drug delivery platforms that regulate cellular metabolism and are 
considered promising drug carriers. Studies have shown that sEVs functionalized with hyaluronic acid (HA) 
can efficiently deliver doxorubicin to drug-resistant breast cancer cells as drug carriers. This specific cancer-
targeting ability is achieved through a mechanism mediated by the CD44 receptor. In addition, in 
preclinical multidrug-resistant tumor models, HA functionalized sEVs (lipHA-hsEVs) effectively inhibited 
local tumor growth and significantly reduced the systemic toxicity of DOX[207]. Moreover, Lin et al. found 
that CPT1A, a key regulatory enzyme in the FAO pathway, was significantly highly expressed in oxaliplatin-
resistant colon cancer cell lines[208]. Further studies revealed that pharmacological inhibition of CPT1A 
activity effectively reversed oxaliplatin resistance in these cells and promoted apoptosis. The specific 
delivery of siCPT1A to tumor tissues can be achieved by using exosomes modified with the iRGD peptide as 
drug carriers. This strategy successfully restored the sensitivity of colon cancer cells to oxaliplatin by 
inhibiting the activity of the FAO pathway, providing an innovative targeted therapy to solve the problem of 
chemotherapy resistance.
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CONCLUSION
Given their potential as diagnostic biomarkers and therapeutic agents, sEVs have become a focal point in 
cancer research, especially in the context of their application as a drug delivery platform. Prospective 
research endeavors should concentrate on addressing four critical inquiries. (1) How can metabolic 
reprogramming facilitated by sEVs be fully harnessed to establish novel clinical therapeutic pathways? (2) 
How can the targeting efficacy of engineered sEVs be enhanced to reverse metabolic alterations in recipient 
cells and circumvent the evolution of chemotherapy resistance? (3) How can the efficiency of sEVs as drug 
transporters be optimized to reduce costs and increase therapeutic outcomes? (4) While recent 
investigations are predominantly anchored in in vitro cellular assays and animal models, translation into 
clinical studies remains scarce, chiefly owing to financial and ethical constraints. Despite these challenges, 
pioneering research on sEVs-mediated metabolic reprogramming is paving the way for groundbreaking 
advancements in future cancer therapeutics.
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