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Abstract
Aim: For authentication and key agreement, it is advisable to reduce the risks of key exposure andprovide an additional
level of control over key usage. This can be achieved by splitting the secret key across several devices, requiring their
cooperation to use the key effectively.

Methods: We have studied the split-key setting in the context of the station-to-station with key derivation function
(STS-KDF) protocol – a well-known two-party authenticated key agreement protocol based on the Diffie-Hellman
key exchange and digital signatures – and developed it further. We use the methods of design science, modeling, and
formal verification.

Results: First, we have found a new reflection attack against the STS-KDF protocol for scenarioswhere several entities
share the same private key. We designed a modification of that protocol, called STS-KDF with certificate binding
(STS-KDF-CB), that includes measures against this attack and enhances user privacy. Second, we designed the STS-
KDF-CBwith the key encapsulationmechanism (KEM) protocol, where KEM is used instead of the Diffie-Hellman key
exchange and digital signatures. Third, we designed split-key variants of the STS-KDF-CB and STS-KDF-CBwith KEM
protocols. The security properties of the STS-KDF protocol, the STS-KDF-CB protocols, and their split-key variants
were formally verified using the ProVerif tool.

Conclusion: We have increased security and privacy for authentication and key agreement by developing new vari-
ants of the STS-KDF protocol. In addition, we have STS-KDF variants for the split key setting. Future work includes
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implementation of the protocols and extension to the case where one of the split-key devices provides attestation for
the other.

Keywords: Authenticated key agreement, station-to-station, split key, formal verification, ProVerif

1 INTRODUCTION
We are concerned with the usage and storage of cryptographic keys in situations where the keys are vulnerable
to exposure, either because they are not protected by the platform security of the underlying hardware or
because an attacker may get physical access to the device using the keys.

An example of such a situation is the usage and storage of cryptographic keys in a household network, which
typically includes a heterogeneous set of IoT devices that have different levels of platform security. Constrained
IoT devices lack sophisticated platform security features. On the other hand, smartphone and personal com-
puter platforms include hardware-based process isolation and secure storage. In addition, these sophisticated
devices may also have a hardware-based root of trust, such as a trusted platformmodule (TPM) [1] and embed-
ded secure element (eSE) [2]. Another example is when the cryptographic keys are installed in a device, e.g., a
wireless base station, or stored in a data center; these keys are vulnerable to physical attacks.

One way to address this issue is to split the key between two or more devices, such that both devices must
cooperate when using that key. This mitigates the issue because compromising two or more devices is, in
general, harder than compromising a single device. Moreover, the split provides an additional level of control
over the key usage, which makes attacks, such as device cloning, more difficult. In the above examples, the key
could be split between the constrained IoT device and a smartphone, between the wireless base station and
an entity in a more secure location (e.g., in the core network), or between two different computers in a data
center.

The station-to-station (STS) protocol is an authenticated key agreement (AKA) protocol with key confirma-
tion that combines the Diffie-Hellman (DH) key agreement [3] and signature-based authentication of the two
parties [4]. Blake and Menezes [5] have shown that STS is vulnerable to Unknown Key Share (UKS) attacks and
proposed a variant, STS with Key Derivation Function (STS-KDF), that prevents these attacks. Jackson et al.
have shown using the Tamarin Prover that STS-KDF satisfies the following security properties: key secrecy,
identity agreement, and strong session agreement [6]. We chose to study the STS-KDF protocol in the split-key
scenario because it is a well-studied and well-known protocol, supports an abstract two-party setting, and has
been formally verified. In particular, the STS-KDF protocol is formally shown secure, assuming only minimal
properties from the underlying signature scheme.

While designing the split-key variant of the STS-KDF protocol, we have found a new reflection attack on the
STS-KDF.This attack is applicable in scenarios where, for privacy reasons, several STS-KDF endpoints use the
same key pair.

The key encapsulation mechanism (KEM) is an efficient and provably secure public encryption scheme that
generates encrypted random keys by combining asymmetric and symmetric encryption techniques [7,8]. KEM
is an umbrella term for several protocols, such as Elliptic Curve Integrated Encryption Scheme-based KEM
(ECIES-KEM), RSA-KEM, etc [9]. In the DH key agreement, the shared key is constructed based on the public
parameters of the two parties. With KEM, the shared key is generated by one party and sent to the other,
encrypted with the public key of the receiver. The security of the DH key agreement is based on the hardness
of the discrete logarithm problem. In contrast, KEM is more flexible regarding the used public-key crypto-
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system and the protocol design. It is possible to construct a KEM from almost any public key primitive [8].
For example, the security of KEM could be based on the hardness of a discrete logarithm problem or another
hard computational problem, e.g., the hardness of decoding a general linear code. For these reasons, KEM has
become a popular cryptographic primitive, and there are studies to adopt KEM into TLS 1.3. Furthermore,
secure KEMs, i.e., indistinguishability under chosen ciphertext attack (IND-CCA) KEMs, can be constructed
from weaker public key encryption schemes by applying, e.g., the Fujisaki-Okamoto transform [10]. IND-CCA
is the de facto security property for modern public key encryption schemes. Moreover, there exist split-key
KEMs [11]. Considering the advantages of KEM presented above, we have designed a variant of the STS-KDF
protocol that uses KEM (instead of the DH key agreement and signatures) and a split-key variant of the STS-
KDF with KEM.

Contributions:

1. A new reflection attack on the STS-KDF protocol in situations where two parties have the same key pair
but different identities.

2. Amodification of the STS-KDFprotocol: Privacy-Enhanced STS-KDF-CBprotocol thatmitigates the attack
and, in addition, protects the privacy of the user identity. This protocol can be seen as a variant of SIGMA-I
protocol [12].

3. A further variant of the protocol: Privacy-Enhanced STS-KDF-CB with KEM, that uses Key Encapsulation
Mechanism (KEM) [8] instead of Diffie–Hellman key exchange and signatures.

4. The “split-key” variants for the Privacy-Enhanced STS-KDF-CB protocol, with and without KEM, where
the asymmetric key pair of one or both of the parties is split between several devices.

5. Automated analysis of protocol models using ProVerif tool [13] and proofs of the security properties of the
above protocols.

The rest of the paper is organized as follows. Section 2 contains the background information on our study and
related work. The system and adversary models are defined in Section 3. The reflection attack against the STS-
KDF protocol is explained in Section 4. In Section 5, we present the privacy-enhanced variants of STS-KDF
that mitigate the reflection attack and their adaptations to the split-key scenarios. The formal verification of
the protocols is described in Section 6. The paper ends with the analysis of the performance of the protocols
in Section 7 and the discussion in Section 8.

2 BACKGROUND AND RELATED WORK
In this section, we review the following topics: formal verification tools, secret splitting for authentication, STS
protocol, Authenticated Key Exchange (AKE), KEM, and Authenticated Encryption (AE).

2.1 Formal verification tools for security protocols
The application of formal methods for the analysis of cryptographic protocol means using automated formal
analysis tools to determine whether an attacker can prevent the protocol from achieving its security objec-
tives [14]. Formal methods have proven valuable when developing critical systems, such as protocols, where
safety or security is important. In fact, various protocols were believed to be secure for years, and then formal
verification showed later that it was not the case. One classic example is the Needham-Shroeder protocol [15],
which was developed in 1978 and later proven to be insecure by Lowe [16] in 1996.

ProVerif [13] andTamarin-Prover [17] are state-of-the-art tools used for formally verifying and analyzing security
protocols. The Dolev-Yao adversary model is utilized in both tools.

ProVerif uses applied pi-calculus as a formal language, translates the protocol into a set of Horn clauses, and
considers an unbounded number of sessions and an unbounded message space for the protocol analysis. The
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tool can detect attacks. If a protocol property cannot be proven, ProVerif attempts to construct an execution
trace that contradicts that property.

Tamarin-Prover offers comprehensive support formodeling and analyzing security protocols. The specification
of protocols and adversaries employs an expressive language based on multiset rewriting rules. These rules
define a labeled transition system, where the state includes a symbolic representation of the knowledge of the
adversary, the messages on the network, freshly generated values, and the state of the protocol. The adversary
and protocol interaction involves updating network messages and generating new ones.

2.2 Secret splitting for authentication
The internet standard IETF RFC 5026 [18] introduces a split scenario in a model where the entity that provides
service is different from the entity that authenticates and authorizes the user, e.g., the network access provider
differs from the mobility service authorizer.

Several authentication schemes exist, e.g., biometric verification, text passwords, public key infrastructure, and
symmetric-key-based authentication techniques. Multi-tier authentication schemes are more secure than sin-
gle sign-on, considering layered defense; however, multi-tier authentication schemes increase the complexity
of user experience [19]. To reduce the computational overhead in a system with multiple sources of trust, Choi
et al. present a new multi-source authentication scheme called Split-Join One-Way Key Chain (SOKC) that
stores the parts of the keys in the source nodes [20].

Shah et al. [21] and Wang et al. [22] present a multi-factor authentication with the secret-splitting concept of
biometrics, including exclusive-or operations, DH key exchange algorithms, and encryption algorithms. The
proposed approaches split the biometric data into two, encrypt both parts, and store one on a smart card and
another on a server. The proposed solutions are secure against authentication factor attacks, network attacks,
and interior attacks from the card-issuing organization.

Choi et al. [23] suggest a solution for a certificate-based authentication system using a password and a secondary
source, i.e., an honest-but-curious server or another mobile device. In this setup, the user has a secret key to
authenticate himself to a controller (a website or an application). To prevent the danger of compromising the
device of the user, some secret values are utilized, each of which is used to encrypt their secret key. The secret
values are stored in the secondary sources. When the user wants to sign into the controller, he retrieves the
secret value from the secondary sources to decrypt the secret key. Therefore, the user can authenticate himself
to the controller only with the contribution of secondary sources.

2.3 Station-to-station protocol
The STS protocol was proposed by Diffie et al. [4] in 1992 to obtain mutual entity authentication and mutual
explicit key authentication [24]. STS is an AKA based on the DH key exchange protocol and authenticated
signatures. Diffie et al. provide variants of the STS protocol that have explicit key confirmation by using a
symmetric-key encryption scheme and a message authentication code (MAC) [4]. Those variants are called
STS-ENC and STS-MAC, respectively, in Blake-Wilson et al. [5].

Blake-Wilson et al. show that STS-ENC and STS-MAC are vulnerable to UKS attacks [5]. To prevent these
attacks, the authors propose to apply the Key Derivation Function (KDF) on the shared DH key. This variant
was later named as STS-KDF by Jackson et al. [6], who also provide formal verification of the variants of the STS
protocol by using the Tamarin Prover. They show that STS-KDF is the only variant that satisfies all the following
security requirements: key secrecy, identity agreement, and strong session agreement (injective agreement)
while using signatures that are secure under the Existential Unforgeability under an Adaptive ChosenMessage
Attack (EUF-CMA) model.
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Next, we describe the STS-KDF protocol. Let Alice and Bob be two parties that use the protocol to agree
on a shared key. Each party has a public and a secret key for signature verification and signing, respectively:
(𝑝𝑘𝑎 , 𝑠𝑘𝑎) is the public and secret key pair of Alice, and (𝑝𝑘𝑏 , 𝑠𝑘𝑏) is the public and secret key pair of Bob. The
parties authenticate the public key of each other through the certificates, where 𝑐𝑒𝑟𝑡𝑎 includes 𝑝𝑘𝑎 , the identity
𝑖𝑑𝑎 of Alice, and possibly other information; 𝑐𝑒𝑟𝑡𝑏 includes 𝑝𝑘𝑏 , the identity 𝑖𝑑𝑏 of Bob, and possibly other
information. The certificates are signed by the Certificate Authority (CA). The steps of an STS-KDF protocol
run are shown in the listing Protocol 1 and in Figure 1.

Protocol 1 : STS-KDF

Setup: 𝐴𝑙𝑖𝑐𝑒 or 𝐵𝑜𝑏 choose a safely large prime 𝑝 and a generator 𝑔 (𝑚𝑜𝑑 𝑝), where 𝑝 and 𝑔 are public.
The Protocol: (cf. Figure 1.)

1. (a) Alice chooses random 𝑥 ∈ Z𝑝 .
(b) Alice computes her public DH key: 𝑔𝑥 .

2. Alice sends 𝑔𝑥 to Bob.
3. (a) Bob chooses random 𝑦 ∈ Z𝑝 .

(b) Bob computes his public DH key: 𝑔𝑦 .
(c) Bob computes the shared DH key: 𝐾𝐷𝐻 = (𝑔𝑥)𝑦 = 𝑔𝑥𝑦 .
(d) Bob signs his public DH key, along with the public DH key of Alice, by using his secret signing key:

𝜎𝑏 = 𝑆𝑖𝑔𝑠𝑘𝑏 (𝑔𝑦 , 𝑔𝑥).
(e) Bob also computes the MAC of the signature by using the shared DH key: 𝑀𝐴𝐶𝐾𝐷𝐻 (𝜎𝑏).

4. Bob sends 𝑔𝑦 , 𝑐𝑒𝑟𝑡𝑏 , 𝜎𝑏 , and 𝑀𝐴𝐶𝐾𝐷𝐻 (𝜎𝑏) to Alice.
5. (a) Alice computes the shared DH key: 𝐾𝐷𝐻 = (𝑔𝑦)𝑥 = 𝑔𝑥𝑦 .

(b) Alice verifies 𝑀𝐴𝐶𝐾𝐷𝐻 (𝜎𝑏), the certificate 𝑐𝑒𝑟𝑡𝑏 , and the signature 𝜎𝑏 .
(c) Alice signs her public DH key, along with the public DH key of Bob, by using her secret signing key:

𝜎𝑎 = 𝑆𝑖𝑔𝑠𝑘𝑎 (𝑔𝑥 , 𝑔𝑦).
(d) Alice also computes the MAC of the signature by using the shared DH key: 𝑀𝐴𝐶𝐾𝐷𝐻 (𝜎𝑎).

6. Alice sends 𝑐𝑒𝑟𝑡𝑎 , 𝜎𝑎 , and 𝑀𝐴𝐶𝐾𝐷𝐻 (𝜎𝑎) to Bob.
7. Bob verifies 𝑀𝐴𝐶𝐾𝐷𝐻 (𝜎𝑎), the certificate 𝑐𝑒𝑟𝑡𝑎 , and the signature 𝜎𝑎 .
8. Alice and Bob compute the shared session key with the shared DH key and identities of Alice and Bob:
𝐾 = 𝐾𝐷𝐹 (𝐾𝐷𝐻 , 𝑖𝑑𝑎 , 𝑖𝑑𝑏).

2.4 Authenticated key exchange
Authenticated Key Exchange (AKE) aims to provide two communicating parties some assurance that they
know the identities of each other and share a secret key only known to them [4]. The shared secret key can be
used further to provide privacy, data integrity, or both.

Krawczyk [12] proposes several authenticatedDH key exchange protocols under the name SIGMA.These proto-
cols adapt the sign-and-MAC approach using DH key exchange and have been used in Internet Key Exchange
(IKE) protocols [25]. The author begins by studying STS protocols and builds the SIGMA protocols upon them.
The basic form of SIGMA is similar to STS-KDF. Still, the MAC computation differs from the STS-KDF in
that only the certificate or identifier is used as an input instead of the signature, while the MAC key is derived
from the DH key. Another variation of SIGMA includes encryption of all the messages except for the public
key to provide identity protection.

Krzywiecki et al. [26] designed an AKE protocol for wearable devices by improving the SIGMA protocol of
Krawczyk [12]. Krzywiecki et al. [26] aim to prevent impersonation attacks by splitting the signing key into two
signing modules and renewing the partial keys. They claim that the impersonation attack would be successful
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Alice Bob
𝑖𝑑𝑎 , 𝑝𝑘𝑎 , 𝑠𝑘𝑎 , 𝑐𝑒𝑟𝑡𝑎 𝑖𝑑𝑏 , 𝑝𝑘𝑏 , 𝑠𝑘𝑏 , 𝑐𝑒𝑟𝑡𝑏

a) Choose random 𝑥 ∈ ℤ𝑝

b) Compute public key 𝑔𝑥

𝑔𝑦, 𝑐𝑒𝑟𝑡𝑏 , 𝜎𝑏 , 𝑀𝐴𝐶𝐾𝐷𝐻(𝜎𝑏)4

Verify 𝑀𝐴𝐶𝐾𝐷𝐻(𝜎𝑎) and 𝜎𝑎

𝑔𝑥2

𝐾 = 𝐾𝐷𝐹(𝐾𝐷𝐻 , 𝑖𝑑𝑎 , 𝑖𝑑𝑏)

𝑐𝑒𝑟𝑡𝑎 , 𝜎𝑎 , 𝑀𝐴𝐶𝐾𝐷𝐻 𝜎𝑎6

a) Choose random 𝑦 ∈ ℤ𝑝

b) Compute public key 𝑔𝑦

c) 𝐾𝐷𝐻 = (𝑔𝑥)𝑦= 𝑔𝑥𝑦

d) Sign 𝜎𝑏 = 𝑆𝑖𝑔𝑠𝑘𝑏(𝑔
𝑦, 𝑔𝑥)

e) 𝑀𝐴𝐶𝐾𝐷𝐻(𝜎𝑏)

a) 𝐾𝐷𝐻 = (𝑔𝑦)𝑥= 𝑔𝑥𝑦

b) Verify 𝑀𝐴𝐶𝐾𝐷𝐻
(𝜎𝑏) and 𝜎𝑏

c) Sign 𝜎𝑎 = 𝑆𝑖𝑔𝑠𝑘𝑎(𝑔
𝑥, 𝑔𝑦)

d) 𝑀𝐴𝐶𝐾𝐷𝐻(𝜎𝑎)

1

5

7

8

3

Figure 1. STS-KDF protocol. STS-KDF: station-to-station with key derivation function.

only if the attacker captures both partial keys.

2.5 Key encapsulation mechanism
A KEM is a public encryption scheme that produces a shared key that can be used for symmetric encryption.
The notion of KEMs was introduced by Cramer and Shoup [7] to build an efficient hybrid encryption scheme
with an unrestricted message space.

KEM:The KEM consists of three algorithms [7,8]:

1. KeyGeneration is a probabilistic, polynomial-time key generation algorithm that takes a security parameter
𝑘 as input and generates a pair of public and secret keys (𝑃𝐾, 𝑆𝐾):
(𝑃𝐾, 𝑆𝐾) ←− 𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛(1𝑘 ).

2. Key Encapsulation is a probabilistic, polynomial-time encryption algorithm that takes a public key 𝑃𝐾 as
input and generates a cipher text 𝐶 and a KEM key 𝐾 :
(𝐶, 𝐾) ←− 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑃𝐾).

3. Key Decapsulation is a deterministic, polynomial-time decryption algorithm that takes a ciphertext 𝐶 and
the secret key 𝑆𝐾 as input and recovers the KEM key 𝐾 :
𝐾 ←− 𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶, 𝑆𝐾).

The KEM key 𝐾 , the output of the functions 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠 and 𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠, is shared between commu-
nicating parties.

Split KEM: Next, we consider KEM in a secret-splitting scenario. Ebina et al. introduced a distributed KEM
decapsulation, where the secret key 𝑆𝐾 is split into 𝑛 parts, 𝑆𝐾1, 𝑆𝐾2, …, 𝑆𝐾𝑛, and the encapsulated key 𝐾 is
reconstructed from 𝑡 out of 𝑛 potential partial decapsulation results, 𝐾1, 𝐾2, · · · , 𝐾𝑛 [11]. The Split KEM below
is an adaptation of their construction for our scenario, where 𝑡 = 𝑛 = 2. For the purposes of formal analysis,
we have combined some of the seven algorithms in Section 2.3 of Ebina et al. [11] to form the following set of
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five.

1. Split Key Generation is a probabilistic, polynomial-time key generation algorithm that takes a security
parameter 𝑘 as input and outputs public encapsulation key PK, two decapsulation key shares 𝑆𝐾1, 𝑆𝐾2, and
a verification key 𝑣𝑘 :
(𝑃𝐾, (𝑆𝐾1, 𝑆𝐾2), 𝑣𝑘) ←− 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛(1𝑘 ).

2. Split Key Encapsulation is a probabilistic, polynomial-time encryption algorithm that takes a public key
𝑃𝐾 as input and outputs a ciphertext 𝐶 and a session key 𝐾 :
(𝐶, 𝐾) ←− 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑃𝐾).

3. Split Key Decapsulation is a deterministic, polynomial-time decapsulation algorithm that takes decapsu-
lation key shares 𝑆𝐾1 and 𝑆𝐾2 and the ciphertext C as input and outputs session key shares 𝐾1 and 𝐾2,
respectively:
𝐾1 ←− 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶, 𝑆𝐾1).
𝐾2 ←− 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶, 𝑆𝐾2).

4. Split Key Reconstruction is a deterministic, polynomial-time key generation algorithm that takes the two
session key shares 𝐾1, 𝐾2 as input and outputs the session key 𝐾 :
𝐾 ←− 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑅𝑒𝑐𝑜𝑛𝑠(𝐾1, 𝐾2).

5. Split Key Share Verification is a deterministic, polynomial-time algorithm that takes 𝑃𝐾 , 𝐶, 𝑣𝑘 , and a key
share 𝐾𝑖 as input and outputs 0 or 1:
0/1←− 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑉𝑒𝑟𝑖 𝑓 (𝑃𝐾,𝐶, 𝐾𝑖 , 𝑣𝑘) for 𝑖 = 1, 2.
We say that 𝐾𝑖 is a valid share if 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑉𝑒𝑟𝑖 𝑓 (𝑃𝐾,𝐶, 𝐾𝑖 , 𝑣𝑘) = 1.

The outputs, 𝐾1 and 𝐾2, of the function 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠, are reconstructed using the function
𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑅𝑒𝑐𝑜𝑛𝑠 to obtain the shared key 𝐾 , which is identical to the second output of the function
𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠.

2.6 Authenticated encryption
The communication between two parties over a network requires twomain security goals: privacy and authen-
tication. Achieving both privacy and authentication at the same time is called authenticated encryption (AE).
The three basic ways to achieve AE are (1) MAC-then-Encrypt; (2) Encrypt-then-MAC; and (3) Encrypt-and-
MAC [27].

Since some application settings require associated data, which should be authenticated without encryption, in
addition to the authenticated and encrypted data, the notion of AE with associated data (AEAD) is introduced.
The AEAD was first formalized by Rogaway et al. in 2002 using the generic composition of a nonce-based,
privacy-only encryption scheme and a pseudorandom function [28].

The National Institute of Standards and Technology (NIST) initiated a standardization process for lightweight
cryptography to select one or more schemes for AEAD in 2015 and announced the decision in 2023. The
permutation-based AEAD and a hashing scheme named ASCON are chosen to be standardized [29].

3 SYSTEM MODEL
An Authentication and Key Agreement (AKA) protocol typically takes place between two parties. The aim is
to establish a key where both parties contribute to deriving a shared secret key. In addition, the protocol should
provide authentication, confirming that both entities are who they claim to be. Informally, an AKA protocol
should mimic a face-to-face key agreement; a few security properties can capture such a requirement.

We aim to present an AKA protocol that can also be used in split-key settings. The rest of this section covers
the split-key scenarios, adversary models, and security properties that we are interested in.
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Alice 1

Alice 1Alice 2

Alice 2

Bob

Bob

Bob 1

Bob 1

Bob 2

Bob 2

(i)

(ii)

(iii)

(iv)

Figure 2. Cases of the system model: (i) no split key; (ii) Alice’s keys are split between Alice1-Alice2; (iii) Bob’s keys are split between
Bob1-Bob2; (iv) both Alice’s and Bob’s keys are split between Alice1-Alice2 and Bob1-Bob2, respectively.

3.1 Split-key scenarios
We model the scenario where the secret keys of the users could be split with, e.g., an assistant device. In our
model, the users are called Alice and Bob. Alice splits her key into two pieces and distributes each piece in
two devices, Alice1 and Alice2, where Alice2 is the assistant device. Alice requires the full cooperation of both
Alice1 and Alice2 to use her key, e.g., for digital signature. Similarly, Bob splits his key between Bob1 and Bob2.
The following four cases of the split key scenario are illustrated in Figure 2.

(i) No Split Key (Alice-Bob);
(ii) Split Key for Alice (Alice2-Alice1-Bob);
(iii) Split Key for Bob (Alice-Bob1-Bob2);
(iv) Split Key for both Alice and Bob (Alice2-Alice1-Bob1-Bob2).

Note that our secret splitting can be seen as a special case of threshold secret sharing where the threshold 𝑡
equals the number of shares 𝑛 and 𝑛 = 2. However, in our setting, the secret is not reconstructed from the
shares, which is in contrast with the traditional notion of secret sharing introduced in [30]. See also [31] for
different types of secret sharing.

3.2 Adversary model
As described in Section 3.1, the system model has two parties, say, Alice and Bob, that communicate over an
unsecured channel. When the split key scenarios are considered, the number of parties in the model can be
three or four.

We assume that the outsiders are Dolev-Yao adversaries; the attacker (a) can see any message that is sent to the
network, (b) is a legitimate user of the network and can start a conversation with other users, and (c) has an
opportunity to be a receiver of any initiator of the protocol [32]. In addition to this definition, any message that
is sent through the network by legitimate users is assumed to be either created or passed on by the attacker [14].
In brief, the attacker, namely a Dolev-Yao adversary, “can compose messages, replay them, or decipher them if
she knows the right keys, but cannot otherwise crack encrypted messages’’ [33].

We assume perfect cryptographic primitives, i.e., attackers can decrypt secrets only if they possess the corre-
sponding keys, and hash functions are assumed to be one-way and collision-resistant. Moreover, we consider a
more powerful adversary following the extended Canetti–Krawczyk (eCK) model [34]. In particular, the adver-
sary is allowed to compromise some parties, e.g., by physical access or malware in a device [14]. Furthermore,
we consider the possibility of the key reveals.
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3.3 Security properties
In the following, we give an overview of themain security properties provided by our proposed AKA protocols.
For simplicity, we state the security properties in the case of an AKA protocol between two parties, say A and
B.

Secrecy: One of the main goals of an AKA protocol is to agree on a cryptographic session key between the
participating parties. The protocol is said to achieve session key secrecy if the shared key between A and B at
the end of the protocol is not revealed to any malicious third party.

Mutual Authentication: Mutual authentication in an AKA protocol between two parties ensures that both
parties are who they claim to be. In other words, mutual authentication is achieved if both sides correctly
verify each other’s identity.

Forward Secrecy: An AKA protocol satisfying forward secrecy ensures that the compromise of a long-term
private key does not compromise past session keys resulting from past AKA executions.

Resistance to Unknown Key Share (UKS) attack: An AKA protocol, say between two parties A and B, is said
to be vulnerable to a UKS attack if, by the end of the protocol, A believes that she shares the session key with
B, which is the case, while B ends up believing that he shares the key with a party (e.g., the attacker) that is
different from A.

Resistance to Key Compromise Impersonation (KCI) attack: A key compromise impersonation (KCI) attack
against anAKAprotocol is successful if the attackermanages to impersonate a party by compromising a private
key.

Identity Confidentiality: An AKA protocol is said to provide identity confidentiality if the protocol protects
the parties’ privacy, especially their identities.

4 REFLECTION ATTACK AGAINST STATION-TO-STATIONWITH KEY DERIVATION FUNCTION
We consider scenarios where the same secret and public key pairs are assigned to all members in a group, e.g., to
protect user privacy. For example, members of a group can be devices belonging to the same production batch.
One such scenario with the use of the same attestation key for protecting user privacy is recommended by
W3C API specification for Web Authentication [35] and FIDO Alliance [36]. Based on these recommendations,
the Google-certified attestation key pairs for Android hardware-backed keystore are deployed to devices in
batches of a minimum of 104 devices per key [37]. Also, a key pair used for device attestation could be unique
at the level of a device model rather than at the level of a single device [38].

In these scenarios, it is conceivable that two devices, having the same key pair but different identities, would
like to establish a secure communication channel based on that key pair. For example, an Android phone
would like to check if it is connected to another genuine Android phone, even in the case where the attestation
keys of the two devices are identical. Using STS-KDF for this purpose has the advantage of perfect forward
secrecy – if the key pair is compromised in one of the devices, past communications will not be compromised.
However, we have found the following reflection attack on STS-KDF in this setting.

Assume Alice and Bob have the same secret key for signing, 𝑠𝑘 ; therefore, the same public key, 𝑝𝑘 . Recall that
although we use the terms Alice and Bob, these can be two machines communicating with each other. The
certificates of Alice and Bob include 𝑝𝑘 and the identity 𝑖𝑑𝑎 or 𝑖𝑑𝑏 , respectively. The steps of the attack are
listed below and depicted in Figure 3.
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Alice Attacker
(acting as Bob)

𝑝𝑘𝑎 , 𝑠𝑘𝑎 , 𝑐𝑒𝑟𝑡𝑎

𝑔𝑦, 𝑐𝑒𝑟𝑡𝑎 , 𝜎𝑏 , 𝑀𝐴𝐶𝐾𝐷𝐻
(𝜎𝑏)

Compute 𝐾′ = 𝐾𝐷𝐹(𝐾𝐷𝐻 , 𝑖𝑑𝑏 , 𝑖𝑑𝑎)4’

Compute 𝐾 = 𝐾𝐷𝐹(𝐾𝐷𝐻 , 𝑖𝑑𝑎 , 𝑖𝑑𝑏)4

𝑐𝑒𝑟𝑡𝑎 , 𝜎𝑎 , 𝑀𝐴𝐶𝐾𝐷𝐻
𝜎𝑎3

𝑔𝑦, 𝑐𝑒𝑟𝑡𝑏 , 𝜎𝑏 , 𝑀𝐴𝐶𝐾𝐷𝐻
(𝜎𝑏)2

𝑐𝑒𝑟𝑡𝑏 , 𝜎𝑎 , 𝑀𝐴𝐶𝐾𝐷𝐻
𝜎𝑎3’

𝑔𝑥
1

𝑔𝑥1’

2’

𝑐𝑒𝑟𝑡𝑏

Figure 3. Reflection attack against STS-KDF.

1. One session of communication (Session 1) starts with Alice sending her public DH key, 𝑔𝑥 , (Step 2 of
Figure 1) to Bob. The attacker captures this message.

1’. Another session (Session 2) starts with the attacker sending 𝑔𝑥 to Alice (Step 2 of Figure 1). Note that in
Session 2, the attacker is the initiator, and Alice is the responder, whereas Alice was the initiator in Session 1.

2’. Alice (acting as the responder) chooses another secret 𝑦 and computes public DH key 𝑔𝑦 and shared DH
key 𝑔𝑥𝑦 . Alice signs (𝑔𝑦 , 𝑔𝑥) with her secret key 𝑠𝑘 and computes MAC with the shared DH key (Step 3 of
Figure 1). Alice sends the signature, public DH key 𝑔𝑦 , her certificate, and MAC to the attacker (Step 4 of
Figure 1).

2. The attacker gets the signature, public DH key 𝑔𝑦 , and MAC and sends them, along with the certificate of
Bob (Step 4 of Figure 1), to Alice in Session 1. Note that signing keys are the same; therefore, the public
key in the certificate of Bob can be used to verify the signature. Also, 𝑔𝑥 is the initiator’s key, and 𝑔𝑦 is the
responder’s key in both sessions.

3. Alice verifies the MAC and signature she received in Step 2, computes the shared DH key, signs (𝑔𝑥 , 𝑔𝑦),
and computes MAC of the new signature using the shared DH key (Step 5 of Figure 1). Alice sends her
certificate, signature, and MAC to the attacker (Step 6 of Figure 1).

3’. This time, the attacker captures the signature and MAC and sends them, along with the certificate of Bob,
to Alice in Session 2 (Step 6 of Figure 1).

4. Alice derives the key 𝐾 .
4’. After verifying the signature and the MAC, Alice (acting as the responder) derives the key 𝐾′.

As a result of this attack, Alice agrees – allegedly with Bob – on two identical session keys, 𝐾 and 𝐾′. However,
Bob is not aware of these agreements. The attacker authenticates himself as Bob to Alice. Even though the
attacker does not get to know what the shared DH key 𝐾𝐷𝐻 or the shared session keys 𝐾 and 𝐾′ are, he has
deceived Alice into believing that she has successfully completed both sessions of the protocol.

Depending on the purpose of the key usage, the reflection attack can cause trouble to Alice and Bob. For
example, Alice might be in control of a group of devices, including Bob’s device, and give commands to entities
in the group. Since Alice thinks she has agreed on a key with Bob, she would send commands and requests
to Bob, which would be encrypted with the shared key. Being unaware of the key establishment, Bob would
not follow the commands and respond to the requests. For example, the request from Alice could require an
immediate response to protect the security of the system, such as destroying data or sending information to
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another entity, and an unresponsive Bob would put the system in danger. Moreover, if the attacker reflects
Alice’s messages to Bob back to Alice, then Alice could think that these messages were sent for her, and she
might destroy or send her own data.

The attack can be realized independently from the type of signature used in the protocol. Thus, the classification
of signature schemes in the paper of Jackson et al. [6] does not matter for the reflection attack.

Please note that the reflection attack against an STS-KDF protocol also works in the case where each party
sharing the same signing key would have individual splits for that same key. Alice’s signing key, 𝑠𝑘 , is split
between Alice1 and Alice2, and the public key that corresponds to 𝑠𝑘 stays the same. After Alice1 and Alice2
have done the split key signature with their partial keys, the resultant signature would be the same as in the
case it would be signed directly with 𝑠𝑘 . Note also that in communication between Alice and Bob, Bob would
not be able to distinguish whether Alice is using the split key or not.

In the next section, we will present protocols that can mitigate this reflection attack.

5 PROTOCOL DESCRIPTIONS
Below, we present four new variants of STS-KDF and their adaptations for the split-key scenarios (see Sec-
tion 3.1). Our goal is to add the following security properties to the basic STS-KDF (described in Section 2.3):
(1) privacy enhancements such that outsiders cannot learn the identities of the parties, (2) protection against
the reflection attack described in Section 4, and (3) measures against single-point failures by splitting keys with
assistant devices. First, in Section 5.1, we introduce two protocols that provide properties (1) and (2). Then,
in Section 5.2, we extend these protocols to the split key case, providing property (3).

5.1 New variants of station-to-station protocols
We will now describe two protocols for the “no split-key” setting, depicted as the case (i) in Figure 2: the
Privacy-Enhanced STS-KDF-CB protocol and the Privacy-Enhanced STS-KDF-CB protocol with KEM that
uses KEM instead of Diffie–Hellman key exchange and signature.

Next, we present Privacy-Enhanced STS-KDF-CB. In this protocol, the DH Key Exchange and the signature
scheme are used as in the generic STS-KDF. Second, we adopt theKEM to the STS-KDF-CBprotocol to provide
flexibility in implementing different cryptosystems.

5.1.1 Privacy-enhanced STS-KDF certificate-binding (STS-KDF-CB) protocol
The Privacy-Enhanced STS-KDF-CB protocol protects against the reflection attack, and the parties can be
anonymous toward outsiders because certificates and signatures are encrypted before transmission.
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Protocol 2 : Privacy-Enhanced STS-KDF-CB

Setup: Alice and Bob choose a safely large prime 𝑝 and a generator 𝑔 (𝑚𝑜𝑑 𝑝), where 𝑝 and 𝑔 are public.
The Protocol: (cf. Figure 4).

1. (a) Alice chooses random 𝑥 ∈ Z𝑝 .
(b) Alice computes her public DH key: 𝑔𝑥 .

2. Alice sends 𝑔𝑥 to Bob.
3. (a) Bob chooses random 𝑦 ∈ Z𝑝 .

(b) Bob computes his public DH key: 𝑔𝑦 .
(c) Bob computes the shared DH key: 𝐾𝐷𝐻 = (𝑔𝑥)𝑦 = 𝑔𝑥𝑦 .
(d) Bob signs his public DH key along with the public DH key of Alice by using his secret signing key:

𝜎𝑏 = 𝑆𝑖𝑔𝑠𝑘𝑏 (𝑔𝑦 , 𝑔𝑥).
(e) Bob applies AEAD on his signature and certificate: 𝑒𝑛𝑐1 = 𝐴𝐸𝐴𝐷𝐾𝐷𝐻 (𝜎𝑏 , 𝑐𝑒𝑟𝑡𝑏). It should be noted

that AEAD allows the receiver to verify the integrity of encrypted and unencrypted information in
the message by, e.g., Encrypt-then-MAC [39].

4. Bob sends 𝑔𝑦 and 𝑒𝑛𝑐1 to Alice.
5. (a) Alice computes the shared DH key: 𝐾𝐷𝐻 = (𝑔𝑦)𝑥 = 𝑔𝑥𝑦 .

(b) Alice then decrypts the 𝑒𝑛𝑐1 to get the signature and the certificate of Bob:
(𝜎𝑏 , 𝑐𝑒𝑟𝑡𝑏) = 𝐷𝐸𝐶𝐾𝐷𝐻 (𝑒𝑛𝑐1).

(c) Alice verifies the certificate 𝑐𝑒𝑟𝑡𝑏 , the fact that 𝑐𝑒𝑟𝑡𝑏 ≠ 𝑐𝑒𝑟𝑡𝑎 , and the signature 𝜎𝑏 .
(d) Alice signs her public DH key, along with the public DH key of Bob, by using her secret signing key:

𝜎𝑎 = 𝑆𝑖𝑔𝑠𝑘𝑎 (𝑔𝑥 , 𝑔𝑦).
(e) Alice applies AEAD on her signature and certificate: 𝑒𝑛𝑐2 = 𝐴𝐸𝐴𝐷𝐾𝐷𝐻 (𝜎𝑎 , 𝑐𝑒𝑟𝑡𝑎).

6. Alice sends 𝑒𝑛𝑐2 to Bob.
7. (a) Bob decrypts the 𝑒𝑛𝑐2 to get the signature and the certificate of Alice: (𝜎𝑎 , 𝑐𝑒𝑟𝑡𝑎) = 𝐷𝐸𝐶𝐾𝐷𝐻 (𝑒𝑛𝑐2).

(b) Bob verifies the certificate 𝑐𝑒𝑟𝑡𝑎 , the fact that 𝑐𝑒𝑟𝑡𝑎 ≠ 𝑐𝑒𝑟𝑡𝑏 , and the signature 𝜎𝑎 .
8. Alice and Bob derive the session key 𝐾 from the DH key and their certificates:
𝐾 = 𝐾𝐷𝐹 (𝐾𝐷𝐻 , 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏). Please note that other parameters could also be added to diversify
the key, such as session ID.

5.1.2 Privacy-enhanced STS-KDF-CB protocol with KEM
Next, we present the Privacy-Enhanced STS-KDF-CB Protocol with KEM, where we replace both the DH key
exchange and the signature scheme with KEM. The certified public keys of the parties are used for the KEM
instead of the signature scheme.

In this adaptation, we assume that Alice already knows who she is communicating with; therefore, she has the
certificate of Bob when she starts the protocol. Only Alice needs to encrypt her certificate and send it to Bob
to prove herself.
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a) 𝐾𝐷𝐻 = (𝑔𝑦)𝑥= 𝑔𝑥𝑦

b) (𝜎𝑏 , 𝑐𝑒𝑟𝑡𝑏) = 𝐷𝐸𝐶𝐾𝐷𝐻(𝑒𝑛𝑐1)

c) Verify 𝑐𝑒𝑟𝑡𝑏 and 𝜎𝑏
d) 𝜎𝑎 = 𝑆𝑖𝑔𝑠𝑘𝑎(𝑔

𝑥, 𝑔𝑦)

e) 𝑒𝑛𝑐2 = 𝐴𝐸𝐴𝐷𝐾𝐷𝐻(𝜎𝑎 , 𝑐𝑒𝑟𝑡𝑎)

Alice Bob
𝑝𝑘𝑎 , 𝑠𝑘𝑎 , 𝑐𝑒𝑟𝑡𝑎 𝑝𝑘𝑏 , 𝑠𝑘𝑏 , 𝑐𝑒𝑟𝑡𝑏

a) Choose random 𝑥 ∈ ℤ𝑝

b) Compute public key 𝑔𝑥

𝑔𝑦, 𝑒𝑛𝑐14

a) (𝜎𝑎, 𝑐𝑒𝑟𝑡𝑎) = 𝐷𝐸𝐶𝐾𝐷𝐻(𝑒𝑛𝑐2)

b) Verify certa and 𝜎𝑎

𝑔𝑥2

𝑒𝑛𝑐26

a) Choose random 𝑦 ∈ ℤ𝑝

b) Compute public key 𝑔𝑦

c) 𝐾𝐷𝐻 = (𝑔𝑥)𝑦= 𝑔𝑥𝑦

d) 𝜎𝑏 = 𝑆𝑖𝑔𝑠𝑘𝑏(𝑔
𝑦, 𝑔𝑥)

e) 𝑒𝑛𝑐1 = 𝐴𝐸𝐴𝐷𝐾𝐷𝐻 𝜎𝑏 , 𝑐𝑒𝑟𝑡𝑏

1

5

7

3

8 𝐾 = 𝐾𝐷𝐹 𝐾𝐷𝐻 , 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏

Figure 4. Privacy-Enhanced STS-KDFCertificate-Binding (STS-KDF-CB) protocol. STS-KDF: station-to-stationwith key derivation function.

a) 𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛(): 𝑃𝐾𝑎 , 𝑆𝐾𝑎
b) 𝐶0, 𝐾0 = 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘𝑏)

c) 𝑒𝑛𝑐 = 𝐸𝑁𝐶𝐾0(𝑐𝑒𝑟𝑡𝑎)

𝑚𝑎𝑐26

𝑃𝐾𝑎 , 𝐶0, 𝑒𝑛𝑐2

a) 𝐾0 = 𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠 𝐶0, 𝑠𝑘𝑏
b) 𝑐𝑒𝑟𝑡𝑎 = 𝐷𝐸𝐶𝐾0 𝑒𝑛𝑐 and verify 𝑐𝑒𝑟𝑡𝑎

c) (𝐶1, 𝐾1) = 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠 𝑃𝐾𝑎
d) (𝐶2, 𝐾2) = 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘𝑎
e) 𝐾 = 𝐾𝐷𝐹(𝐾0, 𝐾1, 𝐾2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏)

f) 𝑚𝑎𝑐1 = 𝑀𝐴𝐶𝐾(𝐶0, 𝐶1, 𝐶2, 𝑐𝑒𝑟𝑡𝑏, 𝑐𝑒𝑟𝑡𝑎)

3

𝐶1, 𝐶2, 𝑚𝑎𝑐14

a) 𝐾1 = 𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠 𝐶1, 𝑆𝐾𝑎
b) 𝐾2 = 𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠 𝐶2, 𝑠𝑘𝑎
c) 𝐾 = 𝐾𝐷𝐹(𝐾0, 𝐾1, 𝐾2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏)

d) Check 𝑚𝑎𝑐1
e) 𝑚𝑎𝑐2 = 𝑀𝐴𝐶𝐾(𝐶0, 𝐶1, 𝐶2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏)

5

1

Alice Bob
𝑝𝑘𝑏 , 𝑠𝑘𝑏 , 𝑐𝑒𝑟𝑡𝑏𝑝𝑘𝑎 , 𝑠𝑘𝑎 , 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏

7 Check 𝑚𝑎𝑐2

Figure 5. Privacy-Enhanced STS-KDF-CB protocol with KEM.
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Protocol 3 : Privacy-Enhanced STS-KDF-CB with KEM

Setup: 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏 apply 𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛() to generate their public-secret key pairs, 𝑝𝑘𝑎-𝑠𝑘𝑎 and 𝑝𝑘𝑏-𝑠𝑘𝑏 ,
respectively. 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏 have certificates for their public keys, 𝑐𝑒𝑟𝑡𝑎 and 𝑐𝑒𝑟𝑡𝑏 .
The Protocol: (cf. Figure 5.)

1. (a) Alice generates the key pair (𝑃𝐾𝑎 , 𝑆𝐾𝑎) with the 𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛() function. Note that the newly
generated 𝑃𝐾𝑎 and 𝑆𝐾𝑎 are not the same as certified 𝑝𝑘𝑎 and 𝑠𝑘𝑎 .

(b) Alice knows and has verified the certificate of Bob before starting the protocol, so she knows his public
key 𝑝𝑘𝑏 . By using this public key, Alice applies the encapsulation function and gets a ciphertext and
a session key: (𝐶0, 𝐾0) = 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘𝑏).

(c) Alice then encrypts her certificate by using the session key derived above: 𝑒𝑛𝑐 = 𝐸𝑁𝐶𝐾0 (𝑐𝑒𝑟𝑡𝑎).
2. Alice sends 𝑃𝐾𝑎 , 𝐶0, and 𝑒𝑛𝑐 to Bob.
3. (a) Bob applies the decapsulation function on the ciphertext 𝐶0 and his secret key 𝑠𝑘𝑏 :

𝐾0 = 𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶0, 𝑠𝑘𝑏).
(b) Bob decrypts 𝑒𝑛𝑐 to get the certificate of Alice: 𝑐𝑒𝑟𝑡𝑎 = 𝐷𝐸𝐶𝐾0 (𝑒𝑛𝑐). Bob also verifies that the

certificate of Alice is not the same as his certificate, i.e., 𝑐𝑒𝑟𝑡𝑎 ≠ 𝑐𝑒𝑟𝑡𝑏 .
(c) Bob applies the encapsulation function on the public key 𝑃𝐾𝑎 to get the session key and the ciphertext:
(𝐶1, 𝐾1) = 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑃𝐾𝑎).

(d) Bob also applies the encapsulation function on the certified public key 𝑝𝑘𝑎 to get another session key
and the ciphertext: (𝐶2, 𝐾2) = 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘𝑎).

(e) Bob then derives the shared session key from the session keys: 𝐾 = 𝐾𝐷𝐹 (𝐾0, 𝐾1, 𝐾2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏).
(f) Bob computes the MAC of the ciphertexts and the certificates using the derived key 𝐾 :

𝑚𝑎𝑐1 = 𝑀𝐴𝐶𝐾 (𝐶0, 𝐶1, 𝐶2, 𝑐𝑒𝑟𝑡𝑏 , 𝑐𝑒𝑟𝑡𝑎).
4. Bob sends the ciphertexts 𝐶1, 𝐶2, and 𝑚𝑎𝑐1 to Alice.
5. (a) Alice applies the decapsulation function on the ciphertext𝐶1 and her secret key 𝑆𝐾𝑎 to get the session

key: 𝐾1 = 𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶1, 𝑆𝐾𝑎).
(b) Alice then applies the decapsulation function on the ciphertext 𝐶2 and her secret key 𝑠𝑘𝑎 to get the

other session key: 𝐾2 = 𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶2, 𝑠𝑘𝑎).
(c) Alice then derives the shared session key: 𝐾 = 𝐾𝐷𝐹 (𝐾0, 𝐾1, 𝐾2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏).
(d) Alice verifies the 𝑚𝑎𝑐1.
(e) Alice computes the MAC of the ciphertexts and the certificates using the shared session key 𝐾 :

𝑚𝑎𝑐2 = 𝑀𝐴𝐶𝐾 (𝐶0, 𝐶1, 𝐶2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏).
6. Alice sends 𝑚𝑎𝑐2 to Bob.
7. Bob verifies the 𝑚𝑎𝑐2.

Please note that replacing the DH key exchange in STS-KDF with a KEM can be done as follows. Using the
same notations as in Figure 1, a KEM version of STS-KDF is achieved by minor changes at Alice’s and Bob’s
sides. On Alice’s side, it is enough to replace generating a random 𝑥 by generating a pair of KEM public-secret
keys (𝑃𝐾, 𝑆𝐾), and then Alice sends 𝑃𝐾 instead of 𝑔𝑥 . At Bob’s side, generating a random 𝑦 is replaced by
encapsulation using the received 𝑃𝐾 , and finally, Bob sends the ciphertext resulting from encapsulation instead
of sending 𝑔𝑦 . On both sides, the DH key is replaced by the session key produced by the KEM. Such a KEM
variant of STS-KDF, however, would inherit the security properties of the original protocol. In particular, it
would be vulnerable to the attack described in Section 4.

Similar modifications can be done for the STS-KDF-CB protocol in Figure 4, with the additional change of
using the KEM key instead of the DH key in Step 8. This variant would protect against the reflection attack of
Section 4.
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Protocol 4 : Split-Key Privacy-Enhanced STS-KDF-CB

Setup:
i. Alice and Bob choose a safely large prime 𝑝 and a generator 𝑔 (𝑚𝑜𝑑 𝑝), where 𝑝 and 𝑔 are public.
ii. Alice1 and Alice2 generate a public key 𝑝𝑘𝑎 for signature verification and split the secret signing key into

the shares, 𝑠𝑘𝑎1 and 𝑠𝑘𝑎2 , respectively. Similarly, Bob1 and Bob2 generate a public key 𝑝𝑘𝑏 for signature
verification and split the secret signing key into the shares, 𝑠𝑘𝑏1 and 𝑠𝑘𝑏2 , respectively. A threshold signature
scheme can be used to construct signatures from these shares [40].

iii. Alice1 gets a certificate for her public verification key 𝑝𝑘𝑎 , and Bob1 gets a certificate for his public verifi-
cation key 𝑝𝑘𝑏 .

The Protocol: (cf. Figure 6.)

1. (a) Alice1 chooses random 𝑥 ∈ Z𝑝 .
(b) Alice2 computes her public DH key: 𝑔𝑥 .

2. Alice1 sends 𝑔𝑥 to Bob1.
3. (a) Bob1 chooses random 𝑦 ∈ Z𝑝 .

(b) Bob1 computes his public DH key: 𝑔𝑦 .
(c) Bob1 computes the shared DH key: 𝐾𝐷𝐻 = (𝑔𝑥)𝑦 = 𝑔𝑥𝑦 .

4. Bob1 sends the public DH keys, (𝑔𝑦 , 𝑔𝑥) to Bob2.
5. Bob2 signs the DH keys with his secret key 𝑠𝑘𝑏2 : 𝜎𝑏2 = 𝑆𝑖𝑔𝑠𝑘𝑏2

(𝑔𝑦 , 𝑔𝑥).
6. Bob2 sends the signature 𝜎𝑏2 to Bob1.
7. (a) Bob1 also signs theDHkeys with his secret key 𝑠𝑘𝑏1 with the contribution of Bob2 to get the signature

to send to Alice: 𝜎𝑏 = 𝑆𝑖𝑔𝑠𝑘𝑏1
(𝜎𝑏2 , 𝑔

𝑦 , 𝑔𝑥).
(b) Bob applies AEAD on his signature and certificate: 𝑒𝑛𝑐1 = 𝐴𝐸𝐴𝐷𝐾𝐷𝐻 (𝜎𝑏 , 𝑐𝑒𝑟𝑡𝑏).

8. Bob1 sends 𝑔𝑦 and 𝑒𝑛𝑐1 to Alice1.
9. (a) Alice1 computes the shared DH key: 𝐾𝐷𝐻 = (𝑔𝑦)𝑥 = 𝑔𝑥𝑦 .

(b) Alice1 then decrypts the 𝑒𝑛𝑐1 by using the derived key to get the signature and the certificate of Bob:
(𝜎𝑏 , 𝑐𝑒𝑟𝑡𝑏) = 𝐷𝐸𝐶𝐾𝐷𝐻 (𝑒𝑛𝑐1).

(c) Alice1 verifies the certificate, i.e., 𝑐𝑒𝑟𝑡𝑏 ≠ 𝑐𝑒𝑟𝑡𝑎 and the signature 𝜎𝑏 .
10. Alice1 sends the public DH keys, (𝑔𝑥 , 𝑔𝑦) to Alice2.
11. Alice2 signs the DH keys with her secret key 𝑠𝑘𝑎2 : 𝜎𝑎2 = 𝑆𝑖𝑔𝑠𝑘𝑎2

(𝑔𝑥 , 𝑔𝑦).
12. Alice2 sends the signature 𝜎𝑎2 to Alice1.
13. (a) Alice1 also signs the DH keys with her secret key 𝑠𝑘𝑎1 with the contribution of Alice2 to get the

signature to send to Bob: 𝜎𝑎 = 𝑆𝑖𝑔𝑠𝑘𝑎1
(𝜎𝑎2 , 𝑔

𝑥 , 𝑔𝑦).
(b) Alice1 applies AEAD on her signature and certificate: 𝑒𝑛𝑐2 = 𝐴𝐸𝐴𝐷𝐾𝐷𝐻 (𝜎𝑎 , 𝑐𝑒𝑟𝑡𝑎).

14. Alice1 sends 𝜎𝑎 , 𝑒𝑛𝑐2, and 𝑚𝑎𝑐2 to Bob1.
15. (a) Bob decrypts the 𝑒𝑛𝑐2 to get the signature and the certificate of Alice: (𝜎𝑎 , 𝑐𝑒𝑟𝑡𝑎) = 𝐷𝐸𝐶𝐾𝐷𝐻 (𝑒𝑛𝑐2).

(b) Bob verifies the certificate, i.e., 𝑐𝑒𝑟𝑡𝑎 ≠ 𝑐𝑒𝑟𝑡𝑏 and the signature 𝜎𝑎 .
16. Alice and Bob derive the session key 𝐾 from the shared DH key and their certificates:

𝐾 = 𝐾𝐷𝐹 (𝐾𝐷𝐻 , 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏).

5.2 Split-key settings for station-to-station protocol
In this section, we adopt the privacy-enhanced variants of STS-KDF-CB to the setting in case (iv) of Figure 2,
where both of the parties of the protocol have split keys. By splitting the keys, we aim to protect the security of
the key if the device is compromised since compromising two or more devices is harder than a single device.

In these split-key protocols, neither Alice nor Bob is aware that the other party has a split key. The protocols
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a) Sign 𝜎𝑎 = 𝑆𝑖𝑔𝑠𝑘𝑎1(𝜎𝑎2 , 𝑔
𝑥, 𝑔𝑦)

b) 𝑒𝑛𝑐2 = 𝐴𝐸𝐴𝐷𝐾𝐷𝐻(𝜎𝑎 , 𝑐𝑒𝑟𝑡𝑎)

a) 𝐾𝐷𝐻 = (𝑔𝑦)𝑥= 𝑔𝑥𝑦

b) (𝜎𝑏 , 𝑐𝑒𝑟𝑡𝑏) = 𝐷𝐸𝐶𝐾𝐷𝐻(𝑒𝑛𝑐1)

c) Verify 𝑐𝑒𝑟𝑡𝑏 and 𝜎𝑏

a) Choose random 𝑥 ∈ ℤ𝑝

b) Compute public key 𝑔𝑥

𝑔𝑦, 𝑒𝑛𝑐18

𝑔𝑥2

𝑒𝑛𝑐214

a) Choose random 𝑦 ∈ ℤ𝑝

b) Compute public key 𝑔𝑦

c) 𝐾𝐷𝐻 = (𝑔𝑥)𝑦= 𝑔𝑥𝑦

1

9

3

16 𝐾 = 𝐾𝐷𝐹 𝐾𝐷𝐻 , 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏

Alice 1 Bob 1

𝑝𝑘𝑏 , 𝑠𝑘𝑏1 , 𝑐𝑒𝑟𝑡𝑏

Alice 2
Generate a public key and 

split the secret key for signature
i

Get certificate for 𝑝𝑘𝑎 : 𝑐𝑒𝑟𝑡𝑎

𝑠𝑘𝑎2 𝑝𝑘𝑎 , 𝑠𝑘𝑎1 , 𝑐𝑒𝑟𝑡𝑎

ii

Bob 2

𝑠𝑘𝑏2

Generate a public key and 
split the secret key for signature
i

Get certificate for 𝑝𝑘𝑏 : 𝑐𝑒𝑟𝑡𝑏ii

(𝑔𝑦, 𝑔𝑥)4

Sign 𝜎𝑏2 = 𝑆𝑖𝑔𝑠𝑘𝑏2(𝑔
𝑦, 𝑔𝑥)5

𝜎𝑏26

a) Sign 𝜎𝑏 = 𝑆𝑖𝑔𝑠𝑘𝑏1(𝜎𝑏2 , 𝑔
𝑦, 𝑔𝑥)

b) 𝑒𝑛𝑐1 = 𝐴𝐸𝐴𝐷𝐾𝐷𝐻 𝜎𝑏, 𝑐𝑒𝑟𝑡𝑏

7

(𝑔𝑥, 𝑔𝑦)10

Sign 𝜎𝑎2 = 𝑆𝑖𝑔𝑠𝑘𝑎2(𝑔
𝑥, 𝑔𝑦)11

𝜎𝑎212

13

a) (𝜎𝑎, 𝑐𝑒𝑟𝑡𝑎) = 𝐷𝐸𝐶𝐾𝐷𝐻(𝑒𝑛𝑐2)

b) Verify certa and 𝜎𝑎
15

Figure 6. Split-Key Privacy-Enhanced STS-KDF-CB protocol.

for the hybrid cases (ii) or (iii) in Figure 2 can be constructed by combining a split-key protocol from this
section with the corresponding protocol from Section 5.1 above.

5.2.1 Split-key privacy-enhanced STS-KDF-CB protocol
Next, we present the split-key variant of the Privacy-Enhanced STS-KDF-CB Protocol.
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a) 𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛(): 𝑃𝐾𝑎 , 𝑆𝐾𝑎

b) 𝐶0, 𝐾0 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘𝑏)
c) 𝑒𝑛𝑐 = 𝐸𝑁𝐶𝐾0(𝑐𝑒𝑟𝑡𝑎)

𝑚𝑎𝑐213

𝑃𝐾𝑎 , 𝐶0, 𝑒𝑛𝑐2

a) Check 𝑚𝑎𝑐214

𝐶1, 𝐶2, 𝑚𝑎𝑐17

a) 0/1 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑉𝑒𝑟𝑖𝑓 𝑝𝑘𝑎 , 𝐶2, 𝐾2
′ , 𝑣𝑘𝑎

b) 𝐾2
′′ = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠 𝐶2, 𝑠𝑘𝑎1

c) 𝐾2 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑅𝑒𝑐𝑜𝑛𝑠(𝐾2
′ , 𝐾2

′′)

d) 𝐾 = 𝐾𝐷𝐹(𝐾0, 𝐾1, 𝐾2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏)

e) Check 𝑚𝑎𝑐1
f) 𝑚𝑎𝑐2 = 𝑀𝐴𝐶𝐾(𝐶0, 𝐶1, 𝐶2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏)

12

1

Alice 1 Bob 1

𝑝𝑘𝑏 , 𝑠𝑘𝑏1 , 𝑐𝑒𝑟𝑡𝑏

Alice 2

𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛(): (𝑝𝑘𝑎 , 𝑠𝑘𝑎1 , 𝑠𝑘𝑎2 , 𝑣𝑘𝑎)i

Get certificate for 𝑝𝑘𝑎 : 𝑐𝑒𝑟𝑡𝑎

𝑠𝑘𝑎2 𝑝𝑘𝑎 , 𝑠𝑘𝑎1 , 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏

ii

Bob 2

𝑠𝑘𝑏2

Get certificate for 𝑝𝑘𝑏 : 𝑐𝑒𝑟𝑡𝑏ii

𝐶03

K0
′ = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠 (𝐶0, 𝑠𝑘𝑏2)4

𝐾0
′

5

6 a) 0/1 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑉𝑒𝑟𝑖𝑓 𝑝𝑘𝑏 , 𝐶0, 𝐾0
′ , 𝑣𝑘𝑏

b) 𝐾0
′′ = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠 𝐶0, 𝑠𝑘𝑏1

c) 𝐾0 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑅𝑒𝑐𝑜𝑛𝑠(𝐾0
′ , 𝐾0

′′)

d) 𝑐𝑒𝑟𝑡𝑎 = 𝐷𝐸𝐶𝐾0(𝑒𝑛𝑐) and verify 𝑐𝑒𝑟𝑡𝑎

e) (𝐶1, 𝐾1) = 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠 𝑃𝐾𝑎

f) (𝐶2, 𝐾2) = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠 𝑝𝑘𝑎
g) 𝐾 = 𝐾𝐷𝐹(𝐾0, 𝐾1, 𝐾2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏)

h) 𝑚𝑎𝑐1 = 𝑀𝐴𝐶𝐾 𝐶0, 𝐶1, 𝐶2, 𝑐𝑒𝑟𝑡𝑏 , 𝑐𝑒𝑟𝑡𝑎

𝐶2

𝐾2
′ = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶2, 𝑠𝑘𝑎2)

𝐾2
′

9

10

11

𝐾1 = 𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠 𝐶1, 𝑆𝐾𝑎8

𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛(): (𝑝𝑘𝑏 , 𝑠𝑘𝑏1 , 𝑠𝑘𝑏2 , 𝑣𝑘𝑏)i

Figure 7. Split-Key Privacy-Enhanced STS-KDF-CB Protocol with KEM.

5.2.2 Split-key privacy-enhanced STS-KDF-CB with KEM
Next, we present how we adopt the split-Key KEM construction (see Section 2.5) to the privacy-enhanced
STS-KDF-CB with KEM.
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Protocol 5 : Split-Key Privacy-Enhanced STS-KDF-CB with KEM

Setup:
i. Alice1 and Alice2 apply 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛() to generate a public key 𝑝𝑘𝑎 , split secret keys, 𝑠𝑘𝑎1 and 𝑠𝑘𝑎2 ,

respectively, and a verification key 𝑣𝑘𝑎 . Similarly, Bob1 and Bob2 apply 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛() to generate
a public key 𝑝𝑘𝑏 and split secret keys, 𝑠𝑘𝑏1 and 𝑠𝑘𝑏2 , respectively, and a verification key 𝑣𝑘𝑎 .

ii. Alice1 gets a certificate for her public key 𝑝𝑘𝑎 , and Bob1 gets a certificate for his public key 𝑝𝑘𝑏 .
The Protocol: (cf. Figure 7.)
1. (a) Alice1 generates key pair (𝑃𝐾𝑎 , 𝑆𝐾𝑎) with𝐾𝐸𝑀_𝐾𝑒𝑦𝐺𝑒𝑛() function. Note that the newly generated

𝑃𝐾𝑎 and 𝑆𝐾𝑎 are not the same as certified 𝑝𝑘𝑎 and 𝑠𝑘𝑎 .
(b) Alice1 has the certificate of Bob before starting the protocol, so she knows his public key 𝑝𝑘𝑏 . By using

this public key, Alice1 applies the split encapsulation function and gets a ciphertext and a session key:
(𝐶0, 𝐾0) = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘𝑏).

(c) Alice1 then encrypts her certificate by using the session key derived above: 𝑒𝑛𝑐 = 𝐸𝑁𝐶𝐾0 (𝑐𝑒𝑟𝑡𝑎).
2. Alice1 sends 𝑃𝐾𝑎 , 𝐶0, and 𝑒𝑛𝑐 to Bob1.
3. Bob1 sends 𝐶0 to Bob2.
4. Bob2 applies the split decapsulation function on the ciphertext 𝐶0 and his share of the secret key 𝑠𝑘𝑏2 to

get part of the session key: 𝐾′0 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶0, 𝑠𝑘𝑏2).
5. Bob2 sends the key part 𝐾′0 to Bob1.6. (a) Bob1 first verifies that the key part he received from Bob2 is derived by using the correct secret key:

𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑉𝑒𝑟𝑖 𝑓 (𝑝𝑘𝑏 , 𝐶0, 𝐾
′
0, 𝑣𝑘𝑏) = 𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒.

(b) Bob1 then applies the split decapsulation function on the ciphertext 𝐶0 and his share of the secret
key 𝑠𝑘𝑏1 : 𝐾′′0 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶0, 𝑠𝑘𝑏1).

(c) Bob1 applies the split reconstruction function on the key parts 𝐾′0 and 𝐾′′0 :
𝐾0 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑅𝑒𝑐𝑜𝑛𝑠(𝐾′0, 𝐾′′0 ).(d) Bob1 decrypts 𝑒𝑛𝑐 to get the certificate of Alice: 𝑐𝑒𝑟𝑡𝑎 = 𝐷𝐸𝐶𝐾0 (𝑒𝑛𝑐). Bob also verifies that the
certificate of Alice is not the same as his own certificate, i.e., 𝑐𝑒𝑟𝑡𝑎 ≠ 𝑐𝑒𝑟𝑡𝑏 .

(e) Bob1 applies the encapsulation function on the public key 𝑃𝐾𝑎 to get another session key and the
ciphertext: (𝐶1, 𝐾1) = 𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑃𝐾𝑎).

(f) Bob1 also applies the split encapsulation function on the certified public key 𝑝𝑘𝑎 to get one more
session key and the ciphertext: (𝐶2, 𝐾2) = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐸𝑛𝑐𝑎𝑝𝑠(𝑝𝑘𝑎).

(g) Bob1 then derives the shared session key from the derived keys above and the certificates:
𝐾 = 𝐾𝐷𝐹 (𝐾0, 𝐾1, 𝐾2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏).

(h) Bob1 computes the MAC of the ciphertexts and the certificates using the derived key 𝐾 :
𝑚𝑎𝑐1 = 𝑀𝐴𝐶𝐾 (𝐶0, 𝐶1, 𝐶2, 𝑐𝑒𝑟𝑡𝑏 , 𝑐𝑒𝑟𝑡𝑎).

7. Bob1 sends the ciphertexts 𝐶1, 𝐶2, and 𝑚𝑎𝑐1 to Alice1.
8. Alice1 applies the decapsulation function on the ciphertext𝐶1 and her secret key 𝑆𝐾𝑎 to get the session key:
𝐾1 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶1, 𝑆𝐾𝑎).

9. Alice1 sends 𝐶2 to Alice2.
10. Alice2 applies the split decapsulation function on the ciphertext 𝐶2 and her share of the secret key 𝑠𝑘𝑎2 to

get part of the session key: 𝐾′2 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶2, 𝑠𝑘𝑎2).
11. Alice2 sends the key part 𝐾′2 to Alice1.12. (a) Alice1 first verifies that the key part she received from Alice2 is derived by using the correct secret

key: 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑉𝑒𝑟𝑖 𝑓 (𝑝𝑘𝑎 , 𝐶2, 𝐾
′
2, 𝑣𝑘𝑎) = 𝑇𝑟𝑢𝑒/𝐹𝑎𝑙𝑠𝑒.

(b) Alice1 then applies the split decapsulation function on the ciphertext 𝐶2 and her share of the secret
key 𝑠𝑘𝑎1 : 𝐾′′2 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝐷𝑒𝑐𝑎𝑝𝑠(𝐶2, 𝑠𝑘𝑎1).

(c) Alice1 applies the split reconstruction function on the key parts 𝐾′2 and 𝐾′′2 :
𝐾2 = 𝑆𝑝𝑙𝑖𝑡𝐾𝐸𝑀_𝑅𝑒𝑐𝑜𝑛𝑠(𝐾′2, 𝐾′′2 ).(d) Alice1 derives the shared session key from the derived keys above and the certificates:
𝐾 = 𝐾𝐷𝐹 (𝐾0, 𝐾1, 𝐾2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏).

(e) Alice1 verifies the 𝑚𝑎𝑐1.
(f) Alice1 computes the MAC of the ciphertexts and her certificate with the certificate of Bob using the

shared session key 𝐾 : 𝑚𝑎𝑐2 = 𝑀𝐴𝐶𝐾 (𝐶0, 𝐶1, 𝐶2, 𝑐𝑒𝑟𝑡𝑎 , 𝑐𝑒𝑟𝑡𝑏).
13. Alice1 sends 𝑚𝑎𝑐2 to Bob1.
14. Bob1 verifies the 𝑚𝑎𝑐2.
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6 FORMAL VERIFICATION
STS-KDF was formally verified by Jackson et al. [6] using the Tamarin Prover. They have proved that this
protocol satisfies key secrecy, identity agreement, and strong session agreement (injective agreement) while
using the EUF-CMA signature.

We have used the ProVerif tool [13] to model STS-KDF and the protocols that we have presented in Section 5
and prove their security properties. In addition, we have modeled the possibility of sharing the same private
key between different parties in order to capture the reflection attack, introduced in Section 4, for STS-KDF.
Then, we have shown that the Privacy-Enhanced STS-KDF-CB protocols are not vulnerable to this reflection
attack.

We will now explain how we constructed the formal models of the protocols and their security properties
and present the verification results. The source codes of the formal verifications of the protocols are publicly
available on GitHub [41].

6.1 Modeling the protocols
The ProVerif model is constructed in three parts: declarations, process macros, and main process.

The cryptographic primitives are formalized using declarations, which are a finite set of types, free names, and
constructors (functions) [13]. We have used the following primitives, for which examples of constructions
are given in the ProVerif manual [13]: symmetric encryption, MAC, DH Key Exchange, digital signature, and
AEAD. In addition, we have modeled the following primitives, some of which have been used in our earlier
work.

Split-KeyDigital Signatures: In addition to the digital signatures, we have added a function for reconstructing
the split secret keys. We then defined split signing functions for the parties in the protocol who want to
collectively create digital signatures:

fun splitKey(sskey,sskey):sskey. (* sk_a1 and sk_a2 => sk_a *)
fun splitSign2(G,G,sskey):bitstring. (*Alice2 signs*)
fun splitSign1(G,G,bitstring,sskey):bitstring. (*Alice1 signs*)

The equation below defines that the result of the reconstruction of split signatures should be the same as the
result of the message signed with the reconstructed key. This equation is important, especially in scenarios
where one party splits her key while the other party does not, as described in cases (ii) and (iii) of the split key
scenarios in Section 3.1.

equation forall a:G,b:G,k1:sskey,k2:sskey;
splitSign1(a,b,splitSign2(a,b,k2),k1)=sign(a,b,splitKey(k1,k2)).

Key Encapsulation Mechanism (KEM): The KEM is modeled using the following five functions: key gen-
eration, encapsulation, KEM key derivation, ciphertext generation, and decapsulation of the KEM key. It is
important to recall that the encapsulation algorithm is a probabilistic algorithm with two outputs, the cipher-
text and the KEM key; thus, we model the two outputs with two separate functions: KEMkey and KEMCipher,
taking randomized public encryption as input, i.e., output of Encaps function:

fun pk(skey):pkey.
fun Encaps(bitstring,pkey):bitstring.
fun KEMkey(bitstring):key.
fun KEMCipher(bitstring):bitstring.
fun DecapsKey(bitstring,skey):key.
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The equation below ensures that the key generated during encapsulation (KEMkey function) is the same as
the key generated by decapsulation (DecapsKey function).

equation forall sk:skey, r:bitstring;
DecapsKey(KEMCipher(Encaps(r,pk(sk))),sk)=KEMkey(Encaps(r,pk(sk))).

Split Key Encapsulation Mechanism (Split KEM): In addition to the functions that are defined for KEM, we
added functions for split key generation, key share verification, and reconstruction of the key shares, which
are the outputs of split decapsulation:

fun splitpk(skey,skey):pkey.
fun vk(pkey,skey,skey):vkey.
fun SplitEncaps(bitstring,pkey):bitstring.
fun SplitKEMkey(bitstring):key.
fun SplitKEMCipher(bitstring):bitstring.
fun SplitDecaps(bitstring,skey):kshare.
fun ReconstKey(kshare,kshare):key.

The reduction below ensures the verification of valid splits. The equation, in the end, ensures that the key gen-
erated during encapsulation (SplitKEMkey function) is the same as the key generated after reconstructing
the key shares that are the outputs of decapsulation (ReconstKey function).

reduc forall sk1:skey, sk2:skey, r:bitstring;
SplitVerif(splitpk(sk1,sk2),
SplitKEMCipher(SplitEncaps(r,splitpk(sk1,sk2))),
SplitDecaps(SplitKEMCipher(SplitEncaps(r,splitpk(sk1,sk2))),sk2),
vk(splitpk(sk1,sk2),sk1,sk2))= true.

equation forall sk1:skey, sk2:skey, r:bitstring;
ReconstKey(SplitDecaps(SplitKEMCipher
(SplitEncaps(r,splitpk(sk1,sk2))),sk1),
SplitDecaps(SplitKEMCipher(SplitEncaps(r,splitpk(sk1,sk2))),sk2))
=SplitKEMkey(SplitEncaps(r,splitpk(sk1,sk2))).

The process macro consists of sub-processes such that different sub-processes are defined for different parties in
the protocol in order to ease the development: Privacy-Enhanced STS-KDF-CB Protocol (Section 5.1.1) and
Privacy-Enhanced STS-KDF-CBwith KEMProtocol (Section 5.1.2), have two parties, say Alice and Bob. Split-
Key Privacy-Enhanced STS-KDF-CB Protocol (Section 5.2.1) and Split-Key Privacy-Enhanced STS-KDF-CB
with KEM Protocol (Section 5.2.2) have two additional parties, say Alice2 and Bob2. In ProVerif models, we
created a sub-process for each party.

Finally, the protocol is encoded as amain process using the processmacros. Next, we explain themain processes
of the protocols of Section 5. We model the CA by simply generating secret and public 𝑠𝑘𝐶𝐴 and 𝑝𝑘𝐶𝐴 in
the main process, where 𝑝𝑘𝐶𝐴 is output in the public channel that we call internet. Then, to construct
a certificate for a user with identity, say Alice, holding a pair of public/private keys (𝑝𝑘1, 𝑠𝑘1), we use the
function makecert(Alice,𝑝𝑘1,𝑠𝑘1).
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Protocol 1: STS-KDF:Themain process creates secret-public signing and verification keys for CA, Alice, and
Bob.

new skCA:sskey; let pkCA=spk(skCA) in out(internet,pkCA);
new Alice:host; new sk1:sskey; let pk1=spk(sk1) in
let cert1=makecert(Alice,pk1,skCA) in out(internet,cert1);
new Bob:host; new sk2:sskey; let pk2=spk(sk2) in
let cert2=makecert(Bob,pk2,skCA) in out(internet,cert2);

!processAlice(Alice,cert1,sk1,pkCA) | !processBob(Bob,cert2,sk2,pkCA)

Protocol 2: Privacy-Enhanced STS-KDF-CB: The main process of Protocol 2 has the same main process as
Protocol 1.

Protocol 3: Privacy-Enhanced STS-KDF-CBwith KEM:Themain process of Protocol 2 differs from Protocol
1 only when creating secret and public keys: new sk1:skey; let pk1=pk(sk1) for Alice and new
sk2:skey; let pk2=pk(sk2) for Bob. Note that, in this protocol, keys for asymmetric encryption
are derived instead of signature keys.

Protocol 4: Split-Key Privacy-Enhanced STS-KDF-CB:This protocol has two more parties participating, and
the main process is prepared accordingly:

new skCA:sskey; let pkCA=spk(skCA) in out(internet,(pkCA));
new Alice1:host; new sk1:sskey;
new Alice2:host; new sk2:sskey;
let cert1=makecert(Alice1,spk(splitKey(sk1,sk2)),skCA)

in out(internet,(cert1));
new Bob1:host; new sk3:sskey;
new Bob2:host; new sk4:sskey;
let cert3=makecert(id3,spk(splitKey(sk3,sk4)),skCA)

in out(internet,(cert3));
!processAlice(Alice1,cert1,sk1,pkCA) | !processAlice2(Alice2,sk2)
| !processBob(Bob1,cert3,sk3,pkCA)| !processBob2(Bob2,sk4)

Protocol 5: Split-Key Privacy-Enhanced STS-KDF-CBwithKEM:The setup of themain process of Protocol 5
is similar to Protocol 4, except for generating split keys for asymmetric encryption. In addition, in this protocol,
a verification key for Split-KEM is generated for Alice1 and Bob1: let vk1=vk(pk1,sk1,sk2) in
and let vk3=vk(pk3,sk3,sk4) in, respectively.

6.2 Queries
In ProVerif, events are defined while modeling the protocol to record incidents, e.g., key derivation and
signature verification. These events are used to check if the protocol runs without errors by checking the reach-
ability of events and construct correspondence assertions by capturing the relationships between events [13].

A query is a statement about a security property that is wanted to verify. It is used to express a specific security
property or behavior that is expected by a protocol or system to satisfy.
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Next, we list the queries that we have constructed to verify the security properties. Note that the protocols
with KEM do not have queries for DH key 𝐾𝐷𝐻 .

Secrecy: We want to prove the secrecy of the key that is derived during the protocol run. Therefore, we
constructed the following queries:

(*Secrecy of K*)
query a:host,b:host,k:key; event(acceptKeyAlice(a,b,k))&&attacker(k)
==> false.
query a:host,b:host,k:key; event(acceptKeyBob(a,b,k))&&attacker(k)
==> false.

Mutual Authentication: In ProVerif, the correspondence is defined for two events, e2 and e1, such that the
query for event(e2(M))==>event(e1(N))means if an event e2(M) has been executed, then event
e1(N) has been previously executed. The in-built functionality, injective correspondence, of ProVerif addi-
tionally checks if the number of occurrences of e1(N) is greater than or equal to the number of occurrences
of e2(M), in addition to the correspondence queries [13]. Mutual authentication can be proved by proving
injective agreement based on the shared keys:

(*Mutual Authentication of K_DH*)
query a:host,b:host,k:G;
inj-event(verifB_DH(a,b,k)) ==> inj-event(hasKeyAlice_DH(a,k)).
query a:host,b:host,k:G;
inj-event(verifA_DH(a,b,k)) ==> inj-event(hasKeyBob_DH(b,k)).

(*Mutual Authentication of K*)
query a:host,b:host,k:key;
inj-event(acceptKeyBob(a,b,k)) ==> inj-event(acceptKeyAlice(a,b,k)).
query a:host,b:host,k:key;
inj-event(acceptKeyAlice(a,b,k)) ==> inj-event(acceptKeyBob(a,b,k)).

Forward Secrecy: To prove forward secrecy we use phases [13]. We leak the long-term secret keys after the
initial run of the protocol (phase 1) and show the secrecy property of the session that took place before the
leak (phase 0). For this end, we use: phase 1; out(internet,(sk1,sk2,skCA)).

Resistance to Unknown Key Share (UKS) attack: In order to construct queries for proving the resistance to
UKS attacks, we use the events that are used to prove mutual authentication so that if these events occur for
the same key, then the identities of the parties should be same. We check the UKS attack resistance for the
keys 𝐾𝐷𝐻 and 𝐾 , and identities 𝐴𝑙𝑖𝑐𝑒 and 𝐵𝑜𝑏.

(*Unknown Key Share (UKS) attack K_DH*)
query a:host,b:host,c:host,d:host,k:G;
event(verifB_DH(a,b,k)) && event(hasKeyAlice_DH(c,k)) ==> a=c.
query a:host,b:host,c:host,d:host,k:G;
event(verifA_DH(a,b,k)) && event(hasKeyBob_DH(c,k)) ==> b=c.

(*Unknown Key Share (UKS) attack K*)
query a:host,b:host,c:host,d:host,k:key;
event(acceptKeyBob(a,b,k)) && event(acceptKeyAlice(c,d,k))
==> a=c && b=d.
query a:host,b:host,c:host,d:host,k:key;
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Table 1. Summary of ProVerif results. Protocol 1: STS-KDF, Protocol 2: Privacy-Enhanced STS-KDF-CB, Protocol 3: Privacy-Enhanced
STS-KDF-CB with KEM, Protocol 4: Split-Key Privacy-Enhanced STS-KDF-CB, and Protocol 5: Split-Key Privacy-Enhanced STS-KDF-CB
with KEM. N/A: not applicable. true*: true if only the key of the assistant device is leaked

Security Properties Protocol 1 Protocol 2 Protocol 3 Protocol 4 Protocol 5

Secrecy of 𝐾 true true true true true

Mutual Authentication on 𝐾𝐷𝐻 true true N/A true N/A
Mutual Authentication on 𝐾 false false true false true

Forward Secrecy true true true true true

Resistance to UKS Attack on 𝐾𝐷𝐻 true true N/A true N/A
Resistance to UKS Attack on 𝐾 true true true true true

Resistance to KCI attack false false false true* true*

Resistance to the Reflection Attack false true true true true

event(acceptKeyAlice(a,b,k)) && event(acceptKeyBob(c,d,k))
==> a=c && b=d.

Resistance to Key Compromise Impersonation (KCI) attack: We want to verify that the protocol is resistant
to KCI attacks by leaking the secret keys in the main process. Consequently, if the secrecy and correspondence
queries remain true, then we conclude that the protocol is resistant to KCI attacks:

new Alice:host; new sk1:sskey; let pk1=spk(sk1) in
let cert1=makecert(Alice,pk1,skCA) in out(internet,(cert1,sk1));
new Bob:host; new sk2:sskey; let pk2=spk(sk2) in
let cert2=makecert(Bob,pk2,skCA) in out(internet,(cert2,sk2));

When KCI resistance is checked, these lines should be replaced with the corresponding lines in the main
process.

IdentityConfidentiality: The identity confidentiality of the users against outsiders can be verified by the notion
of observational equivalence, see [13] Section 4.3.2. When we check the observational equivalence of Bob, we
ask ProVerif to choose an identity for Bob while we assign a new identity to Alice. Note that Bob1 and Bob2
are public names. These are the identity assignments for Alice and Bob to check observational equivalence of
Bob:

new Alice:host;
let Bob=choice[Bob1,Bob2] in

Note that the certificates, and, therefore, the identities, are already public. While creating certificates, we send
the certificates that are made for Alice, Bob1, and Bob2 to the public network. However, we also create another
certificate for chosen Bob, which should be the same as the certificate of either Bob1 or Bob2, and we send this
certificate to Bob via a private channel. In addition, in our protocols, the certificates are sent in an encrypted
form.

6.3 Formal verification results
After introducing how to construct the model for formally verifying the protocols, we now explain the results
of the formal verification. We will start with the security properties of the STS-KDF protocol (Protocol 1) and
then continue with the security properties of the other protocols when they differ from those of the STS-KDF
protocol. A summary of the formal verification results is given in Table 1 and Table 2.

The identity confidentiality results vary depending on users. Table 2 presents the ProVerif results for identity
confidentiality of user identities.
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Table 2. Summary of ProVerif results for identity confidentiality of user identities. true**: true with implicit rejection

Protocols Alice Bob

Protocol 1: STS-KDF false false

Protocol 2: Privacy-Enhanced STS-KDF-CB true false
Protocol 3: Privacy-Enhanced STS-KDF-CB with KEM true true**

Protocol 4: Split-Key Privacy-Enhanced STS-KDF-CB true false
Protocol 5: Split-Key Privacy-Enhanced STS-KDF-CB with KEM true true**

The following is the explanation of security properties that we get from ProVerif results.

Secrecy of 𝐾 : The attacker cannot capture the shared key 𝐾 .

Query not (event(acceptKeyAlice(a_1,b_1,k)) && attacker_p1(k)) is true.
Query not (event(acceptKeyBob(a_1,b_1,k)) && attacker_p1(k)) is true.

Mutual authentication on 𝐾𝐷𝐻 : The injective correspondences on 𝐾𝐷𝐻 are true. This means that the mutual
authentication between Alice and Bob is achieved for 𝐾𝐷𝐻 .

Query inj-event(verifBmac(a_1,b_1,k)) ==> inj-event(Amac(a_1,b_1,k))
is true.
Query inj-event(verifAmac(a_1,b_1,k)) ==> inj-event(Bmac(b_1,k))
is true.

Mutual authentication on 𝐾 : The injective correspondences on 𝐾 are false, which means that there is no
mutual authentication between Alice and Bob for the key 𝐾 . This is because the parties do not perform key
confirmation on 𝐾 . In this protocol, the master key is 𝐾𝐷𝐻 , and this key is confirmed in the protocol. In
addition, the identities of the parties are also confirmed through the certificates. STS-KDF is a standalone
protocol, and 𝐾 will be confirmed indirectly later when it is used.

Query event(acceptKeyBob(a_1,b_1,k))
==> event(acceptKeyAlice(a_1,b_1,k)) is false.
Query event(acceptKeyAlice(a_1,b_1,k))
==> event(acceptKeyBob(a_1,b_1,k)) is false.

Forward Secrecy: The STS-KDF protocol has forward secrecy. The leak of the secret keys of Alice, Bob, and
CA does not help the attacker recover the session keys derived during earlier sessions.

Resistance to Unknown Key Share Attack on 𝐾𝐷𝐻 : STS-KDF protocol is secure against the UKS attacks on
𝐾𝐷𝐻 .

Query event(verifBmac(a_1,b_1,k)) && event(Amac(c,d,k))
==> a_1 = c && b_1 = d is true.
Query event(verifAmac(a_1,b_1,k)) && event(Bmac(c,k))
==> b_1 = c is true.

Resistance to Unknown Key Share Attack on 𝐾 : STS-KDF protocol is secure against the UKS attacks 𝐾 .

Query event(acceptKeyBob(a_1,b_1,k)) && event(acceptKeyAlice(c,d,k))
==> a_1 = c && b_1 = d is true.
Query event(acceptKeyAlice(a_1,b_1,k)) && event(acceptKeyBob(c,d,k))
==> a_1 = c && b_1 = d is true.

Resistance to Key Compromise Impersonation (KCI) attack: When the secret keys of Alice and Bob are
leaked at the beginning of the protocol, the secrecy of the keys and the mutual authentication between Alice
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and Bob on 𝐾𝐷𝐻 both return false. This means that the STS-KDF protocol is vulnerable to KCI attacks.

Identity Confidentiality: The certificates are sent in plaintext in the protocol; therefore, identity confidential-
ity is trivially not true for STS-KDF.

Next, we highlight the differences in security properties between STS-KDF and the protocols developed in this
paper.

Privacy-Enhanced STS-KDF-CB protocols (Protocols 2, 3, 4, and 5) provide identity confidentiality so that
the identities of the parties are not captured by outsiders and passive attackers. However, if the attacker starts
Protocols 2 and 4 by sending the first message containing his public key to Bob, then Bob derives the shared
DH key (𝐾𝐷𝐻) using the attacker’s public key. Even though Bob encrypts his certificate with 𝐾𝐷𝐻 , the attacker
also derives the same key. Therefore, the attacker can decrypt the message in Step 4 of Figure 5 and obtain
Bob’s certificate. On the other hand, Protocols 3 and 5 can overcome this problem.

A limitation of our ProVerif model is that it cannot detect information exposure through error messages. How-
ever, the attacker could learn the identity of Bob with this kind of information exposure in Protocols 3 and 5.
For example, the attacker replays Message (2) of Protocol 3 in Figure 5. If the ciphertext 𝐶0 is computed with
the correct 𝑝𝑘𝑏 , then Bob can execute the rest of (3) and send (4). Bob can understand in (7) that either the
other party is not Alice or does not have the key. Therefore, the protocol fails at the end. If the ciphertext
𝐶0 is computed with the wrong 𝑝𝑘𝑏 , then Bob cannot execute (3.a) and understands that this message is not
intended for him. If Bob rejects explicitly by raising an Error at this step, the attacker would understand that
this user is not the same Bob that the original Message (2) was sent to. The protocol could be enhanced in
such a way that Bob rejects implicitly as follows. He sends an invalid ciphertext, which the attacker cannot
distinguish from a successful reply to Message (2). The genuine Alice (who in the example sent the original
Message (2)) would still understand the rejection because the ciphertext is invalid.

In Privacy-Enhanced STS-KDF-CB protocols, parties check the certificate of the other party so that they do
not receive their own certificates. They do this check by executing if certA<>certB then line. When
we apply observational equivalence, we choose from two identifiers, Bob1 and Bob2, but they keep using the
same public-secret key pair. This is why there is no observation equivalence in Protocols 3 and 5. However, if
we check if Alice<>Bob && pkA<>pkB by restricting that the public keys are also different, we can
get observational equivalence.

Privacy-Enhanced STS-KDF-CB with KEM (Protocol 3) and Split-Key Privacy-Enhanced STS-KDF-CB with
KEM (Protocol 5) protocols achieve mutual authentication for the key 𝐾 .

Query inj-event(AliceFinished(a,b,k)) ==> inj-event(hasKeyBob(a,b,k))
is true.
Query inj-event(BobFinished(a,b,k)) ==> inj-event(AliceFinished(a,b,k))
is true.

Note that the queries related to 𝐾𝐷𝐻 are non-applicable for Protocols 3 and 5 since the DH key exchange is
replaced by KEM; therefore, the key 𝐾𝐷𝐻 is not derived.

Considering Protocols 2 and 3, when the secret key of Alice is leaked at the beginning of the protocol, the
secrecy of Bob’s key and injective correspondence of Bob for Alice on 𝐾𝐷𝐻 return false. Similarly, if Bob’s key
is leaked, then the secrecy of Alice’s key is compromised, and the injective correspondence of Bob for Alice on
𝐾𝐷𝐻 returns false. This means that if the key of one party is leaked, the secrecy and authentication of the other
party is compromised.
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Table 3. Computational cost of the protocols from Section 5

Protocols Scalar Multiplications Modular Inverses Symmetric Key Operations

(1) STS-KDF 10 6 12
(2) STS-KDF-CB 14 10 16
(3) STS-KDF-CB-KEM 12 2 19
(4) Split STS-KDF-CB 16 12 18
(5) Split STS-KDF-CB-KEM 14 2 21

In a split-key setting (Protocols 4 and 5), a KCI attack is unsuccessful only if the secret keys of Alice2 and Bob2
are leaked. However, the cases for Alice1 and Bob1 are similar to those of Alice and Bob in Protocols 2 and 3.

6.4 Construction of reflection attack in ProVerif
In Section 4, we have explained that the reflection attack happens in a setting where the parties in the protocol
have the same secret key but different identities and, therefore, different certificates. In order to capture the
reflection attack in ProVerif, we have modified the protocol such that (i) only one secret key is created and
assigned to the parties, (ii) the certificates are created with different identities but the same public key, and (iii)
we allow that Alice and Bob can be both initiator and responder in the protocol.

In this setting, we could capture the reflection attack against STS-KDF in ProVerif. When the protocol
model is executed, the mutual authentication for the DH key returns false. The traces captured from the query,
query a:host,b:host,k:G; inj-event(verifBmac(a,b,k))==> inj-event(Amac(a,b,k)),
represents the reflection attack.

ProVerif proved that the reflection attack is not successful when a similar setting is applied to Privacy-Enhanced
STS-KDF-CB and Privacy-Enhanced STS-KDF-CB with KEM protocols.

7 ANALYSIS
In this section, we analyze the computational cost, communication overhead, and resource requirement of
the protocols presented in Section 5. While doing the analysis, we have selected the following cryptosystems,
which are currently popular, to improve the readability by presenting concrete results.

• Diffie-Hellman Key Exchange: Elliptic Curve Diffie-Hellman (ECDH) with the curve P-256.
• Digital Signature Scheme: Elliptic Curve Digital Signature Algorithm (ECDSA) with curve P-256.
• Public Key Primitive for KEM: Elliptic Curve Integrated Encryption Scheme (ECIES) with curve P-256.
• Certificate: X.509 certificate.
• Symmetric Key Encryption: Advanced Encryption Standard (AES-128).
• Message Authentication Code: HMAC-SHA-256.
• Authenticated Encryption: AES-128-HMAC-SHA-256.

Next, we present the computational cost of the protocols in Table 3. We gathered all the operations under three
titles: (i) scalarmultiplication for elliptic curves, (ii)modular inverse, and (iii) symmetric key operations, which
include symmetric encryption, symmetric decryption, hash, key derivation function, and random number
generation.

As we can see from Table 3, the proposed protocols do more computations than STS-KDF (1). This is be-
cause, for example, STS-KDF-CB (2) and Split STS-KDF-CB (4) have additional encryption and certificate
verification compared to STS-KDF. We also observe that Protocols (3) and (5), where we use KEM instead
of DH key exchange and digital signature, are computationally less complex than Protocols (2) and (4). Even
though the number of symmetric key operations increased, the total number of computationally heavier scalar
multiplication and modular inverse functions decreased.
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Table 4. Communication overhead of the messages (in bytes) in the protocols from Section 5. A1: Alice1, A2: Alice2, B1: Bob1, B2: Bob2.
The order of parties represents the direction of messages; e.g., A1-B1 means that the message is sent from Alice1 to Bob1

Protocols A1-B1 B1-B2 B2-B1 B1-A1 A1-A2 A2-A1 A1-B1 Total

(1) STS-KDF 32 - - 356 - - 324 712
(2) STS-KDF-CB 32 - - 356 - - 324 712
(3) STS-KDF-CB-KEM 292 - - 96 - - 32 420
(4) Split STS-KDF-CB 32 64 64 224 64 64 192 968
(5) Split STS-KDF-CB-KEM 292 32 32 96 32 32 32 548

Table 5. Average computation time of STS-KDF-CB-KEM (in ms), referring to Figure 5

Step 1 Step 3 Step 5 Step 7 Total

Time (ms) 4.82 9.42 3.09 0.19 17.52

Comparing protocols STS-KDF-CB (2) and STS-KDF-CB-KEM (3) with Split STS-KDF-CB (4) and Split STS-
KDF-CB-KEM (5), respectively, we see that the additional cost of the split-key variant (4) is two extra sig-
natures, while the additional cost of the split-key variant (5) is two extra decapsulations. In conclusion, the
split-key Protocols (4) and (5) are not much more computationally heavier compared to Protocols (2) and (3).

Table 4 presents the communication overhead of the messages sent in the protocols. Please note that split key
protocols have more messages.

According to the cryptosystem choices mentioned earlier, we assume that the public and secret keys in elliptic
curves have a length of 32 bytes. Therefore, signatures are 64 bytes long. We estimate the certificate length
to be 228 bytes; this includes a public key (32 bytes), signature (64 bytes), and other information (132 bytes).
Recall that HMAC-SHA-256 creates a 32-byte output. AES-128 creates a ciphertext of the same size as the
plaintext. In our case, the plaintext consists of a signature and certificate; therefore, the ciphertext has a length
of 292 bytes. The authenticated encryption adds 32 bytes of MAC to the ciphertext. Thus, for example, we get
324 bytes of ciphertext in Protocols (2) and (4) in the message sent from Alice1 to Bob1. The message from
Bob1 to Alice1 includes the ciphertext and the public key of Bob. Thus, the length of that message is 356 bytes.

Observe that the total communication overhead of Protocols (1) and (2) are the same. Therefore, we conclude
that adding privacy does not increase the communication overhead.

Note that the first message of protocol (3) is larger than Protocols (1) and (2), but the other messages are much
smaller. Thus, replacing DH key exchange and digital signature with KEM decreases the total communication
overhead by around 40%.

The total communication overhead increases for split-key variant of STS-KDF-CB by around 35%, and for
split-key variant STS-KDF-CB with KEM by around 30%.

We have implemented STS-KDF-CB with KEM in Python with Cryptography package version 41.0.3 [42]. Mea-
surements were taken with a computer with 3.5 GH dual-core Intel i7 and 16GB RAM. With references to
Figure 5 for step numbers, we present the average computation time of the protocol in Table 5.

From Table 5, we can observe that an STS-KDF-CB Protocol with KEM runs in less than 20 ms, ignoring
the communication time between the parties. As we can see in Table 3, splitting keys in KEM increases the
number of computations slightly. Therefore, we can estimate that the Split STS-KDF-CB Protocol with KEM
could take around 30 ms, again ignoring the communication time between the parties. The implementations
of other protocols are left for future work.
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8 DISCUSSION
Theprotocols, described in Section 5 and analyzed in Section 7, add several security properties to the basic STS-
KDF.The system designer could decide which protocol to choose based on the desired properties. For example,
STS-KDF-CB and STS-KDF with KEM protocols provide additional privacy and protection against reflection
attack, while split-key protocol variants also provide measures against single-point failures by splitting keys
with assistant devices. In the KEM variants of the protocols, there is flexibility in the choice of any type of
KEM and Split-KEM.

As verified by ProVerif, the protocols we propose in Section 5 are privacy-enhanced, which is mainly because
the certificate and the signature are encrypted. The certificates are encrypted to provide identity confidentiality
to the user by concealing the identity against the passive attackers. The signatures are also encrypted because
otherwise, the attacker could run a brute-force attack with a list of public keys to figure out who the sender of
the message is. If identity confidentiality is not a concern, the encryption in the protocols could be removed.

In addition, an active attacker can learn the identity of Bob in Protocols 2 and 4 if the attacker starts the
protocol. This can be prevented in Protocols 3 and 5 due to the assumption that Alice already knows Bob’s
certificate. However, Information Exposure Through an Error Message could reveal to the attacker that if the
decapsulation in Step 3.a of Figure 5 fails, the attacker understands Bob does not own the public key that was
used to create 𝐶0. In order to overcome this issue, even though Bob knows that the message is not intended
for him, he prepares a message (4) and sends it. Here, Bob can compute the correct 𝐶1 so that if the attacker
knows 𝑃𝐾𝑎 , he does not understand if Bob is real or if he understood the replay attack. Bob also includes
an invalid ciphertext for 𝐶2 and 𝑚𝑎𝑐1 in (4) that appears as the real values. This way, the attacker observes
that Bob replies with (4) but cannot understand if it is a valid or invalid response. However, this improvement
causes an increase in bandwidth, battery consumption, and the possibility of Denial of Service (DoS) attacks.

In our modification to the STS-KDF protocol, we are using certificates as inputs to the key derivation function
instead of identities. One reason is that the same identity might occur in several certificates, e.g., for different
devices controlled by the same user. Then, two devices with the same identity may still need to authenticate
each other and exchange keys. Another reason for using certificates instead of identities is a case where identity
is not relevant at all, while the certificate would technically act as a replacement for an identity.

As mentioned in the introduction, splitting the secret key between two or more devices has security benefits,
such that those devices must cooperate when using the key. On the other hand, key usage andmanagement are
more complicated in the key-split setting. The usage of split keys is illustrated in Protocols 4 and 5 in Section 5.
We will next discuss the different options for creating and certificating the long-term key pair 𝑝𝑘𝑎 , 𝑠𝑘𝑎 and
splitting the secret key 𝑠𝑘𝑎 .

In the basic setting, where Alice is a single entity, the certification of the long-term key pair happens as follows.
Alice generates a key pair 𝑝𝑘𝑎 , 𝑠𝑘𝑎 and requests a trusted Certification Authority (CA) to certify the public
key 𝑝𝑘𝑎 . The certificate request typically includes data signed by the secret key 𝑠𝑘𝑎 , and the CA verifies that
signature using the public key 𝑝𝑘𝑎 from the certificate request. This ensures that the sender of the certificate
request has the secret key 𝑠𝑘𝑎 . The CA also verifies the identity of Alice before issuing the certificate. The
manner of identity verification by the CA depends on the use case.

In some scenarios, the key pair generation can be done by the trusted CA instead of by Alice. For example, in
a secure factory environment, the key pair and the certificate can be generated by the manufacturer’s CA and
directly injected into the device. In this scenario, the identity verification step can be omitted.

In the casewhere there are two entities, Alice1 andAlice2, one of them, sayAlice1, generates a key pair 𝑝𝑘𝑎 , 𝑠𝑘𝑎 ,
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splits the secret key into two shares 𝑠𝑘𝑎1 and 𝑠𝑘𝑎2 and requests a trusted Certification Authority (CA) to certify
the public key 𝑝𝑘𝑎 . The signature in the certificate request is done using 𝑠𝑘𝑎 . The CA verifies that signature
using the public key 𝑝𝑘𝑎 from the certificate request. The CA also verifies the identity of Alice1 before issuing
the certificate. Alice1 then delivers 𝑝𝑘𝑎 , 𝑠𝑘𝑎2 to Alice2 via a secure communication channel and deletes 𝑠𝑘𝑎 .
Similarly to the basic setting, the key pair can be generated by the trusted CA instead of by Alice1. The secret
key can be split by the trusted CA or by Alice1.

In another option, the key shares can be generated byAlice1 andAlice2 using a securemulti-party computation.
As a result of this protocol Alice1 gets 𝑝𝑘𝑎 and 𝑠𝑘𝑎1 ; and Alice2 gets 𝑝𝑘𝑎 and 𝑠𝑘𝑎2 . Alice1 and Alice2 cooperate
to sign a certificate request for the public key 𝑝𝑘𝑎 , and Alice1 sends the request to CA. The CA verifies the
signature using the public key 𝑝𝑘𝑎 from the certificate request. The CA also verifies the identity of Alice1
before issuing the certificate.

In summary, the key pair 𝑝𝑘𝑎 , 𝑠𝑘𝑎 can be generated by (i) one, (ii) both of the parties Alice1, Alice2, or (iii)
the trusted CA. The splitting of the secret key 𝑠𝑘𝑎 can be done by one of the parties or by both of the parties
using a multi-party computation protocol. In scenarios where the CA generates the key pair, it can also split
the 𝑠𝑘𝑎 . A scenario where Alice2 generates the key pair and asks the CA to split 𝑠𝑘𝑎 does not seem to make
sense, at least not for the expected use cases.

In a non-split-key case, it is critical to revoke 𝑐𝑒𝑟𝑡𝑎 whenever 𝑠𝑘𝑎 gets compromised. In this case, Alice needs
to obtain new 𝑐𝑒𝑟𝑡𝑎 and 𝑠𝑘𝑎 to be functional again. However, this can be problematic, especially in situations
where Alice does not support over-the-air updates or key 𝑠𝑘𝑎 is used to secure over-the-air updates.

Under certain circumstances in split-key cases, it is secure to continue the usage of original 𝑐𝑒𝑟𝑡𝑎 even when
one of the key shares, 𝑠𝑘𝑎1 or 𝑠𝑘𝑎2 , is compromised. This requires that the full key 𝑠𝑘𝑎 is in possession of a
Trusted Party, such as CA, or the key is securely reconstructed from key shares. The original key can be re-split
into new key shares [11], which are then securely communicated to Alice1 and Alice2.

Recall that the STS protocol is an AKA based on the DH key exchange protocol and authenticated signatures.
Variousmodifications of the STS protocol were introduced to improve its security. The study by Jackson et al. [6]
extensively analyzes the STS variants and concludes that STS-KDF is the only variant that satisfies key secrecy,
identity agreement, and strong session agreement (injective agreement). The same study shows that STS-KDF
is secure against UKS attacks and provides mutual authentication of shared DH key. We formally verified that
STS-KDF has perfect forward secrecy. The protocols that we introduce in Section 5 mostly provide resistance
to the KCI attack and mutual authentication of shared key 𝐾 . In addition, the new variants we introduce
provide resistance against the reflection attack that we describe in Section 4. Moreover, identity confidentiality
is improved in our protocols compared to STS-KDF. The summary of the security properties of the protocols
is presented in Table 1 and Table 2.

Shah et al. [21] and Wang et al. [22] use the secret-splitting concept for multi-factor authentication where they
split, e.g., biometric data. The solutions presented in these two papers include servers for keeping one of the
shares of the secret. However, our solution is independent of a Trusted Party.

Our STS-KDF-CB Protocol in Section 5.1.1 can be seen as a variant of SIGMA-I protocol [12]. Our protocol
differs from the original SIGMA-I in using certificates, identities, and encryption. Our protocol is Certificate-
Binding STS-KDF, which means that the shared session key includes the certificates of the participants. Recall
that the same identity may be included in several certificates, e.g., with different capabilities. We also apply
authenticated encryption on the signature and certificate, while SIGMA-I does not provide authenticated en-
cryption because MAC is only applied to the identity of the user, not to the plaintext or ciphertext. Finally, we
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introduce the certificate verification upon arrival of the certificate such that the user checks that the received
certificate does not belong to himself. By doing this, we aim to prevent replay attacks.

We emphasize that both the original STS and the SIGMA-I protocols use signatures for authentication. In our
split and non-split STS-KDF-CB protocols with KEM, we achieve our desired security goals by using KEMs
instead of signatures. We argue that KEM operations are typically computationally less costly than signing
operations.

Krzywiecki et al. [26] present an AKE for wearable devices, such as a watch and a mobile phone, in which the
key of a device is split between two signing modules in the same device. This is similar to our Split STS-KDF-
CB Protocol in Section 5.2.1, but their setting has several limitations compared to ours. First, in our setting,
the initiator and the responder do not have to know the public keys of each other, while Krzywiecki et al. [26]
assume they do. Second, in our setting, the channel between the devices holding the key shares is public.
In Krzywiecki et al. [26], the channel between the signing modules is internal to a device and is secure. Also,
our protocol does not require human interaction to complete. The setting of Krzywiecki et al. [26] includes an
out-of-band channel between the initiator and the responder, and human interaction is required to establish
the connection at the end of the protocol. Our formal security proof does not make any assumption about
the used cryptographic primitives, such as KEMs, signatures, and authenticated encryption. The solution of
Krzywiecki et al. is based on signatures, and their security proof is specific to the Decisional DH problem and
Schnorr split signatures.

Recall that the key management with split-key cases is more complicated since there are more parties involved.
One limitation of our key-split setting is the following. If Alice1 is fully compromised, but the user does not
notice it, then the key split does not help because Alice2 will cooperate with the attacker who controls Alice1.
On the other hand, if the user can detect the compromise, they could turn off the device Alice2. This limitation
could be alleviated if the communication between Alice1 and Alice2 requires explicit authorization from the
user, e.g., by pressing a button on Alice2. However, we will not discuss this enhancement further in this paper.

Yet, another limitation is related to the KEM-based schemes, as introduced in Section 5.1.2 and Section 5.2.2.
In these adaptations, Alice, the initiator, needs to have the certificate of Bob, the responder, before initiating
the protocol. If Alice does not already have a certificate of Bob, she should use the privacy-enhanced STS-KDF-
CB protocols, as explained in Section 5.1.1 and Section 5.2.1. However, in this case, identity confidentiality for
Bob cannot be provided.

We do not discuss protection against side-channel attacks, and it is left for future work. Future work also
includes the implementation of all protocols and extensions to the cases where one of the split-key devices is
able to attest the correctness of the functionality of the other one.
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