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Abstract
We investigate the cooperatability of the first-order leader-following multi-agent systems consisting of a leader and
a follower with multiplicative noises under Markov switching topologies. Each agent exhibits first-order linear dy-
namics, and there are multiplicative noises along with information exchange among the agents. What is more, the
communication topologies are Markov switching topologies. By utilizing the stability theory of the stochastic differ-
ential equations with Markovian switching and the Markov chain theory, we establish the necessary and sufficient
conditions for the cooperatability of the leader-following multi-agent systems. The conditions are outlined below: (i)
The product of the system parameter and the square of multiplicative noise intensities should be less than 1/2; (ii)
The transition rate from the unconnected graph to the connected graph should be twice the system parameter; (iii)
The transition rate from the connected graph to the unconnected graph should be less than a constant that is related
to the system parameter, the intensities of multiplicative noises, and the transition rate from the unconnected graph
to the connected graph. Finally, the effectiveness of our control strategy is demonstrated by the population growth
systems.
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1. INTRODUCTION
In the past few decades, distributed cooperative control of multi-agent systems under fixed topologies has
attracted much attention from the system and control community [1–3]. However, in practical systems, the
communication networks connecting the agents often experience sudden interruptions and restoration. These
mutations lead to the changes in the structures or parameters of the system. Here, we describe this changing
topology by theMarkovian switching topology. For such systems, we usually use theMarkov switching systems
to describe them. In recent years, the stability of linear Markov switching systems has been widely studied [4–8].
By Kronecker product and Lyapunov exponent, Mariton et al. [4] gave the necessary and sufficient conditions
for the moment stability and the almost sure stability of the system, respectively. Feng et al. [5] studied the
stochastic stability of the system and revealed the relationship between the moment stability and the almost
sure stability. Feng et al. [6] studied the stabilization problem. The literature [7,8] investigated the robust stability
problems and gave sufficient and necessary conditions in the form of linear matrix inequalities for the mean
square stability.

In many real-world systems, it is inevitable for systems to be subjected to random noises [9]. These noises
may change the trajectory of the system and even affect its stability. Therefore, an increasing number of re-
searchers have focused on studying the stability of the Markov switching stochastic systems. The stability of
linear Markov switching systems with stochastic noises was studied in previous literature [10–12]. Fragoso et
al. [10] studied the Markov switching systems with additive noises and provided the necessary and sufficient
conditions for the mean square stability of the system. On the other hand, the literature [11,12] explored the
Markov switching systems with multiplicative noises. By employing the operator theory, Dragan et al. [11]
derived the necessary and sufficient conditions in the form of linear matrix inequalities for the mean square
stability. Similarly, Sheng et al. [12], also using the operator theory, presented a new necessary and sufficient
condition for the mean square stability. Using the Lyapunov method, Mao et al. [13] established a sufficient
condition for the 𝑝𝑡ℎ moment exponential stability of the nonlinear Markov switching system and revealed
the relationship between the 𝑝𝑡ℎmoment exponential stability and the almost sure exponential stability of the
system. In the context of nonlinear Markov switching systems, Deng et al. [14] addressed the problem of mean
square stabilization.

The stability theory of Markov switching systems with noises has numerous practical applications [15–17]. Previ-
ous studies [18–22] have focused on the distributed control problem of multi-agent systems with random noises
under Markov switching topologies. The literature [18,19] studied the distributed control problem of discrete-
timemulti-agent systems. By the state space decompositionmethod, Huang et al. [18] gave a sufficient condition
for almost sure consensus and mean square consensus, respectively. Zhang et al. [19] studied the mean square
consensus problem. The literature [20–22] considers the distributed control problem of continuous-time multi-
agent systems. Zhang et al. [20] studies the distributed control problem of multi-agent systems with first-order
integrator dynamics. Li et al. [21] studied the containment control problem. Wang et al. [22] studiedmean square
consensus and almost sure consensus of higher-order multi-agent systems.

Compared with additive noises, multiplicative noises play a stabilizing role in the almost sure stability of sys-
tems [23]. Many scholars have studied the distributed control problem of multi-agent systems with multiplica-
tive noises [24–28]. However, as the state of the system is related to theMarkov chain, we cannot write the expec-
tation of the product of the state variable and the indicative function in the form of the expected product. This
leads to the fact that the distributed control problem of multi-agent systems with multiplicative noises under
the Markov switching topology has not yet been solved. As a preliminary study, we study the cooperatability
of the first-order leader-following multi-agent systems consisting of a leader and a follower with multiplicative
noises under Markov switching topologies. Each agent has first-order linear dynamics, and there are multi-
plicative noises along with information exchange among agents. What is more, the communication topologies
are Markov switching topologies. Compared with existing literature [24–28], we have revealed the influence
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of multiplicative noises and switching rates on the cooperatability of the system. To analyze this influence,
we delve into the stability theory of Markov switching systems with noises. Therefore, we introduced a new
lemma to address this issue. We establish the necessary and sufficient conditions for the cooperatability of the
leader-following multi-agent systems by combining the stability theory of the stochastic differential equation
with Markovian switching and the Markov chain theory. These conditions are outlined below: (i) The prod-
uct of the system parameter and the square of multiplicative noise intensities should be less than 1/2; (ii) The
transition rate from the unconnected graph to the connected graph should be twice the value of the system
parameter; (iii) The transition rate from the connected graph to the unconnected graph should be lower than
a constant, which is related to the system parameter, the intensity of multiplicative noises, and the transition
rate from the unconnected graph to the connected graph.

The remaining sections of this paper are structured as follows: Section 2 formulates the problem. Section 3
presents the admissible cooperative distributed control strategy. Section 4 provides the main result. Section 5
includes a numerical simulation to demonstrate the effectiveness of our control laws. Section 6 concludes the
paper.

Notation: The symbols R and R+ denote real and non-negative numbers, respectively. 𝐼𝑛 denotes the 𝑛 × 𝑛

dimensional identity matrix. The symbol diag{𝐴1, . . . , 𝐴𝑁 } represents the block diagonal matrix with entries
being 𝐴1, . . . , 𝐴𝑁 . For a given vector ormatrix 𝑋 , 𝑋T denotes its transpose, and |𝑋 | represents the determinant
of 𝑋 . For twomatrices𝐶 and𝐷,𝐶⊗𝐷 denotes their Kronecker product, and𝐶⊕𝐷 = 𝐶⊗𝐼+𝐼⊗𝐷 represents the
Kronecker sum. Let (Ω, F , {F𝑡}𝑡⩾𝑡0 , P) be a complete probability space with a filtration {F𝑡}𝑡⩾𝑡0 that satisfies
the usual conditions, namely, it is right continuous and increasing while F0 contains all P-null sets; 𝑤(𝑡) =
(𝑤1(𝑡), . . . , 𝑤𝑚 (𝑡))𝑇 denotes a 𝑚-dimensional standard Brownian motion defined in

(
Ω, F , {F𝑡}𝑡⩾𝑡0 , P

)
. For

a given random variable 𝑋 , the mathematical expectation of 𝑋 is denoted by E[𝑋].

2. PROBLEM FORMULATIONS
Consider a leader-following multi-agent system consisting of a leader and a follower, where the leader and the
follower are indexed by 0 and 1, respectively. The dynamics of the leader is given by

¤𝑥0(𝑡) = 𝑎𝑥0(𝑡), (1)

where 𝑥0(𝑡) ∈ R is the state, and 𝑎 ∈ R+ is a known constant.

The dynamics of the follower is given by

¤𝑥1(𝑡) = 𝑎𝑥1(𝑡) + 𝑏𝑢(𝑡), (2)

where 𝑥1(𝑡) ∈ R is the state, 𝑢(𝑡) ∈ R is the input, and 𝑎 ∈ R+ and 𝑏 ∈ R/0 are known constants.

In this section, we assume that the topology graph is a Markovian switching topology. Let the switching signal
𝜃 (𝑡) be defined in the probability space (Ω, F , {F𝑡}𝑡⩾0 , P). The signal 𝜃 (𝑡) is a right continuous homogeneous
Markov chain and has a finite state space S = {1, 2}. The matrix 𝑄 = [𝑞𝑖 𝑗 ]1⩽𝑖, 𝑗⩽2 is the transfer rate matrix of
the Markov chain 𝜃 (𝑡) and satisfies

𝑃(𝜃 (𝑡 + 4) = 𝑗 |𝜃 (𝑡) = 𝑖) =
{
𝑞𝑖 𝑗 4 +𝑜(4), 𝑖 ≠ 𝑗 ,

1 + 𝑞𝑖 𝑗 4 +𝑜(4), 𝑖 = 𝑗 ,

where if 𝑖 ≠ 𝑗 , 𝑞𝑖 𝑗 is the transition rate of the Markov chain from the state 𝑖 to the state 𝑗 with 𝑞𝑖 𝑗 ⩾ 0; if 𝑖 = 𝑗 ,

𝑞𝑖𝑖 = −
2∑
𝑗≠𝑖

𝑞𝑖 𝑗 ; 4 > 0 and lim
𝑡→∞

𝑜(4)
4 = 0. We use G(𝜃 (𝑡)) = (V, E(𝜃 (𝑡)),A(𝜃 (𝑡))) to represent a weighted graph
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formed by the leader and the follower, where the set of nodesV = {0, 1} and the set of edges E(𝜃 (𝑡)) ⊆ V×V.

Denote the neighbors of the 𝑖th agent by N𝑖 (𝜃 (𝑡)). The adjacency matrix A(𝜃 (𝑡)) =
[
𝑎10(

0 0
𝜃 (𝑡)) 0

]
∈ R2×2,

where if 0 ∈ N1(𝜃 (𝑡)), then 𝑎10(𝜃 (𝑡)) = 1, otherwise 𝑎10(𝜃 (𝑡)) = 0. The Laplacian matrix of G(𝜃 (𝑡)) is given
by L(𝜃 (𝑡)) = D(𝜃 (𝑡)) − A(𝜃 (𝑡)), where D(𝜃 (𝑡)) = diag(0, 𝑎10(𝜃 (𝑡))). Without losing generality, we assume

that the transition rate matrix of the Markov chain 𝜃 (𝑡) is the matrix 𝑄 =

[
−𝛼 𝛼

𝛽 −𝛽

]
, where 𝛼 represents the

transition rate from the unconnected graph to the connected graph; 𝛽 represents the transition rate from the
connected graph to the unconnected graph.

3. ADMISSIBLE DISTRIBUTED COOPERATIVE CONTROL STRATEGY
In the real network, the relative state measurement information obtained by the follower from the leader is
often affected by noises. Therefore, for the leader−following multi-agent system (1)−(2), we assume that the
relative state measurement information has the following form

𝑦10(𝑡) = 𝑥1(𝑡) − 𝑥0(𝑡) + 𝜎10 (𝑥1(𝑡) − 𝑥0(𝑡)) 𝜉10(𝑡), (3)

where 𝜉10(𝑡) represents themultiplicativemeasurement noise, and𝜎10 represents the intensity ofmultiplicative
measurement noise.

We consider the following set of admissible distributed cooperative control strategies based on (3) and the
randomness of the communication topology

U = {𝑈 = {𝑢(𝑡) = 𝑘𝑎10(𝜃 (𝑡))𝑦10(𝑡), 𝑡 > 0} , 𝑘 ∈ R} . (4)

This paper primarily focuses on investigating the necessary and sufficient conditions for the cooperatability of
the first-order leader-following multi-agent systems. These systems are composed of a leader and a follower
and are subjected to multiplicative noises under Markov switching topologies.

The assumption and lemma required in this section are given below.

Assumption 1Thenoise process 𝜉10(𝑡) satisfies
∫ 𝑡

0 𝜉10(𝑠)d𝑠 = 𝑤10(𝑡), 𝑡 ⩾ 0, where 𝑤10(𝑡) is a one-dimensional
standard Brownian motion.

Lemma 1 [12] The solution of the Markov switching stochastic differential equations

d𝑥(𝑡) = 𝐴(𝜃 (𝑡))𝑥(𝑡)d𝑡 + 𝐶 (𝜃 (𝑡))𝑥(𝑡)d𝑤(𝑡) (5)

is mean square stable if and only if 𝐹 = diag(𝐴(1) ⊕ 𝐴(1), . . . , 𝐴(𝑆) ⊕ 𝐴(𝑆)) + diag(𝐶 (1) ⊕ 𝐶 (1), . . . , 𝐶 (𝑆) ⊕
𝐶 (𝑆)) +𝑄T ⊗ 𝐼𝑛2 is a Hurwitz matrix, where 𝑄 = [𝑞𝑖 𝑗 ]1⩽𝑖, 𝑗⩽𝑆 is the transition rate matrix of the Markov chain
𝜃 (𝑡). If 𝜃 (𝑡) = 𝑖, we denote 𝐴(𝜃 (𝑡)) = 𝐴(𝑖), 𝐶 (𝜃 (𝑡)) = 𝐶 (𝑖), and 𝑖 = 1, . . . , 𝑆.

4. MAIN RESULTS
By leveraging the stability theory of stochastic differential equations withMarkovian switching and theMarkov
chain theory, we provide the necessary and sufficient conditions for the cooperatability of the leader-following
multi-agent systems.

Theorem 1 Suppose Assumption 1 is satisfied. In that case, there exists an admissible cooperative control
strategy denoted by 𝑈 ∈ U, which ensures that the follower can track the leader for any initial value under
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the distributed control law 𝑈. This holds if and only if the following conditions are met: 2𝑎𝜎2
10 < 1, 𝛼 > 2𝑎,

0 ⩽ 𝛽 <
(𝛼−2𝑎)(1−2𝑎𝜎2

10)
2𝑎𝜎2

10
.

Proof: Denote 𝛿(𝑡) = 𝑥1(𝑡) − 𝑥0(𝑡). By Assumptions 1 and (1)−(4), we get

d𝛿(𝑡) = [𝑎 + 𝑏𝑘𝑎10(𝜃 (𝑡))]𝛿1(𝑡)d𝑡 + 𝑏𝑘𝑎10(𝜃 (𝑡))𝜎10𝛿1(𝑡)d𝑤10(𝑡), (6)

where if 𝑎10(𝜃 (𝑡)) = 0, then we denote 𝐴(1) = 𝑎 and 𝐶 (1) = 0; if 𝑎10(𝜃 (𝑡)) = 1, then we denote 𝐴(2) = 𝑎 + 𝑏𝑘

and 𝐶 (2) = 𝑏𝑘𝜎10.

Denote 𝐹 = diag(𝐴(1) ⊕ 𝐴(1), 𝐴(2) ⊕ 𝐴(2)) + diag(𝐶 (1) ⊕ 𝐶 (1), 𝐶 (2) ⊕ 𝐶 (2)) + 𝑄T ⊗ 𝐼1. By the definition
of 𝐹, we have

𝐹 =

[
2𝑎 0
0 2(𝑎 + 𝑏𝑘)

]
+
[
0 0
0 𝑏2𝑘2𝜎2

10

]
+
[
−𝛼 𝛽

𝛼 −𝛽

]
=

[
2𝑎 − 𝛼 𝛽

𝛼 2(𝑎 + 𝑏𝑘) + 𝑏2𝑘2𝜎2
10 − 𝛽

]
. (7)

Necessity: If there exists an admissible cooperative control strategy denoted by𝑈 ∈ U, such that for any initial
value, the follower can track the leader under the distributed control law 𝑈, it implies that the system (6) is
mean square stable. According to Lemma 1, it can be inferred that all eigenvalues of 𝐹 have negative real parts.

Noting that |𝜆𝐼 − 𝐹 | =
����𝜆 − 2𝑎 + 𝛼 −𝛽

−𝛼 𝜆 − 2(𝑎 + 𝑏𝑘) − 𝑏2𝑘2𝜎2
10 + 𝛽

����, we have |𝜆𝐼 − 𝐹 | = (𝜆 − 2𝑎)2 + (𝛽 + 𝛼 −

2𝑏𝑘 − 𝑏2𝑘2𝜎2
10)(𝜆 − 2𝑎) − 2𝑏𝑘𝛼 − 𝛼𝑏2𝑘2𝜎2

10.

Denote 𝑚 = 𝜆 − 2𝑎 and 𝑓 (𝑚) = 𝑚2 + (𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2
10)𝑚 − 2𝑏𝑘𝛼 − 𝛼𝑏2𝑘2𝜎2

10. As all eigenvalues of
𝐹 have negative real parts, we know that the real parts of the zero point of 𝑓 (𝑚) are less than −2𝑎. As the real
parts of the zero point of 𝑓 (𝑚) are less than −2𝑎, by considering the image of the function 𝑓 (𝑚), the following
two conditions can be inferred.

Condition (C1) : 𝑓 (−2𝑎) = 4𝑎2 − 2𝑎(𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2
10) − 2𝑏𝑘𝛼 − 𝛼𝑏2𝑘2𝜎2

10 > 0.

Condition (C2) : 2𝑏𝑘−𝛼−𝛽+𝑏2𝑘2𝜎2
10

2 + 2𝑎 < 0.
By Condition (C1), we obtain

(2𝑎 − 𝛼)(2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2
10) > 2𝑎𝛽. (8)

In the following, we discuss the Conditions (C1) and (C2).

(1) If 2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2
10 = 0 holds, then we have (2𝑎 − 𝛼)(2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2

10) = 0. This contradicts the
inequality (8). Therefore, this situation does not hold.

(2) If 2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2
10 > 0 holds, by (8), we get 0 ≤ 𝛼 < 2𝑎.

By 2𝑏𝑘−𝛼−𝛽+𝑏2𝑘2𝜎2
10

2 + 2𝑎 < 0, we have 𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2
10 > 4𝑎. By 𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2

10 > 4𝑎,
2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2

10 > 0 and 0 ≤ 𝛼 < 2𝑎, we obtain 𝑓 (−2𝑎) = 4𝑎2 − 2𝑎(𝛽 + 𝛼 − 2𝑏𝑘 − 𝑏2𝑘2𝜎2
10) − 2𝑏𝑘𝛼 −

𝛼𝑏2𝑘2𝜎2
10 < −4𝑎2 − 2𝑏𝑘𝛼 − 𝛼𝑏2𝑘2𝜎2

10 = −4𝑎2 − 𝛼(2𝑏𝑘 + 𝑏2𝑘2𝜎2
10) < −4𝑎2 + 2𝛼𝑎 = 2𝑎(𝛼 − 2𝑎) < 0. This

contradicts Condition (C1). Therefore, this situation also is not valid.

(3) If 2𝑎 + 2𝑏𝑘 + 𝑏2𝑘2𝜎2
10 < 0, then by 𝛽 ⩾ 0, 𝑎 > 0 and (8), we have 𝛼 > 2𝑎.
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By 𝛼 > 2𝑎 and (8), we get

𝑏2𝑘2𝜎2
10 + 2𝑏𝑘 <

2𝑎𝛽
2𝑎 − 𝛼

− 2𝑎. (9)

By Condition (C2), we obtain

𝑏2𝑘2𝜎2
10 + 2𝑏𝑘 < 𝛼 + 𝛽 − 4𝑎. (10)

By 𝛽 ⩾ 0, 𝑎 > 0 and 𝛼 > 2𝑎, we get

𝛼 + 𝛽 − 4𝑎 − ( 2𝑎𝛽
2𝑎 − 𝛼

− 2𝑎) = 𝛼 − 2𝑎 + 𝛽 + 2𝑎𝛽
𝛼 − 2𝑎

> 0, (11)

which implies 𝛼 + 𝛽 − 4𝑎 > 2𝑎𝛽
2𝑎−𝛼 − 2𝑎.

By (9), (10), and (11), we have

𝑏2𝑘2𝜎2
10 + 2𝑏𝑘 <

2𝑎𝛽
2𝑎 − 𝛼

− 2𝑎. (12)

Denote 𝑔(𝑡) = 𝜎2
10𝑡

2 + 2𝑡 − 2𝑎𝛽
2𝑎−𝛼 + 2𝑎 and 𝑡 = 𝑏𝑘 . By (12), we know that 𝑔(𝑡) < 0 has a solution for variable

𝑡. By 𝑔(𝑡) < 0, we have Δ = 4 − 4𝜎2
10(−

2𝑎𝛽
2𝑎−𝛼 + 2𝑎) > 0. By Δ > 0, we get 𝛽 <

(𝛼−2𝑎) (1−2𝑎𝜎2
10)

2𝑎𝜎2
10

. Combining

0 ⩽ 𝛽 <
(𝛼−2𝑎)(1−2𝑎𝜎2

10)
2𝑎𝜎2

10
and 𝛼 > 2𝑎, we have 2𝑎𝜎2

10 < 1. In summary, we obtain 2𝑎𝜎2
10 < 1, 𝛼 > 2𝑎,

0 ⩽ 𝛽 <
(𝛼−2𝑎)(1−2𝑎𝜎2

10)
2𝑎𝜎2

10
.

Sufficiency: By 2𝑎𝜎2
10 < 1, 𝛼 > 2𝑎 and 0 ⩽ 𝛽 <

(𝛼−2𝑎) (1−2𝑎𝜎2
10)

2𝑎𝜎2
10

, we get (12). By (12), we have 𝑏𝑘 ∈(
−2(𝛼−2𝑎)−√𝜌

2(𝛼−2𝑎)𝜎2
10

,
−2(𝛼−2𝑎)+√𝜌

2(𝛼−2𝑎)𝜎2
10

)
, where 𝜌 = 4(𝛼 − 2𝑎)2 − 4(𝛼 − 2𝑎)𝜎2

10 [2𝑎(𝛼 − 2𝑎) + 2𝑎𝛽]. From the value range of

𝑏𝑘 , it can be seen that Condition (C1) and Condition (C2) hold. Therefore, since the real parts of the zero
point of 𝑓 (𝑚) are less than −2𝑎, it can be concluded that all eigenvalues of 𝐹 have negative real parts. Lemma
1 implies that the system (6) is mean square stable. Therefore, there exists an admissible cooperative control
strategy𝑈 ∈ U, such that for any initial value, the follower can track the leader under the distributed control
law𝑈.

Remark 1 The conditions 𝛼 > 2𝑎, 2𝑎𝜎2
10 < 1 and 0 ⩽ 𝛽 <

(𝛼−2𝑎) (1−2𝑎𝜎2
10)

2𝑎𝜎2
10

stated in Theorem 1 highlight the
influence ofmultiplicative noises and both the transition rates 𝛼 and 𝛽 on the cooperatability of the system. It is
shown that smaller multiplicative noises, lower transition rate 𝛽, and higher transition rate 𝛼 are all favorable
for the cooperatability of the system. Moreover, the transition rates 𝛼 and 𝛽 have lower and upper bounds,
respectively. What is more, the noises and the system parameters satisfy the corresponding inequality.

We have the following corollary for the case without measurement noises.

Corollary 1 Suppose Assumption 1 and 𝜎10 = 0 hold. In that case, there exists an admissible cooperative
control strategy denoted by𝑈 ∈ U, such that for any initial value, the follower can track the leader under the
distributed control law𝑈, if and only if 𝛼 > 2𝑎.

5. NUMERICAL SIMULATION
In this section, we will use a numerical example to demonstrate the effectiveness of our control laws.
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Figure 1. The communication topology graphs.
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Figure 2. Markov chain 𝜃 (𝑡 ).
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Figure 3. Mean square tracking errors.

Referring to the literature [29], the population growth system is given by (1). Consider the leader-following
population growth systems (1)-(2), where 𝑎 = 0.01 and 𝑏 = 0.2, we will verify that the population of the
follower can track the population of the leader under the distributed control law𝑈.

The communication topology graphs are shown in Figure 1, and the trajectory of the Markov chain 𝜃 (𝑡) is
shown in Figure 2. The intensity of multiplicative measurement noise in (3) is given by 𝜎10 = 0.4. The

transition rate matrix is given by 𝑄 =

[
−2 2
1 −1

]
. The initial states of agents are given by 𝑥0(0) = 0.2 and

𝑥1(0) = 0.4.

If we choose 𝑘 = −2, then under the control law 𝑈, the mean square error of the population between the
follower and the leader is shown in Figure 3. From Figure 3, we can see that the mean square error of the
population tends to zero, which implies that the follower can achieve mean square tracking under the control
law of𝑈.

6. CONCLUSION
In this paper, we have studied the cooperatability of the first-order leader-following multi-agent systems that
consist of a leader and a follower. The systems are subjected to multiplicative noises under Markov switching
topologies. Each agent in this system follows first-order linear dynamics, and there are multiplicative noises
along with information exchange among agents. Additionally, the communication topologies are character-
ized byMarkov switching. By employing the stability theory of the stochastic differential equation withMarko-
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vian switching and the Markov chain theory, we have established the necessary and sufficient conditions for
achieving the cooperatability in the leader-followingmulti-agent systems. Furthermore, there are several other
interesting topics that can be explored in future research. For instance, it would be valuable to investigate the
cooperatability of the leader-following multi-agent systems with both multiplicative noises and delays under
Markov switching topologies
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