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Abstract
Aim: Images in different laparoscopic cholecystectomy datasets are acquired using various camera models, 
parameters, and settings, with the annotation methods varying by institution. These factors result in inconsistent 
inference performance of the network model. This study aims to identify the optimal network model architecture 
for liver and gallbladder segmentation from several options. Then, the performance and robustness of the optimal 
network model are evaluated using an independent dataset that is not included in the training.

Methods: The public dataset, CholecSeg8k, was utilized as the input for the network model training, validation, and 
testing. A local private dataset from KPJ Damansara Hospital, Selangor, Malaysia, was used for testing purposes 
only. For the implementation of liver and gallbladder segmentation, segmentation models, a public Python library 
was employed.

Results: Among the experiments, highly accurate liver and gallbladder segmentation results were achieved using 
the feature pyramid network (FPN) architecture as the network model, with the Inception-ResNet-v2 architecture 
as the network backbone. The best-trained network model resulted in a loss of 0.070955, a mean intersection over 
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union (IoU) score of 0.95896, and a mean F1-score of 0.9773 on the test set. However, visualized results for the 
private dataset contained considerable false-negative areas.

Conclusion: The proposed automated technique has the potential to serve as an alternative to the conventional 
indocyanine green injection along with near-infrared fluorescence imaging (ICG-NIRF)-based method for liver and 
gallbladder segmentation during laparoscopic cholecystectomy. Future work will focus on enhancing the results of 
the private dataset. Additionally, a surgeon-assistant robotic arm that will use the liver and gallbladder 
segmentation results for camera steering will be analyzed.

Keywords: Artificial intelligence, convolutional neural network, deep learning, computer vision, liver and gallbladder 
segmentation, laparoscopic cholecystectomy

INTRODUCTION
During laparoscopic surgery, a laparoscopic camera serves as the surgeons’ “eyes”, enabling them to see the 
inside of the body and perform procedures without large incisions. Moreover, surgical navigation is a 
guideline for surgeons to make laparoscopic surgery safer and more efficient. Various navigation systems 
have been introduced to help surgeons visualize and navigate abdominal organs during laparoscopic 
surgery. Fu et al. investigated conventional non-artificial intelligence (AI)-based laparoscopic surgery 
navigation methods such as the use of computed tomography (CT)/magnetic resonance imaging (MRI) 
images taken before surgery, ultrasound images taken during surgery, indocyanine green injection along 
with near-infrared fluorescence imaging (ICG-NIRF) technology, and fusion of photos taken before and 
during surgery[1]. However, each of these techniques may face its own set of challenges. In the ICG-based 
navigation method, Indocyanine Green, a liquid contrast, is injected into the patient’s body. When ICG is 
irradiated by near-infrared light, it emits fluorescence radiation that can be detected and visualized by a 
special camera. The ICG-NIRF imaging method aids the surgeon to observe the surgical field by visualizing 
the hepatocystic structure effectively, as referenced by Wang et al. and Wendler et al.[2,3]. Zaffino et al. 
discussed the drawbacks of the ICG-NIRF imaging technique[4]. Spontaneous fluorescence radiation of 
healthy tissues may conflict with the fluorescence radiation of contrast agents in cancerous tissues. 
Therefore, it creates a low-quality video and image. An additional challenge is the time dedicated to imaging 
before or during laparoscopic surgery. The cost of this imaging technique is also considered an issue.

AI-based surgical navigation during laparoscopic surgery has emerged as a promising field. In the context of 
AI and computer vision, organ segmentation determines the boundary of an internal organ in medical 
images including X-rays, CT, MRI, ultrasound, and laparoscopic images. Accurate organ segmentation 
helps physicians and surgeons to detect diseases and make appropriate medical treatment decisions. An 
automated deep learning-based method could be an alternative to the conventional ICG-NIRF technique 
for segmenting the biliary structure during laparoscopic liver surgeries. The ICG-based method and 
symbolic representation of the deep learning-based approach are illustrated in Figure 1. Such enhanced 
visualization can assist novice surgeons and aid them in training purposes. Additionally, it can be applied in 
the critical view of safety (CVS) assessment.

To help the surgeon perform a safe laparoscopic cholecystectomy, Madani et al. segmented the liver, 
gallbladder, and a few other parts of the hepatocytic structure in the frames were extracted from 
laparoscopic cholecystectomy videos[5]. This segmentation was performed by applying the PSPNet network 
model designed for image segmentation. Scheikl et al. segmented five different classes, including liver and 
gallbladder, in laparoscopic cholecystectomy images[6]. The performance of various network models was 
evaluated in their research. The best segmentation result was related to the ternausNet-11 network model 
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Figure 1. Liver segmentation by ICG-NIRF technique (left); Deep learning-based technique (right). The image on the right is created by 
photo editing software. ICG-NIRF: Indocyanine green injection along with near-infrared fluorescence imaging.

with the weights trained on the ImageNet dataset in the encoder part. Mascagni et al. performed 
segmentation for seven organs, including the gallbladder, in images captured from laparoscopic 
cholecystectomy videos using the DeeplabV3+ network model[7]. Their research objective was to assess the 
CVS automatically for a safer laparoscopic cholecystectomy. The researchers have expanded their study. 
They have designed a software application called SurgFlow with AI-based capabilities to help surgeons 
during laparoscopic cholecystectomy[8]. SurgFlow contains gallbladder segmentation in the subsection of 
hepatocystic anatomy segmentation by applying the DeepCVS network model. According to the surgeons’ 
opinions engaged in this research, hepatocystic anatomy and surgical tool segmentation accompanied by 
phase detection were helpful for surgeons during laparoscopic cholecystectomy. It was due to a decrease in 
bile duct injuries caused by automated CVS assessment. The dataset utilized in their application was 
annotated following the annotation protocol offered by Mascagni et al.[9]. Although, at the time of their 
research, SurgFlow was not practical in service by a surgeon during laparoscopic cholecystectomy, it might 
be considered a satisfactory attempt to advance AI in the laparoscopic cholecystectomy domain. Alt et al. 
proposed a technique to segment the gallbladder in 3D images captured by an RGB-D camera during 
robotic laparoscopic cholecystectomy[10]. They performed gallbladder segmentation using the LapSeg3D 
network model (a modified 3D U-Net).

In AI-based applications, one of the important prerequisites is the availability of videos recorded during 
laparoscopic surgeries[11]. In addition, labeled videos annotated by experts are required, while the annotation 
task is crucial in preparing surgical data[12]. As a challenge, images of laparoscopic cholecystectomy datasets 
are captured by different camera parameters and settings. Moreover, annotation techniques vary among 
institutions. These limitations cause variations in the network model inference performance. Therefore, as 
presented in the literature[8], there is a gap in the analysis of using different datasets for the training and 
testing stages to achieve robust organ segmentation during laparoscopic cholecystectomy.

The present study aims to analyze the prediction performance of several network models for real-time liver 
and gallbladder segmentation and to specifically assess the robustness of the best-trained network model 
identified through the experiments. The liver and gallbladder segmentation performance analysis was 
conducted by training various network models and backbones embedded in the open-source segmentation 
models Python library and utilizing different network parameters. This training was performed on the 
CholecSeg8k dataset, which consists of images extracted from laparoscopic cholecystectomy videos. To 
evaluate the robustness of the best-trained model, additional analysis was carried out using a private dataset 
provided by KPJ Damansara Hospital.

METHODS
In the present research, when the surgeon needs to identify the precise borders of the liver and gallbladder 
during laparoscopic cholecystectomy, the liver and gallbladder segmentation command is sent by the 
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surgeon by pressing a button or selecting an icon on a touchpad screen. The graphics processing unit (GPU) 
subsequently receives the image of the current surgical field of view from the laparoscopic camera. Then, 
this image is passed to the saved trained network model to predict liver and gallbladder segmentation in the 
image. Ultimately, the segmented liver and gallbladder are displayed on the surgeon’s monitor. The overall 
flow of the network model training process (offline phase), along with the proposed automated real-time 
liver and gallbladder segmentation technique during laparoscopic cholecystectomy (online phase), is 
depicted in Figure 2.

Dataset
For network model training, validation, and testing, a publicly online accessible dataset termed CholecSeg8k 
was utilized, along with a local private dataset from KPJ Damansara Hospital, Selangor, Malaysia. 
CholecSeg8k encompasses 8,080 laparoscopic cholecystectomy images extracted from 17 videos. All images 
are in portable network graphic (PNG) file format and sized at 854 × 480. The annotations for these images 
include 13 classes, referencing Hong et al.[13]. In this study, a subset of 4,040 images from the CholecSeg8k 
dataset were randomly selected. The data were divided into 2,828 images for training, 808 for validation, 
and 404 for testing, corresponding to 70%, 20%, and 10% of the selected images, respectively. The random 
image selection process and grouping were carried out by Python code. It is important to note that photos 
captured using the ICG-NIRI technique were excluded from the dataset. As part of the pre-processing steps, 
Python code was employed to resize and crop all images to 480 × 480 dimensions for the liver and 
gallbladder segmentation task. The private dataset was used just for the result testing.

Liver and gallbladder segmentation network model
Segmentation of more than one object in an image, such as the liver and gallbladder, is commonly referred 
to as multi-class segmentation but is termed segmentation for convenience here. Liver and gallbladder 
segmentation was implemented using the open-source segmentation models Python library, distributed 
under the MIT License[14]. This library incorporates four distinct network models and 25 backbones. He et 
al. introduced a backbone as a pre-trained network model that provides pre-established weights to facilitate 
feature extraction during the encoding path[15]. All network models and backbones available in segmentation 
models were trained, validated, and tested on the CholecSeg8k dataset. The best-trained network and 
backbone were feature pyramid network (FPN) and Inception-ResNet-v2, respectively. The FPN network 
model produces predictions at multiple scales. These predictions are combined to generate the final 
segmentation result. Therefore, the segmentation result obtained from FPN carries information that ranges 
(real-time) from fine to coarse details. The FPN network model is a suitable choice for object segmentation 
applications where objects vary in size[16]. Inception-ResNet-v2 is a fusion of the Inception[17] and ResNet[18] 
network models in which Inception Residual blocks replace Inception blocks to prevent vanishing gradient 
obstacles in deeper network layers[19]. The network loss function comprised the sum of dice loss and binary 
focal loss, with a scale equal to 1. Evaluation metrics included the intersection over union (IoU) score and 
the F1-score. The loss function, IoU score, and F1-score are defined as:

loss = Dice Loss + (1 × Binary Focal Loss)                                                        (1)

(2)where A is the predicted bounding box and B is the ground truth bounding box.

(3)
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Figure 2. (A) Workflow of the network model training process (offline); (B) Workflow of automated liver and gallbladder segmentation.

In this research, the reported evaluation metrics and loss values reflected the average performance of liver 
and gallbladder segmentation calculated over the test set.

RESULTS
The training, validation, and test stages were conducted on an NVIDIA GeForce RTX 3060 GPU with 
12 GB of RAM, utilizing Ubuntu 20.04 operating system and Python 3.9. Four network models with 25 
backbones from the segmentation models Python library were employed in the training sessions. The 
number of epochs was considered to be 40 in different experiments. Observations indicated that the 
network overfits when the number of epochs exceeds 40. Figure 3 reveals this point. The learning rate was 
adjusted to 0.01, 0.001, and 0.0001. Due to hardware constraints, batch sizes were consistently set to 4 in all 
experiments. All the backbones are pre-trained on the ImageNet dataset, leveraging existing weights. The 
loss, mean IoU score and mean F1-score express the average loss and evaluation metrics for liver and 
gallbladder segmentation, respectively. Their averages were computed over the entire test set. The liver and 
gallbladder segmentation experiments yielded the top three results from the three best-trained network 
models. The optimal liver and gallbladder segmentation outcome on the CholecSeg8k dataset was achieved 
using FPN as the network model, combined with Inception-ResNet-v2 as the backbone, with 40 epochs and 
a learning rate of 0.0001. Two more top results were achieved by keeping the number of epochs and 
learning rate the same as the top result but using a modified network model and backbone. Table 1 details 
the segmentation results of the three best-trained network models. The presented loss and metrics are 
averages across the test set.
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Table 1. Top three liver and gallbladder segmentation results from the top three best-trained network models

No. Network model Network backbone Loss Mean IoU score Mean F1-score

1 FPN Inception-ResNet-v2 0.070955 0.95896 0.9773

2 FPN DenseNet201 0.0696 0.9583 0.97707

3 U-Net EfficientNetB4 0.069792 0.95832 0.97692

IoU: Intersection over union; FPN: feature pyramid network.

Figure 3. Plot of iou_score values in terms of epochs for training and validation (left); Plot of loss values in terms of epochs for training 
and validation (right).

To simulate real-time liver and gallbladder segmentation prediction, a webcam captured photos of color-
printed cholecystectomy images. These images were selected from the CholecSeg8k dataset and were unseen 
by the network model. Afterward, photos were passed to the saved network model for segmentation 
prediction. Figure 4 visualizes the top three liver and gallbladder segmentation prediction results from the 
three best-trained network models. In Figure 5, the main image is overlaid with the liver and gallbladder 
segmentation results generated by the first top network model. In the continuation of this research, images 
from the private dataset were utilized in a separate experiment to validate the effectiveness and reliability of 
the best-trained network model for liver and gallbladder segmentation prediction. However, the result was 
not satisfactory. A random image from the private dataset was input into the saved first best-trained 
network model, and its liver and gallbladder segmentation prediction is illustrated in Figure 6. Due to the 
unavailability of labeled images for the private dataset, calculating the loss and metrics was impractical.

DISCUSSION
The present study investigates liver and gallbladder segmentation in laparoscopic cholecystectomy images 
using the segmentation models Python library. The FPN network model incorporating Inception-ResNet-v2 
as its backbone outperformed other combinations. The F1-score and IoU score for the leading result were 
0.9773 and 0.95896, respectively. It demonstrated that the segmentation models library generated promising 
liver and gallbladder segmentation results in laparoscopic images. The success could be attributed to the low 
data imbalance between the liver and non-liver areas in laparoscopic images of the CholecSeg8k dataset. 
The best-trained network model did not generate acceptable liver and gallbladder segmentation results on 
the private dataset and faced significant challenges. The challenges and their proposed solutions for 
segmentation improvement to accomplish a robust network model are discussed below.

• Some details of the images of the private dataset were lost when resized to the size of images in 
CholecSeg8k. Using a more effective image resizing algorithm will reduce information loss in resized 
images.
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Figure 4. Liver and gallbladder segmentation results. (A) Original image; (B) Ground truth; (C) First top result; (D) Second top result; (E) 
Third top result. Areas with red, green, and blue colors depict the liver, gallbladder, and other classes (background), respectively.

Figure 5. The main image overlaid by the first top liver and gallbladder segmentation results.

• In some parts, areas covered with blood were confused with the liver. This problem may be prevented by 
including blood segmentation in the network model training. It should also be considered that blood on the 
liver and gallbladder is not a separate organ and needs to be detected as a part of its container organ.
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Figure 6. Random image from the private dataset (left); Segmented liver and gallbladder (right). The red, green, and blue colors 
correspond to the liver, gallbladder, and other classes (background), respectively.

• White areas caused by lighting should be considered part of the containing organ.

• In the case that images from other datasets are used just in the network model evaluation, domain 
adaption techniques can be employed to refine the results.

• Due to the unavailability of annotated images for the private dataset, the fine-tuning method is not 
applicable.

A comparative analysis was conducted between Madani et al. and the top result of the current research[5]. 
The mentioned article was one of the few papers with available liver and gallbladder segmentation results. 
The details of this comparison are elaborated in Table 2. The mean IoU score and mean F1-score represent 
the average liver and gallbladder segmentation performance metrics on the test set. The IoU score and mean 
F1-score in the first row were calculated by averaging the individual scores for liver and gallbladder 
segmentation reported by Madani et al.[5].

The strength of this research is the combination of FPN with the Inception-ResNet-v2 backbone that 
produced acceptable liver and gallbladder segmentation results. Using a local private dataset for liver and 
gallbladder segmentation enhanced collaboration among AI experts, data scientists, and medical 
professionals in local hospitals. However, a limitation of this study was its reliance on a single dataset for 
training and validation, which undermined the generalization of the segmentation prediction and 
robustness of the network model.

Table 2. Comparison of the network model details for liver and gallbladder segmentation between Madani et al. and current 
research[5]

Ref. Dataset Number of frames Network model Network backbone Mean IoU score Mean F1-score

Madani 
et al.[5]

Videos from 136 institutions 2,627 PSPNet[20] ResNet50 0.79 0.88

Current CholecSeg8k 4,040 FPN Inception-ResNet-v2 0.95896 0.9773

IoU: Intersection over union; FPN: feature pyramid network.
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Future research endeavors will refine the segmentation result through domain adaptation techniques to 
address challenges in using images from different datasets. The performance of the network model will be 
further validated through larger-scale clinical trials. Moreover, a robotic arm that leverages the liver and 
gallbladder segmentation results will be analyzed to assist surgeons in camera steering during laparoscopic 
cholecystectomy.

In conclusion, the proposed automated technique offers a promising alternative to the traditional ICG-
NIRF-based method for improved visualization of the liver and gallbladder during laparoscopic 
cholecystectomy. This enhanced visualization will benefit novice surgeons, be valuable for educational 
purposes, and potentially aid in CVS assessment.
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