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Abstract
Electrochemical biomass upgrading is a promising substitute for oxygen evolution reaction (OER) to generate 
valuable chemicals in conjunction with hydrogen generation. Pursuing highly efficient and durable electrocatalysts 
for significant concentration levels (≥ 50 mM) of biomass electrooxidation remains an enduring challenge. Herein, 
we introduce a robust Cu-supported CoFe Prussian blue analogue (CoFe PBA/CF) electrocatalyst, adept at 
facilitating high-concentration (50 mM) 5-hydroxymethylfurfural (HMF) oxidation into 2,5-furandicarboxylic acid 
(FDCA), achieving an exceptional HMF conversion (100%) with a notable FDCA yield of 98.4%. The influence of 
copper substrate and adsorption energy are therefore discussed. Impressively, the CoFe PBA/CF electrode sustains 
considerable durability in a continuous-flow electrochemical reactor designed for consecutive FDCA production, 
showcasing FDCA yields of 100/94% at flow rates of 0.4/0.8 mL·min-1 over 60 h’ uninterrupted electrolysis. This 
work provides a promising strategy to develop highly efficient and robust electrocatalysts for the consecutive 
production of high-value products coupled with green H2 production.
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INTRODUCTION
Hydrogen production through electrolytic water splitting is a crucial approach to achieving green and 
sustainable development[1-4]. However, the sluggish anodic oxygen evolution reaction (OER) kinetics and 
elevated overpotential pose challenges for water electrolysis, resulting in reduced hydrogen production 
efficiency and increased energy consumption[5-7]. Considering the significant equilibrium potential [1.23 V 
vs. the reversible hydrogen electrode (RHE)] and elevated overpotential (≥ 190 mV) of OER[8,9], it is 
necessary to substitute such anodic OER with the electrocatalysis of oxidation reactions that involve small 
organic molecules, which exhibit more favorable thermodynamics and economic value[10-12]. One such 
typical reaction is the 5-hydroxymethylfurfural (HMF) electrocatalytic oxidation reaction (HMFOR)[13-15]. 
The oxidation product (FDCA) serves mainly as a monomer substitute for fossil fuel-derived terephthalic 
acid in the production of polyethylene terephthalate (PET)[16], and is listed among the top ten most 
important bio-platform chemicals by the US Department of Energy[17,18].

Recently, transition metal-based electrocatalysts have received considerable attention due to the high 
conversion, selectivity, and stability in HMFOR[13,15,19-21]. In many studies, small volumes of dilute HMF (≤ 
10 mM) are typically utilized in an H-type cell to investigate electrocatalyst characteristics and reaction 
mechanisms. However, given the fact that high concentration of HMF (≥ 50 mM) is employed in traditional 
thermochemical oxidation processes[22-24], a HMF solution with elevated concentration is desired to be 
adopted in the electrocatalytic oxidation process for potential industrial applications. A primary challenge 
in the electrocatalytic oxidation of high-concentration HMF lies in the fast degradation into humin (by-
products) in strong alkali solutions prior to conversion into desired products[25-28]. Therefore, accelerating 
mass transfer and conversion rates of HMF in the reaction system are crucial to achieving an electrically 
driven alternative to the traditional thermocatalytic conversion of HMF.

Prussian blue analogue (PBA) derived materials have the advantages of high surface area, uniform porous 
structure, and structural tunability[29-31]. Studies indicate that PBA materials can be readily reconstituted into 
ultrathin two-dimensional (2D) hydroxyl oxide nanosheets during electrocatalysis, which is considered as 
the active phase for HMFOR[32]. Notably, the activity of hydroxyl oxide generated through this approach 
significantly surpasses that of bulk hydroxyl oxide materials, providing a substantial catalytic 
advantage[33-35]. Furthermore, recent studies propose that Cu can suppress the deprotonation of OH* to O* 
species and enhance the adsorption and oxidation of aldehyde in HMF, thereby passivating water oxidation 
activity and enhancing the overall efficiency of HMFOR[36-38]. Therefore, constructing a self-supported PBA 
catalyst grown on Cu foams is expected to yield elaborately designed catalysts with well-organized 
structures and highly exposed active sites, which are anticipated to accelerate the HMF adsorption and 
conversion into desired products[39].

In this study, we developed a self-supported CoFe PBA nanocube propagating on Cu foam (CoFe PBA/CF) 
via a one-step hydrothermal method for the oxidation of HMF to FDCA under high-concentration 
conditions (50-100 mM). The integration of Cu substrate not only perpetuates PBA structural regularity and 
escalates the number of surface-active sites, but also modulates the surface electronic state of Co within the 
catalyst. This modification augments the adsorption efficiency of HMF on the catalyst surface, thus favoring 
the electrooxidation process of HMF to FDCA. Moreover, a continuous flow reactor was designed to 
circumvent the impediments posed by diffusion limitation of high-concentration electrolyte during 
HMFOR and realize the consecutive production, thus fostering the practical application of the 
electrocatalytic conversion process from HMF to FDCA.
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EXPERIMENTAL
Materials
Cobalt acetate tetrahydrate (C4H6CoO4·4H2O), polyvinylpyrrolidone, and potassium hydroxide (KOH) were 
purchased from Aladdin Company. Sodium citrate dihydrate (C6H5Na3O7·2H2O) and potassium 
ferricyanide (K3FeC6N6) were obtained from Macklin Company. Cu foam was purchased from Kunshan 
Guangjiayuan new material Co., Ltd. Materials 5-hydroxymethyl furfuraldehyde (HMF), 2,5-diformyl furan 
(DFF), 5-hydroxymethyl-2-furan carboxylic acid (HMFCA), 2,5-furandicarboxylic acid (FDCA) and 
5-formyl furan-2-carboxylic acid (FFCA) were obtained from Shanghai Titan Scientific Co., Ltd. Deionized 
water was used in all experiments, and all the reagents mentioned above were not further treated.

Preparation of CoFe PBA/CF
The synthesis process proceeded as follows: Initially, solution A was prepared by dissolving 0.1 g of cobalt 
(II) acetate tetrahydrate, 0.14 g of trisodium citrate dihydrate, and 1 g of polyvinylpyrrolidone in 6.5 mL of 
deionized water. Concurrently, solution B was prepared by dissolving 0.0667 g of potassium 
hexacyanoferrate (III) in 10 mL of deionized water. Subsequently, solution B was introduced into solution A 
while subject to magnetic stirring, and the resulting mixture was stirred continuously for 75 s. Following 
this, the solution obtained, along with a piece of cleaned Cu foam measuring 1 × 2 cm2, was transferred into 
a 100 mL Teflon-lined stainless-steel autoclave. The autoclave was sealed and subjected to heating at 100 °C 
for 16 h. Upon completion of the heating process, the autoclave was allowed to cool to room temperature. 
The resulting CoFe PBA supported on Cu foam was then washed successively with deionized water and 
ethanol, and finally dried at 60 °C.

Preparation of CoFe PBA-CF
The remaining solid from the synthesis of CoFe-PBA/CF was collected through centrifugation and 
subsequently dried under vacuum conditions at 60 °C overnight to obtain CoFe PBA. To prepare the 
catalyst dispersion, 1.5 mg of the catalysts were combined with 1,000 µL of isopropanol and 20 µL of Nafion 
solution. This mixture was then subjected to ultrasonication for a duration of 1.5 h. For the fabrication of 
the working electrode, the as-prepared catalyst dispersion was applied to half of a piece of cleaned Cu foam 
(1 × 2 cm2) and left to dry at room temperature to obtain CoFe PBA-CF.

Physical methods
Scanning electron microscopy (SEM) was conducted using a Hitachi S-4800. Transmission electron 
microscopy (TEM) characterization and elemental mapping measurements were performed on a FEI Tecnai 
G2 F20. X-ray powder diffraction (XRD) characterization was recorded on a Bruker Corporation D8 
ADVANCE with a Cu Kα source (1.54056 Å). X-ray photoelectron spectroscopy (XPS) was conducted using 
a Thermo Fisher Scientific ESCALAB 25. Fourier transform infrared spectroscopy (FTIR) characterization 
was recorded on a Thermo Fisher Scientific Nicolet iS50.

In-situ Raman spectroelectrochemical measurement
Raman spectra were obtained utilizing a confocal Raman microscope (Horiba LabRAM HR Evolution) 
employing a 633 nm excitation wavelength and a 50× objective. Each displayed Raman spectrum was 
gathered over a 30-second collection period and represents the average of three measurements.

In-situ electrochemical impedance spectroscopy tests
In situ electrochemical impedance spectroscopy (EIS) measurements were carried out in a three-electrode 
system using the Corrtest electrochemical workstation (CS310X), under the same conditions as OER and 
HMF oxidation experiments, but without stirring. The frequency range was from 104 to 10-2 Hz, and the 
applied potential ranged from 1.2 V to 1.7 V vs. RHE with a 0.05 V interval. EIS measurements for OER 
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were performed in 1 M KOH, while for HMF oxidation, they were conducted in 1 M KOH and 50 mM 
HMF, respectively.

High-performance liquid chromatography analysis of oxidation products
A 10 μL aliquot was periodically extracted from the electrolyte solution during chronoamperometry at 
1.45 V vs. RHE and diluted with 990 μL of water. The resulting sample solutions were then analyzed using 
high-performance liquid chromatography (HPLC, Thermo Fisher Scientific, UltiMate3000) at room 
temperature to calculate the HMF conversion and yields of oxidation products. The HPLC system was 
equipped with a 265 nm ultraviolet-visible detector and a 4.6 mm × 250 mm C 18 column. The eluent 
solvent consisted of a 5 mM ammonium formate aqueous solution and methanol. Separation and 
quantification were achieved using an isocratic elution of 70% ammonium format and 30% methanol for a 
10-minute run time, while the flow rate was set at 0.6 mL·min-1.

The conversion (%) of HMF, the yield (%) of FDCA and Faradaic efficiency (FE) for FDCA production 
were calculated based on

Where mcon represents mol of HMF consumed, mini indicates mol of HMF initial, mfor stands for mol of 
FDCA formed, C points to total charge passed, F denotes Faraday’s constant (96,500 C·mol-1), and n is the 
electron transfer number during the electrooxidation process.

Design of flow reactor
The components of the flow reactor were designed and purchased from Shanghai Chuxi Industrial Co., Ltd. 
The length, width, height and the wall thickness of the reactor are 4, 4, 4, and 1.5 cm, respectively.

Electrocatalytic experiments
Electrochemical measurements (OER and HMFOR) were conducted using a Corrtest electrochemical 
workstation (CS310X) potentiostat with a three-electrode configuration in 1 M KOH solution. The Hg/HgO 
electrode served as the reference electrode. All potentials mentioned in this paper were referenced to the 
RHE through calibration. The electrochemical experiments (OER and HMFOR) were performed in a 10 mL 
1.0 M KOH aqueous solution with and without 50 mM HMF. The cyclic voltammetry (CV) tests are 
conducted on the CoFe PBA/CF and CoFe PBA-CF catalysts in an alkaline electrolyte to induce their 
reconstruction. Under alkaline conditions and electric drive etching, the N=C–Fe groups gradually break 
and leach out. When the CV curves overlap completely (after ~100 cycles), the material reconstruction is 
complete. Linear sweep voltammetry (LSV) was conducted using the three-electrode configuration at a scan 
rate of 2 mV·s-1.

For the two-electrode electrolysis in the electrochemical continuous flow reactor, CoFe PBA/CF was used as 
the anode catalyst, and platinum mesh was used as the cathode catalyst at 1.4 V. The double-layer 
capacitance (Cdl) was determined by analyzing the CV curves obtained in the non-faradaic region at 
different scan rates.
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Density functional theory
All density functional theory (DFT) calculations were conducted by using the Vienna Ab Initio Simulation 
Package (VASP)[40,41], using the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof 
(PBE) for the exchange-correction functional[42]. The effective U for Co (Ueff = 3.7 eV) was obtained by 
analyzing the highly localized 3d orbitals of metal ions[43,44]. A cut-off energy of 400 eV was employed. The 
energy change was < 10-5 eV per atom and the iterative process considered was converged when the force on 
the atom was < 0.03 eV·Å-1. Spin-polarized calculations were incorporated to describe the magnetic 
properties of Co element.

The CoOOH (001) surface was modeled with p (2 × 2) unit cell and the Brillouin-zone integrations were 
performed using a (3 × 3 × 1) Monkhorst-Pack mesh during the optimization. The optimized (CoOOH) 4 
cluster was placed onto the Cu(111) with p (5 × 5) unit cell of three layers, obtaining the CoOOH/Cu(111) 
model. The model was simulated using extensive ab initio molecular dynamics (AIMD) simulation, and the 
oscillation amplitude of total energy gets small, indicating that the steady state has been reached and the 
great stability was confirmed. One OH group was removed to establish surfaces with oxygen vacancy 
[CoOOH-Ov and CoOOH-Ov/Cu(111)].

The Gibbs free energies (G) at 298.15 K and 1 atm were calculated by:

The EDFT and EZPE represent the total energy obtained from DFT optimization and the zero-point vibrational 
energy using the harmonic approximation, respectively[45]. CV, T and S are the heat capacity, kelvin 
temperature and the entropy, respectively.

RESULTS AND DISCUSSION
Structural and morphological characterizations
The CoFe PBA/CF was synthesized through a hydrothermal synthesis method, exhibiting an evenly 
distributed and meticulously arrayed continuum of the nanocubes with a diameter of approximately 500 nm 
[Figure 1A and B]. A high-resolution transmission electron microscope (HRTEM) image reveals these 
structures uphold a defective cube orientation [Figure 1C] and a lattice spacing of 5.12 Å is observed, which 
can be attributed to the (200) crystal planes inherently presenting in CoFe PBA (Figure 1C, inset). Energy-
dispersive X-ray spectroscopy (EDX) mapping [Figure 1D] illustrates the even distribution of elements on 
the nanocube, and the inclusion of Cu elements confirms that Cu foam serves not only a supporting role 
but also facilitates the overall electronic environment of the catalyst. For comparative analysis, powdered 
CoFe PBA was synthesized using the same method but without growth on Cu foam [Supplementary Figures 
1 and 2]. Drip-casting CoFe PBA powder onto the surface of Cu foam (CoFe PBA-CF) resulted in uneven 
distribution and weak binding between the PBA nanocubes and Cu foam. This comparison suggests that the 
incorporation of a Cu substrate significantly regularizes the arrangement of PBA nanocubes.

It is well-established that the catalytic efficacy of transition metal derivatives becomes active only after 
undergoing reconstruction to transform into hydroxides[46,47]. We conducted a detailed comparison of the 
structural evolution between the CoFe PBA/CF and CoFe PBA-CF electrodes after electric-driven 
reconstruction in KOH solution [Figure 1E-G, Supplementary Figure 3]. The initially well-aligned PBA 
nanocubes experienced complete reconstruction, leading to the formation of distinct Co(OH)2 nanosheets. 
Element mapping [Figure 1H] indicates the presence of Co and Cu elements, while the levels of Fe and N 
elements significantly decrease in the reconstructed nanosheets. Accompanied by XRD [Figure 1I], FTIR 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
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Figure 1. Material characterizations of the CoFe PBA/CF sample. (A and B) SEM, (C) HRTEM images, and (D) EDX mapping; (E and F) 
SEM, (G) HRTEM images, and (H) EDX mapping after reconstruction in KOH solution; (I) XRD pattern and (J and K) XPS spectra of Co 
2p and Fe 2p for CoFe PBA/CF and CoFe PBA-CF samples before and after reconstruction in KOH solution. CoFe PBA/CF: Cu-supported 
CoFe Prussian blue analogue; SEM: scanning electron microscopy; HRTEM: high-resolution transmission electron microscope; EDX: 
energy-dispersive X-ray spectroscopy; XRD: X-ray powder diffraction; XPS: X-ray photoelectron spectroscopy.

[Supplementary Figure 4] and inductively coupled plasma (ICP) results [Supplementary Table 1], it can be 
confirmed that the breakage of Co–N bonds and subsequent dissolution of Fe species occur during the 
reconstruction of PBA to amorphous hydroxides. Surface electronic states were further characterized by 
XPS. The peaks for Co 2p3/2 and 2p1/2 were observed at around 780.8 and 797.4 eV [Figure 1J], while Fe 2p1/2 
and 2p3/2 were located at 721.4 and 708.4 eV, respectively [Figure 1K]. Specifically, the Co 2p2/3 spectrum 
could be decomposed and assigned to Co–N (780.8 eV) and Co–O (783.0 eV) species[48,49]. Compared to 
CoFe PBA-CF, CoFe PBA/CF exhibited a negative shift of 0.11 eV, indicating the electron-rich properties of 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
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Cu-induced surface Co species, which persisted even after reconstruction. However, no Fe species was 
detected [Supplementary Figure 5], suggesting the dissolution of Fe atoms during reconstruction of PBA, 
consistent with the EDX [Supplementary Figure 6] and ICP results. Therefore, we infer that the active 
species for HMF oxidation mainly originates from the Co-based hydroxides during the electrocatalytic 
reaction.

HMFOR performance of the surface reconstructed CoFe PBA/CF electrode
An H-type electrochemical cell, utilizing 1.0 M KOH as the cathodic electrolyte and a solution containing 
50 mM HMF in 1.0 M KOH as the anodic electrolyte, was employed to assess the electrochemical HMFOR 
performance of CoFe PBA/CF and CoFe PBA-CF [Supplementary Figure 7]. LSV curves were measured at a 
scan rate of 2 mV·s-1 to compare the competing reactions between OER and HMFOR [Figure 2A, 
Supplementary Figure 8]. The self-supported CoFe PBA/CF electrode exhibited the lowest potential of 1.20/
1.38 V vs. RHE at 10/100 mA·cm-2 for HMF oxidation (50 mM in 1 M KOH) compared to the CoFe PBA-
CF electrode (1.30/1.53 V vs. RHE) and the condition without HMF (1.45/1.60 V vs. RHE). To further 
elucidate the interfacial electrochemical behavior during the catalytic process, in situ EIS was conducted, 
and the corresponding Bode phase plots are presented in Figure 2B and C. The low-frequency region (10-2 
to 101 Hz) is related to the nonhomogeneous charge distribution, specifically the appearance of oxidation 
species at the electrode interface[50,51]. A peak is found in the low-frequency region at 1.45 V either with or 
without HMF, indicating OER occurs at the electrode surface. The introduction of HMF results in an 
additional peak at 1.25 V, indicating HMF oxidation occurs at this voltage level. Combined LSV and EIS 
analyses confirm that the suitable electrocatalytic HMFOR range is 1.20 to 1.45 V, during which the 
occurrence of OER side reactions is avoided.

Moreover, the CoFe PBA/CF electrode also delivered a considerably smaller Tafel slope at 116.54 mV·dec-1 
compared to CoFe PBA-CF at 167.46 mV·dec-1, suggesting that the intrinsic HMFOR reaction kinetics could 
be enhanced via the chemical interaction between the PBA nanocubes and the Cu foam substrate 
[Figure 2D]. The reaction rates of HMF with various concentrations were further evaluated to ascertain the 
intrinsic activity of CoFe PBA towards HMFOR [Figure 2E, Supplementary Figure 9]. For CoFe PBA/CF, a 
steady conversion rate of 3.8 mM·min-1 was achieved when the HMF concentration was approximately 
70 mM, whereas CoFe PBA-CF could only reach a rate of 1.22 mM·min-1. Further investigation involved 
recording CV within the non-faradaic potential range of 1.0 to 1.1 V [Supplementary Figure 10] to calculate 
the Cdl. The DLC for CoFe PBA/CF was significantly higher, at 376.18 mF·cm-2, which is 3.58 times that of 
CoFe PBA-CF (105.01 mF·cm-2), implies that the quantity of active sites in the self-supported CoFe PBA/CF 
considerably outnumbers those in CoFe PBA-CF. Based on these results, we can confirm that the well-
aligned self-supported structure not only provides an increased number of reaction sites for HMF 
conversion but also enhances the intrinsic electrocatalytic activity through the concurrent introduction of a 
Cu substrate.

HPLC was utilized to analyze and quantify the oxidation products following HMFOR. At the potential of 
1.45 V, HMF underwent rapid conversion to FDCA, ultimately attaining 100% HMF conversion with a yield 
of 98.4% and 98% FE towards FDCA production [Figure 2F]. By contrast, the powder CoFe PBA-CF can 
only achieve an 85.7% conversion, 69% selectivity, and 84% FE. The durability of CoFe PBA/CF was further 
clarified by conducting cycling experiments [Figure 2G, Supplementary Figure 11]. Impressively, even after 
20 cycles, HMF conversion remained stable at 100%, and FDCA productivity sustained at approximately 
90%. This stability suggests that CoFe PBA/CF demonstrates high activity, excellent FDCA selectivity, and 
remarkable catalytic recyclability owing to its regular structure and complete exposure of active sites, even 
in a strong alkali environment. Additionally, we monitored the hydrogen evolution during the HMFOR 
process [Supplementary Video 1], observing a significant hydrogen generation. The calculated hydrogen 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-Supplementary Videos.zip
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Figure 2. (A) LSV curves of CoFe PBA/CF and CoFe PBA-CF samples in 1M KOH with 50 mM HMF and without HMF; (B and C) Bode 
phase plots of CoFe PBA/CF sample; (D) Tafel plots of CoFe PBA/CF and CoFe PBA-CF electrodes; (E) HMF reaction rate of CoFe 
PBA/CF and CoFe PBA-CF electrodes with varying HMF concentrations; (F) Comparison of HMF conversion, FDCA yield, and FE 
between CoFe PBA/CF and CoFe PBA-CF; (G) Durability test for CoFe PBA/CF sample; (H) Comparison of overpotential for CoFe 
PBA/CF with other reported catalysts. LSV: Linear sweep voltammetry; CoFe PBA/CF: Cu-supported CoFe Prussian blue analogue; HMF: 
5-hydroxymethylfurfural; FDCA: 2,5-furandicarboxylic acid; FE: Faradaic efficiency.

generation rate is approximately 1.1 mL·min-1, with the transferred charge quantity closely matching the 
detected anode values. Notably, the superior electrocatalytic activity observed for CoFe PBA/CF surpasses 
those previously reported transition oxides derivate catalysts for HMFOR to FDCA in the last three years [
Supplementary Table 2, Figure 2H].

The reaction mechanism and DFT calculations
Two possible reaction pathways for HMF oxidation are illustrated in Figure 3A, including the initial alcohol 
hydroxyl oxidation to DFF and the aldehyde oxidation to HMFCA, respectively[52,53]. As the reaction 
proceeded, the content of HMF diminished gradually, while the content of intermediates, namely HMFCA 
and FFCA, increased at initial stage and declined towards the end of the reaction [Figure 3B, Supplementary 
Figure 12]. This outcome suggests that the reaction follows an HMF-HMFCA-FFCA-FDCA pathway with 
the CoFe PBA/CF catalyst. In addition, we conducted a quantitative analysis of the oxidative products. 
Chronoamperometric electrolysis was performed at a constant voltage of 1.45 V to input a theoretical 
charge of 289.5 C with an HMF concentration of 50 mM [Figure 3C]. It is observed that the content of HMF 
considerably drops during the initial 100 C, accompanied by the formation of HMFCA and FDCA. Notably, 
the intermediate FFCA maintained a very low presence throughout the reaction, hinting that the transition 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
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Figure 3. (A) Two possible reaction pathways for HMF electrooxidation; (B and C) Concentration changes of the reactant and products 
during HMFOR at 1.45 V; (D and E) In situ Raman spectra of HMFOR process on CoFe PBA-CF and CoFe PBA/CF sample; (F) Illustration 
of transformation of electrocatalyst and the electrooxidation of HMF on reactive sites. HMF: 5-hydroxymethylfurfural; HMFOR: 5-
hydroxymethylfurfural electrocatalytic oxidation reaction; CoFe PBA/CF: Cu-supported CoFe Prussian blue analogue.

from HMFCA to FDCA occurred rapidly.

In-situ electrochemical Raman spectroscopy was used to identify the active phase of catalysts during the 
HMFOR[32,54]. The experiments involved a preliminary 10-minute electrolysis before measuring Raman 
spectra to ensure the conditions as close as possible to the true reaction environment. Two broad spectral 
features at 497 and 609 cm-1 were detected on both CoFe PBA-CF and CoFe PBA/CF samples, which can be 
attributed to the Eg and A1g vibration modes of Co3+–O bonds, respectively [Figure 3D and E]. The higher 
relative intensity observed on the CoFe PBA/CF electrode indicates that CoFe PBA in-situ grown on the Cu 
substrate tends to reconstruct more thoroughly, forming abundant active sites when driven by the potential 
in alkaline conditions. It is noticed that the peaks remained unchanged until the potential reached 1.45 V, 
suggesting that the active phase for HMFOR exclusively involves CoOOH when the current density reaches 
100 mA·cm-2 (1.380 V). Moreover, these peaks gradually red-shifted to 474 and 558 cm-1 when the potential 
reached 1.50 V and weakened further upon incrementing potential. This red shift can be assigned to the 
Co–O bands of CoO2 species, pointing to structural instability under such intensified potential 
conditions[55,56]. Based on these findings, we infer the excellent performance of CoFe PBA/CF electrodes can 
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be attributed to the following fact: the overoxidation of the catalyst to form CoO2 species that may lead to 
structural degradation is avoided under the selected potential (1.45 V); instead, the catalyst is activated to 
form CoOOH exactly, which serves as the oxidant to drives the rapid conversion of HMF into FDCA 
[Figure 3F].

DFT simulations were conducted to deepen our understanding of the promotion effect of the Cu substrate 
on HMFOR. Observations revealed a lower Bader charge for the Co site on CoOOH/Cu(111) (+0.670 |e|) 
compared to that on the CoOOH surface (+1.178 |e|), implying electron transfer from the Cu substrate to 
the Co sites [Figure 4A and B]. Simultaneously, the region around the Cox+ site of CoOOH/Cu(111) 
exhibited the most positive electrostatic potential value, making it easier for reactants to adsorb. Thus, we 
calculated the adsorption energies of HMF at different Cox+ sites. Considering that the oxygen atoms of 
formyl (-CHO) in HMF act as electron acceptors, they show a preference for adsorption on electron-rich 
Co sites from the CoOOH/Cu(111) surface. Notably, the adsorption energy of HMF on CoOOH/Cu(111) is 
-1.00 eV, significantly greater than that on the CoOOH (-0.52 eV) surface [Supplementary Figures 13-15]. 
This observation suggests that the introduction of Cu substrate facilitates the absorption of HMF molecules.

We further conducted studies on Gibbs free energy evolutions for HMFOR to FDCA conversion both on 
CoOOH and CoOOH/Cu(111) surfaces [Figure 4C] to elucidate the differences in electrocatalytic 
performance for HMF oxidation. The results demonstrate that the ΔG values for the HMFOR elementary 
processes on both CoOOH and CoOOH/Cu(111) are thermodynamically favorable. The larger free energy 
gap observed in the step from HMFCA to FFCA on CoOOH/Cu(111) (-0.90 eV), compared to that for 
HMF to HMFCA on CoOOH (-0.25 eV), suggests that the active site exhibits reduced charge transfer, 
catalyzes the dehydrogenation step of HMF and thereby modifies the reaction kinetics. Therefore, CoOOH/
Cu(111), with its large Gibbs free energy gap for the potential path and adsorption energy of HMF, is more 
favorable for the conversion of HMF compared to CoOOH. Based on the theoretical results, we can infer 
that the electronic redistribution between Co and Cu facilitates the catalytic progress for HMFOR, which is 
consistent with the experimental observations.

Continuous flow electrooxidation of HMF to FDCA
Considering the industrial applications, the production of FDCA should ideally operate continuously within 
a practical reactor[19,21,57,58]. Importantly, improving the mass transfer of the electrolyte is critical to the 
electrochemical reaction, particularly when the reactant concentration is high (≥ 50 mM). In a traditional 
H-type cell, the reactant species on the active sites are not easy to refresh timely for fast conversion and the 
reaction of different benches of feedstock is intermittent, thus significantly reducing the production 
efficiency. To achieve consecutive and efficient production of FDCA from concentrated HMF solution, we 
have developed a continuous-flow electrochemical reactor (CFER) [Figure 5A]. The KOH and HMF 
solutions are independently delivered and subsequently mixed in a tee valve before being pumped into the 
CFER. This setup enables the rapid conversion of the reactive substrate into the targeted product within the 
CFER, effectively preventing the degradation of HMF in the KOH solution. Notably, both the conversion 
and selectivity of HMF to FDCA remained remarkably high at close to 100% at the flow rate of 0.4 mL·min-1 
[Figure 5B]. The procedure entailing the continuous oxidation of high-concentration HMF to FDCA via the 
CFER was documented through videography [Supplementary Video 2]. Observations from the video, in 
conjunction with Supplementary Figure 16, divulge that the yellow-hued HMF solution amalgamates with 
KOH in the tee valve and subsequently engenders a colorless FDCA solution in CFER.

Furthermore, an escalated flow rate (0.8 mL·min-1) delivered continued HMF conversions of approximately 
99%, while the selectivity for FDCA remained stable at around 94%. Such superior performance infers that 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-Supplementary Videos.zip
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
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Figure 4. (A and B) Top-view diagrams of constructed models for CoOOH, CoOOH/Cu(111), including the corresponding Bader charge 
transfer (|e|) and electrostatic potentials with an isosurface value of 0.003 e/Bohr3; (C) Free energy diagram for HMFOR on both 
CoOOH and CoOOH/Cu(111), illustrating the adsorption configurations of intermediates. HMFOR: 5-hydroxymethylfurfural 
electrocatalytic oxidation reaction.

the CoFe PBA/CF catalyst is capable of swiftly converting HMF, thereby demonstrating its capacity to 
effectively handle high concentrations of HMF during the reaction process. We also assessed the durability 
of the CoFe PBA/CF electrodes [Figure 5C, Supplementary Figure 17]. Even after enduring over 60 h of 
continuous electrolysis within the CFER, these electrodes still maintained impressive HMF conversion rates 
(close to 100%) and FDCA selectivity (97%), signifying the durability and promising productivity potential. 
Moreover, we monitored structural transformations of the PBA over various time periods during the 
HMFOR reaction to explore the correlation between its elevated stability and structural changes (Figure 5C, 
inset, Supplementary Figures 18 and 19). CoFe PBA/CF was transformed into Co(OH)2 nanosheets and 
demonstrated prolonged structural stability during HMFOR. Accordingly, these results suggest the 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202501/cs4037-SupplementaryMaterials.pdf
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Figure 5. (A) Photographic image of the CFER for HMFOR; (B) HMF conversion and FDCA selectivity at various flow rates; (C) 
Durability test of CoFe-PBA/CF in the CFER at the potential of 1.4 V with 50 mM HMF in 1 M KOH solution as the electrolyte. CFER: 
Continuous-flow electrochemical reactor; HMFOR: 5-hydroxymethylfurfural electrocatalytic oxidation reaction; HMF: 5-
hydroxymethylfurfural; FDCA: 2,5-furandicarboxylic acid; CoFe PBA/CF: Cu-supported CoFe Prussian blue analogue.

immense potential of our CoFe PBA/CF electrodes and the engineered CFER for facilitating the continuous, 
large-scale production of FDCA under industrial conditions.

CONCLUSIONS
In summary, a robust self-supported CoFe PBA/CF electrocatalyst has been constructed via a hydrothermal 
process. The self-supported CoFe PBA/CF demonstrates superb HMFOR electrocatalytic performance, 
achieving a remarkable 98.4% yield of FDCA and a 98% FE when subjected to high-concentration HMF 
solutions (≥ 50 mM), representing a significant enhancement compared to current low-dose HMF 
conversion processes. DFT theoretical calculations and series characterizations show that the introduction 
of Cu substrate not only improves PBA structural regularity and the number of surface-active sites, but also 
regulates the surface electronic state of Co in the catalyst, thereby facilitating the adsorption and conversion 
of HMF. Impressively, a continuous flow electrochemical reactor is designed to accelerate the diffusion, 
thereby enabling operation at high reaction rates. This design achieves a yield of FDCA close to 97% during 
the continuous 60-hour reaction. Our contribution paves the way for biomass upgrading to produce value-
added products by constructing high-performance self-supported electrodes and coupling them with a 
continuous flow reactor.
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