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Abstract
The chemical upcycling of waste plastics into high-value-added products such as monomers, fuels, or fine 
chemicals represents a promising strategy for mitigating the adverse effects of massive end-of-life plastics. 
Poly(bisphenol A carbonate) (BPA-PC) stands out as a notable engineering plastic due to its exceptional overall 
performance; however, its durability and potential environmental toxicity make its recycling imperative. Although a 
lot of reviews about plastic degradation have been done before our review, the progress for plastic degradation 
needs to be constantly updated and summarized due to the rapid development of this field. Meanwhile, BPA-PC, as 
an important notable engineering plastic, previous reviews only focused on its depolymerization into monomers 
and missed their further conversion into final chemicals. which In this concise review, we summarize recent 
developments in the chemical upcycling of BPA-PC to valuable chemicals, emphasizing the role of various catalysts 
and reagents. Some of the most utilized chemical upcycling strategies such as alcoholysis, aminolysis and 
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we provide insights into the future prospects of chemical upcycling for waste BPA-PC.

Keywords: Poly(bisphenol A carbonate), chemical upcycling, alcoholysis, aminolysis, high-value-added fine 
chemicals

INTRODUCTION
The annual global production of plastics has surpassed 460 million tons, yet only about 9% of waste plastics 
are recycled. Plastics have profoundly advanced human society, driving significant developments across 
various sectors[1-3]. However, their accumulation, due to their stable and non-biodegradable nature, has led 
to serious environmental problems, including soil pollution, marine pollution, and climate change[4-6]. Waste 
plastics are considered one of the major crises threatening the sustainable development. Consequently, the 
transition from the traditional “linear plastic economic model” to the promising “circular plastic economic 
model” has garnered extensive attention[7]. Currently, plastic recycling methods are primarily categorized 
into mechanical recycling, energy recovery (incineration), and chemical recycling[8,9]. Despite the 
widespread application of mechanical recycling and incineration for large-scale plastic waste treatment, 
these methods have critical drawbacks. Mechanical recycling results in materials with lower molecular 
weight and reduced thermal and mechanical performance compared to the virgin materials[10,11], while 
incineration releases hazardous gases and microplastics[12,13]. In contrast, chemical recycling of waste plastics 
into initial monomers or high-value chemicals[14,15] with high resource utilization, economic benefits, 
environmental friendliness and quality controllability will be regarded as a significant driving force for the 
circular plastic economic model.

As one of the fastest-growing engineering plastics, poly(bisphenol A carbonate) (BPA-PC) boasts excellent 
optical properties, heat resistance, impact resistance, toughness and flame retardancy. These attributes make 
BPA-PC highly versatile, finding applications in electronics, electrical appliances, sheet containers, 
automotive industry, medical devices and protective equipment[16]. It is projected that by 2024, the global 
demand for BPA-PC will reach 7.72 million tons[17]. However, the extraordinary durability of BPA-PC leads 
to its persistent accumulation in the environment, gradually releasing harmful bisphenol A (BPA)[18-20]. 
Therefore, the efficient chemical recycling of BPA-PC is imperative. The primary methods for chemical 
recycling of BPA-PC include pyrolysis, hydrolysis, reduction, alcoholysis, and aminolysis[21-26]. Pyrolysis, 
characterized by random and non-selective bond breaking, results in complex products and requires high 
reaction temperatures with significant energy consumption, thereby increasing costs and reducing 
practicability[27-29]. Additionally, carbonic acid, a by-product of BPA-PC pyrolysis, decomposes into carbon 
dioxide and water, complicating its reuse[30,31]. Although high conversion rates can be achieved in BPA-PC 
reduction under suitable conditions, the requirement for high-pressure hydrogen necessitates equipment 
with substantial pressure-bearing capacity, limiting scalability[32,33]. In contrast, employing alcohols or 
amines as nucleophilic reagents for depolymerization, such as in alcoholysis and aminolysis, presents a 
more promising alternative. These processes capture the carbonyl portion of polymers, generating high-
value carbonyl products such as organic carbonates, carbamates and ureas[34]. Thus, they offer greater 
practical and economic value and have garnered significant attention in recent years.

In this comprehensive review, a systematic summary for chemical upcycling of BPA-PC to BPA and high-
value-added carbonate derivatives with various depolymerization reagents was presented. According to the 
depolymerization reagents and products structures, the main categorization was as follows: (1) Alcoholysis 
(methanolysis, ethanolysis and phenolysis glycolysis); (2) Aminolysis of BPA-PC and depolymerization of 
BPA-PC by other nucleophilic reagents; (3) Reuse of BPA-PC depolymerization monomers to synthesis of 

upcycling of BPA-PC in “polymer-to-polymer” format to reproduce new polymers are elucidated in detail. Finally, 
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new polymers. Moreover, we provide insights into the future potential and prospects of chemical upcycling 
for waste BPA-PC.

ALCOHOLYSIS OF BPA-PC
Methanolysis, ethanolysis and phenolysis of BPA-PC to linear carbonates
As shown in Figure 1, alcoholysis of BPA-PC with different structures of alcohols could obtain unified 
product BPA and corresponding carbonates. Dimethyl carbonate (DMC), diethyl carbonate (DEC), and 
diphenyl carbonate (DPC) could be produced with methanol, ethanol, and phenol as nucleophilic reagents 
for the chemical recycling of BPA-PC, respectively. This section is classified and summarized according to 
the types of catalysts.

Alkali metal catalysis
As early as 1998, Hu et al. initially investigated the alkali-catalyzed methanolysis of BPA-PC, which found 
that only 7% yield of BPA was obtained catalyzed by the NaOH (8.5 mol% relative to carbonate units of 
BPA-PC) in methanol at 60 °C after 330 min. However, the depolymerization rate was significantly 
accelerated when toluene or dioxane was added as a co-solvent. For example, in a mixed solvent of MeOH 
(1 mL) and toluene (1 mL), BPA-PC was completely depolymerized by a similar treatment for 70 min, and 
the products BPA (96%) and DMC (100%) were obtained in high yields. The reaction time could be further 
shortened by increasing the amount of the co-solvent. Since BPA-PC is virtually insoluble in methanol, a 
plausible reason for the accelerated action of co-solvents is that they can dissolve or solubilize the surface of 
solid BPA-PC and promote contact between reaction reagents, thereby increasing the rate of 
methanolysis[35]. Subsequently, Piñero et al. developed a greener process for alkali-catalyzed methanolysis of 
BPA-PC under supercritical or near-critical conditions in a semi-continuous laboratory plant[36]. The 
relationship between operating conditions such as reaction temperature, pressure, alcohol/co-solvent ratio, 
and catalyst concentration with product yield, selectivity, and reaction rate were systematically investigated. 
The best yields of BPA and DMC were achieved at the conditions of 120-140 °C, 10 MPa, and 1.5~2 kg/m3 
NaOH/pure methanol, while the reaction selectivity and yield of the products were reduced with less toxic 
water used as the co-solvent. Chiu et al. used a batch autoclave reactor to explore the methanolysis of BPA-
PC. It was found that under high temperature and subcritical conditions, BPA-PC could also be effectively 
depolymerized without adding a catalyst[37]. Under the optimal reaction conditions, when the molar ratio of 
MeOH/BPA-PC was 37.5 at 240 °C, it only took 5 min for complete methanolysis of BPA-PC, with the 
yields for BPA and DMC being 90.7% and 95.2%, respectively. Furthermore, Kim et al. revealed that 
increasing the MeOH/BPA-PC molar ratio to 71 in the temperature range of 160-220 °C without catalysts 
and toxic solvents resulted in higher BPA and DMC yields, but this further increased the energy and cost 
requirements. When the ethylene glycol (EG)/MeOH co-solvent system is used, the depolymerization yield 
does not grow[38].

The monomer BPA and DPC would also be obtained with phenol as a depolymerization reagent catalyzed 
by alkali metal halides, such as potassium fluoride. The product yields could reach as high as 90% and the 
turnover frequency (TOF) value was as high as 1,392 h-1. Moreover, the mixture of BPA, DPC and phenol 
was verified to be the starting point of the polymerization to produce new BPA-PC, thus completing the 
closed cycle[39].

Ionic liquid catalysis
Despite the above progress, strong alkali-base catalysts or high temperature and pressure are inevitable. It is 
desirable to explore more mild and efficient catalytic systems. As the pioneer of ionic liquid catalytic 
depolymerization, Liu et al. developed a new process for BPA-PC methanolysis using ionic liquids as 
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Figure 1. Methanolysis, ethanolysis and phenolysis of BPA-PC. BPA-PC: Poly(bisphenol A carbonate).

catalysts[40,41]. Under the specified conditions, the yields of BPA and DMC exceeded 95% after 2.5 h using the 
ionic liquid 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) or 1-butyl-3-methylimidazolium acetate 
([Bmim][Ac]) as a catalyst. Moreover, the ionic liquid could be reused 6-8 times with almost no loss of 
reactivity. This work avoided the use of toxic transition metal ions and organic solvents, providing a green 
and promising choice for the practical recycling of BPA-PC wastes.

Organic base catalysis
Organic catalysts are considered as metal-free eco-friendly catalysts. 1,8-Diazabicyclic [5.4.0] undecan-7-ene 
(DBU), as an organic catalyst, was first employed for the alcoholysis of BPA-PC[42]. Other organocatalysts, 
such as 1,4-diazobicyclic [2.2.2] octane (DABCO) and 4-(dimethylamino) pyridine (DMAP), were less 
active than the amidine base DBU. The study was extended to EtOH and EtOH/MeOH mixtures. The 
ethanolysis reaction yielded BPA and DEC in quantitative yields, whereas in MeOH/EtOH solutions, mixed 
products of BPA and carbonates [DMC, DEC, methyl ethyl carbonate (MEC)] were obtained. Besides, 
Alberti and Enthaler studied the methanolysis of BPA-PC by microwave-assisted heating in the presence of 
catalytic amounts of DMAP[43]. Excellent activities with a TOF of up to 1,164 h-1 were observed at 180 °C.

Zinc catalysis
In recent years, eco-friendly zinc-based catalysts were found to have high activity for alcoholysis as well. 
Yang et al. have successfully achieved the selective depolymerization of BPA-PC and other commercial 
plastics under mild conditions by utilizing the bis(trimethylsilyl) amino zinc ([Zn(HMDS)2]) as 
multifunctional catalyst and methanol as the depolymerization reagent[44]. Payne et al. also prepared a series 
of ZnII-complex catalysts based on half-salan ligands, which were successfully applied for the rapid 
methanol depolymerization (12-18 min) of BPA-PC even at room temperature and low catalyst loading 
conditions[45].

Compared with various catalysts mentioned above, Alkali and Zn-based catalysts have excellent reactivity, 
organic catalysts avoid the use of metals, and ionic liquid catalytic depolymerization processes provide a 
green and sustainable pathway for the practical recycling of BPA-PC wastes.
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Glycolysis of BPA-PC to functionalized cyclic carbonates
Oku et al. investigated the reuse of waste BPA-PC as a chemical reagent using EG as a depolymerization 
reagent catalyzed by NaOH (0.1 equiv.) at 180 °C, yielding monohydroxyethyl ether of BPA (MHE-BPA, 
42%), bishydroxyethyl ether of BPA (BHE-BPA, 11%), and BPA (42%) [Figure 2][46]. They concluded that 
ethylidene carbonate (EC) is an intermediate in the reaction which would react with the simultaneously 
formed BPA to obtain the final products. It was also found that quantitative conversion of BPA-PC to BHE-
BPA was achieved within 20 min by adding additional EC (1.6 mol equiv.) to the same reaction system. 
Subsequently, Kim et al. further explored the non-catalyzed glycolysis of BPA-PC[47]. Unexpectedly, only 
BPA was found in the glycolysis product, which implied that EC did not react with BPA under non-catalytic 
conditions, but rapidly broken down into linear carbonates to produce CO2. Through the optimization of 
the reaction conditions, they found that BPA could achieve 95.6% of the maximum yield for only 85 min 
with weight ratio of EG/BPA-PC = 4, at 220 °C. To achieve efficient solvent-free glycolysis of BPA-PC, 
Nifant’ev et al. systematically studied the catalytic effects of acetate salts such as Li, Na, K, Mg, Ca and Zn on 
glycolysis of BPA-PC[48]. In the presence of Mg(OAc)2 (0.5 mol%, reaction for 15 min) or Zn(OAc)2 
(0.1 mol%, reaction for 60 min) at 180 °C, BPA and EC were obtained with high yields of 90%, 98% and 96%, 
98%, respectively. This method combined BPA-PC recycling to BPA with recycling to cyclic carbonate using 
a simple, low-cost, non-toxic metal catalyst, and is a promising chemical recycling strategy for waste 
polycarbonate.

Functionalized cyclic carbonates are important intermediates in the manufacture of fine chemicals; 
propylene carbonate and vinyl carbonate, as representative cyclic carbonates, are widely used as polar non-
protonic solvents and electrolytes in batteries[49,50]. Therefore, increasing attention has been paid to the 
conversion of BPA-PC to BPA and functionalized cyclic carbonates, since the carbonyl portion of BPA-PC 
can be used as an equivalent reagent instead of toxic CO and phosgene conforming to the goals of “green 
chemistry” and “atom economy”.

The pioneering work was done by Hata et al. in 2003; they treated BPA-PC with nucleophiles such as 
alkanedithiols, mercaptoethanol, aminoethanethiol, and aminoethanol in the presence of catalytic amounts 
of NaOH to obtain BPA and corresponding cyclic heterocarbonates [1,3-dithiopentyl-2-one (DTO) and 1,3-
dithiane-2-one (DTA)] with high yields as shown in Figure 3[34]. It was proved that BPA-PC can be used as a 
phosgene equivalent for industrial purposes. In 2009, they continued to study the alcoholysis of BPA-PC by 
biomass-based polyols such as glycerol (Gly) and glucose (Glu) [Figure 4]. In addition to obtaining BPA, 
cyclic carbonates hydroxymethyldioxolane (HMDO) and dicarbonate (Glu-DC) were produced in 97% and 
40% yields, respectively[51].

In addition, researchers have successively developed a variety of efficient catalytic systems. For example, in 
2017, Iannone et al. developed a bifunctional acid/base catalyst based on the composition of nanostructured 
zinc oxide and tetrabutylammonium chloride (ZnO-NPs/NBu4Cl), which enabled efficient chemical 
recovery of BPA-PC in 7 h at 100 °C[52]. Diverse nucleophilic reagents, including water, alcohols, amines, 
polyols, aminols and polyamines, were universally applicable, and a group of high-value compounds, such 
as functionalized carbonates and ureas were obtained [Figure 5]. The catalyst was proved to be easy to 
recover and could be recycled many times without obvious decay of reactivity. However, a strong excess of 
the nucleophilic reagent was essential. In 2018, Quaranta et al. further studied the glycolysis reaction 
catalyzed by DBU based on their previous work[53]. The high-yield BPA monomer and the corresponding 
cyclic carbonate were smoothly obtained by depolymerizing BPA-PC waste with 1,2-propylene glycol or 
Gly. Do et al. also compared a series of transesterification catalysts for the alcoholysis of BPA-PC, and they 
found that 1,5,7-triazabicyclo[4.4.0]-dec-5-ene (TBD) exhibited the best performance, which led to the 
successful synthesis of a series of high-value-added organic carbonates at only 30 °C [Figure 6][54].
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Figure 2. Glycolysis of BPA-PC (isolated yield). BPA-PC: Poly(bisphenol A carbonate).

Figure 3. Depolymerization of BPA-PC by alkanedithiols, mercaptoethanol, aminoethanethiol, and aminoethanol. BPA-PC: 
Poly(bisphenol A carbonate).

Figure 4. Alcoholysis of BPA-PC by glycerol (Gly) and glucose (Glu) (isolated yield). BPA-PC: Poly(bisphenol A carbonate).

Jehanno et al. had new progress in 2020 using protic ionic salt TBD: methanesulfonic acid (MSA) as a 
catalyst to obtain five-membered heterocyclic monomers and six-membered cyclic carbonates with good to 
excellent yields without solvents [Figure 7][55]. In 2021, they successfully subjected this catalyst to the 
selective and sequential depolymerization of mixed plastics such as BPA-PC and polyethylene terephthalate 
(PET) under solvent-free conditions and high temperatures (100-160 °C)[56]. In 2023, Olazabal et al. further 
achieved the complete depolymerization of BPA-PC using 1-methylimidazole as a solvent and imidazole as 
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Figure 5. ZnO-NPs/NBu4Cl catalyzed depolymerization of BPA-PC (GLC yield; in brackets, isolated yields). BPA-PC: Poly(bisphenol A 
carbonate).

Figure 6. TBD-catalyzed alcoholysis of BPA-PC. (NMR yields; numbers in parenthesis are isolation yields). TBD: 1,5,7-
triazabicyclo[4.4.0]-dec-5-ene; BPA-PC: poly(bisphenol A carbonate).
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Figure 7. TBD: MSA-catalyzed depolymerization of BPA-PC (NMR yields; numbers in parenthesis are isolation yields). TBD: 1,5,7-
triazabicyclo[4.4.0]-dec-5-ene; MSA: methanesulfonic acid; BPA-PC: poly(bisphenol A carbonate).

a catalyst at 50 °C for 3 h, obtaining high trimethylene carbonate (TMC) yields (81%) [Figure 8][57]. This 
method was also applied to other nucleophilic reagents, resulting in the synthesis of a number of different 
cyclic carbonyl-containing intermediates.

AMINOLYSIS OF BPA-PC AND DEPOLYMERIZATION OF BPA-PC BY OTHER 
NUCLEOPHILIC REAGENTS
In addition to alcohols, other nucleophiles such as amines have also been studied for the depolymerization 
of BPA-PC. Hata et al. initially investigated the aminolysis of BPA-PC with dialkylamines in 2002[58]. 
However, the aminolysis process using monoamines such as dimethylamine and diethylamine was not 
successful, giving BPA monomers and other oligomeric carbamate intermediates low yields. When diamine 
was used instead of monoamines, the reaction proceeded smoothly to give BPA and cyclic urea derivatives 
such as 1,3-dimethyl-2-imidazolidinone (DMI), and the six-membered cyclic urea 2,6-dimethyl-2,6-
diazacyclohexanone (DMDACH) in almost quantitative yields as shown in Figure 9. The aminolysis of 
carbamates with monoamines in the second step proceeds much more slowly than the cleavage of the 
carbonate group in the first step. However, with diamines, the intramolecular cyclization in the second step 
provides a kinetic advantage, thereby promoting the conversion to urea. In 2015, Singh et al. reported an 
unprecedented green method to react BPA-PC with primary amines to generate urea derivatives[59]. The 
carbonate moiety in BPA-PC was successfully extracted at 80 °C to prepare useful urea derivatives in 
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Figure 8. Imidazole-catalyzed alcoholysis of BPA-PC. BPA-PC: Poly(bisphenol A carbonate).

Figure 9. Depolymerization of BPA-PC by DMEDA, DMDAP, (NMR yields). BPA-PC: Poly(bisphenol A carbonate); DMEDA: N,N’-
dimethylethylenediamine; DMDAP: N,N’-dimethyl-1,3-propanediamine.

moderate yields, without the use of any catalysts or toxic organic solvents [Figure 10].

Recently, Wang et al. proposed an “amino-alcoholysis” strategy for upcycling BPA-PC plastic waste to BPA 
monomers and high-value-added chiral 2-oxazolidinone chemicals via ZnX2-catalyzed depolymerization of 
chiral amino alcohols under mild conditions [Figure 11][60]. In addition, high yields and selectivity were 
achieved in the sequential depolymerization of BPA-PC/PET mixed plastics. Using dimethyl sulfoxide 
(DMSO) as a strong polar solvent, the reaction can proceed smoothly without the necessity for a catalyst[61]. 
More importantly, BPA-PC could be efficiently depolymerized under solvent-free conditions with only one 
equivalent of depolymerizing agent. This “amino-alcoholysis” strategy was proved to be suitable for 
different types of commercial BPA-PC, and the feasibility of the method for practical application was 
further verified by scaling up the reaction. The recovered high-purity BPA was repolymerized to prepare 
new polymers, thus realizing closed-loop recycling. In addition, oxazolidinone compounds with different 
structures were obtained, demonstrating the generalizability of the method, which is important for plastic 
recycling and economic sustainability.

Jung et al. used hydroxamic acid as a nucleophilic reagent for TBD-catalyzed depolymerization of BPA-PC 
to obtain a series of dioxazolone[62]. The resulting dioxazolones could be subjected to one-pot C-H 
amidation to generate amides, which are important synthetic building blocks. As shown in Figure 12, 
amides 3a-3e were obtained in yields in the range of 69%-79%, while furanoic acid-derived dioxazolone 
showed low yields in transforming into amide 3f and BPA. This protocol promoted a green and sustainable 
process using BPA-PC as a carbonyl source instead of the toxic phosgene or 1,1’-carbonyldiimidazole (CDI) 
reagent in dioxazolone synthesis.

The chemical depolymerization of BPA-PC using α-hydroxyketone as a nucleophilic reagent was performed 
by Onida et al. in 2023[63]. The reaction was catalyzed by TBD in 2-Me-THF at room temperature to give 
higher value-added vinylidene carbonate in moderate to high yields (30%-97%, 13 instances) [Figure 13]. 
The success of TBD was attributed to its ability to activate both α-hydroxyketone and the carbonyl group of 
BPA-PC via hydrogen bonding. The practicality of the method was demonstrated by further scale-up 
experiments.
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Figure 10. Depolymerization of BPA-PC by primary amines (isolated yield). BPA-PC: Poly(bisphenol A carbonate).

Figure 11. Depolymerization of BPA-PC by amino alcohols (NMR yields). BPA-PC: Poly(bisphenol A carbonate).

REUSE OF BPA-PC DEPOLYMERIZATION MONOMERS TO PRODUCE NEW POLYMERS
The efficient depolymerization of BPA-PC plastics through alcoholysis, aminolysis and other methods has 
resulted in a variety of multifunctional monomer products which could be utilized as raw materials for the 
synthesis of new polymer materials. In this regard, the use of hydroxyethyl ether products of BPA as rigid 
copolymerization monomers has attracted attention. Oku et al. have shown that the addition of additional 
EC is the key to the formation of bis(hydroxyethyl) ether (BHEEB) during glycolysis of BPA-PC in the 
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Figure 12. Depolymerization of BPA-PC by hydroxamic acid and one-pot C-H amidation. (isolation yields; numbers in parenthesis are 
NMR yields). BPA-PC: Poly(bisphenol A carbonate).

presence of NaOH. Despite the fact that a number of inexpensive synthetic routes for EC have been 
developed, EC is not yet a commercial product, which restricts the industrial application of the method[46]. 
Instead, Lin et al. further developed a one-pot atmospheric pressure alkoxylation process based on the 
studies of Oku et al.[46,64]. On the basis of the completion of the first step in depolymerization, catalytic ZnO 
and cheap urea were added to the reaction mixture as carbonylation agents, and cyclic carbonates were 
generated in situ from EG or propylene glycol, which could be used to complete the ethoxylation or 
propoxylation process. Finally, bishydroxyethyl ether of BPA (BHE-BPA) or bishydroxypropyl ether of BPA 
(BHP-BPA) was generated as the final product. In comparison, this method offers higher selectivity and 
yields for the BPA-based diol (more than 90%). BHE and BHP products have been successfully applied as 
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Figure 13. Depolymerization of BPA-PC by α-hydroxyketone (isolated yields). BPA-PC: Poly(bisphenol A carbonate).

important raw materials in the preparation of high molecular weight polyurethane (PU) elastomers and 
plastics with excellent mechanical properties. In addition, Berti et al. have shown that it is possible to insert 
BPA groups into the polyester chain by reacting with BHEEB, resulting in terephthalate polyesters with 
higher mechanical properties and thermal stability[65].

In 2018, Pang et al. successfully achieved the synthesis of a series of BPA-PC homopolymers and 
copolymers using the chemical recycling of BPA-PC and a novel bicyclic diol octahydro-2,5-pentalenediol 
(OPD) deriving from naturally-occurring citric acid [Figure 14][66]. It was found that BHEEB not only 
compensated for the low reactivity of OPD, but also improved the brittleness of OPD-based polycarbonates 
without affecting other properties.

Gioia et al. further optimized the synthesis process of BHEEB [Figure 15], with an environmentally friendly 
catalyst K2CO3

[67]. Subsequently, purified BHEEB was polymerized with succinic acid (SA) and isosorbide 
(IS) which were derived from renewable sources. In the presence of a tin-based catalyst (MTBO), low 
molecular weight polyesters were obtained with properties suitable for coatings applications [Figure 15]. 
Furthermore, a second route was developed for recycling BPA-PC [Figure 15]. BPA-PC reacted with vinyl 
carbonate via selective decarboxylation to produce polyether-carbonate, followed by partial 
depolymerization using diols to further reduce its relative molecular weight while increasing its hydroxyl 
group number. The oligomer is also suitable for powder coating applications.
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Figure 14. Conversion of BPA-PC to sustainable polycarbonate. BPA-PC: Poly(bisphenol A carbonate).

Figure 15. Conversion of BPA-PC into novel polymers for powder coating applications. BPA-PC: Poly(bisphenol A carbonate).

Saito et al. used diols with different chain lengths to depolymerize BPA-PC into new diols containing 
carbonates, such as bis(3-hydroxypropyl) carbonate (3C), bis(4-hydroxybutyl) carbonate (4C) and bis(5-
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Figure 16. Conversion of BPA-PC to polymer electrolytes for batteries. BPA-PC: Poly(bisphenol A carbonate).

Figure 17. Conversion of BPA-PC into multifunctional intermediates to produce various PU polymers. BPA-PC: Poly(bisphenol A 
carbonate); PU: polyurethane.

hydroxypentyl) carbonate (5C); they could be further applied to obtain a group of value-added aliphatic 
polycarbonates through organic catalyzed polycondensation [Figure 16][68]. These new polymers showed 
promising ionic conductivity values that could serve as sustainable polymer electrolytes for solid-state 
batteries. Wu et al. investigated the conversion of BPA-PC into multifunctional intermediates by 
depolymerization of BPA-PC with aliphatic diamines in the absence of catalysts under mild conditions 
[Figure 17][69]. The first step of aminolysis offered hydroxyl-terminated short-chain extenders or 
prepolymers. Subsequently, a variety of PU polymers were synthesized in a one-pot by adding reagents such 
as diisocyanates. The process achieved 100% atom economy efficiency. Quaranta et al. reacted BPA-PC with 
a long-chain diamine to provide the monomer BPA (83%-95%, isolated yield) and successfully converted 
the waste BPA-PC to polyurea [Figure 18]. This is a more environmentally friendly method of synthesizing 
polyurea without the use of isocyanates[70]. The above successful examples demonstrated that BPA-PC can 
be used as a feedstock for the synthesis of new functional polymers with different properties.

Other studies of recycling BPA-PC to synthesize bio-based polycarbonates have also been reported. For 
example, in 2021, De Leo et al. achieved quantitative conversion of BPA-PC into BPA and DPC using zinc 
acetate and ionic liquids as catalysts and phenol as a nucleophilic reagent. The latter was subjected to a melt 
transesterification reaction with curcumin (CM) from natural polyphenols or its tetrahydrogenated 
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Figure 18. Reuse of BPA-PC as polyureas. BPA-PC: Poly(bisphenol A carbonate).

colorless product (THCM) to obtain the corresponding bio-based polycarbonates CM-PC and THCM-PC, 
respectively [Figure 19][71]. An innovative study was carried out by Saito et al. in 2022. BPA-PC was upcycled 
with biobased vanillin derivatives into novel dialdehyde monomers (DVEC), which could be transformed 
into poly(imide-carbonate) [P(ImC)] by polymerization with primary amines as shown in Figure 20[72]. 
P(ImC) showed full recyclability under acidic conditions, thus enabling closed-loop recycling. It is 
noteworthy that the P(ImC) prepared using different diamines and triamines [tris(2-aminoethyl)amine 
(TREN)] as starting materials has readily tunable thermal and mechanical properties, which have broader 
application prospects.

CONCLUSION AND OUTLOOK
As summarized in this review, chemical recovery strategies for alcoholysis, aminolysis or other nucleophiles 
attack on BPA-PC have been widely studied. In order to achieve complete conversion of the polymer, 
researchers have systematically explored reaction conditions such as solvents, temperatures, pressures, 
concentrations of depolymerization reagents, types and loading of catalysts. However, in the early research, 
these processes generally have some drawbacks such as the use of high toxicity and environmental organic 
solvents or transition metal catalysts, harsh reaction conditions and large energy consumption. Therefore, 
increasing green and sustainable BPA-PC depolymerization processes have been developed in recent years 
via efficient and low-cost non-toxic metal catalysts, organic catalysts and ionic liquid catalysts, and green 
solvent systems. In addition, milder and greener catalyst-free or solvent-free reaction conditions have also 
been reported. Based on the development of BPA-PC upcycling technologies, the regeneration of new 
polymer materials from monomer products obtained through the BPA-PC upcycling was also achieved, 
indicating its potential practical values.

Although methanolysis can effectively yield BPA and DMC, the low boiling point of DMC makes it prone 
to mixing with residual reaction by-products, necessitating the use of multi-stage distillation or solvent 
extraction for separation. This complex separation process may limit the scalability of industrial 
applications. Compared with methanolysis, DEC obtained via ethanolysis has a higher boiling point, 
making separation relatively easier. However, due to potential azeotrope formation between DEC and by-
products, precise distillation equipment is still required for effective separation. Given that aminolysis yields 
various amino derivatives, traditional separation methods may require multiple extractions or column 
chromatography techniques. To enhance separation efficiency, exploring continuous flow synthesis systems 
or membrane separation technology could reduce cross-contamination of products.
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Figure 19. Conversion of BPA-PC to bio-based polycarbonate THCM-PC. BPA-PC: Poly(bisphenol A carbonate).

Figure 20. Conversion of BPA-PC to bio-based polycarbonate P(ImC). BPA-PC: Poly(bisphenol A carbonate).

In the future, efficient and low energy consumption depolymerization technology is an important trend, 
which needs more efficient catalysts and sustainable depolymerization processes. Except for the 
homogeneous catalysis depolymerization of BPA-PC, heterogeneous catalysis processes have the advantage 
of allowing the catalyst to be reused several times, but they also exhibit low reactive activity. Meanwhile, the 
sustainable processes are also imperative demands for the industrialization of BPA-PC depolymerization. 
Moreover, although chemical catalysts play a crucial role in depolymerization reactions, the challenges of 
product separation and purification must be addressed to achieve large-scale industrial implementation of 
these methods. Future research should focus more on these aspects to develop cost-effective and sustainable 
recycling processes.
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