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Abstract
Fatigue driving has emerged as the predominant causative factor for road traffic safety accidents. The fatigue driving
detection method, derived from laboratory simulation data, faces challenges related to imbalanced data distribution
and limited recognition accuracy in practical scenarios. In this study, we introduce a novel approach utilizing a gated
recurrent neural network method, employing whale optimization algorithm for fatigue driving identification. Addi-
tionally, we incorporate an attention mechanism to enhance identification accuracy. Initially, this study focuses on
the driver’s operational behavior under authentic vehicular conditions. Subsequently, it employs wavelet energy en-
tropy, scale entropy, and singular entropy analysis to extract the fatigue-related features from the driver’s operational
behavior. Subsequently, this study adopts the cross-validation recursive feature elimination method to derive the op-
timal fatigue feature index about operational behavior. To effectively capture long-range dependence relationships,
this study employs the gated recurrent unit neural network method. Lastly, an attention mechanism is incorporated
in this study to concentrate on pivotal features within the data sequence of driving behavior. It assigns greater weight
to crucial information, mitigating information loss caused by the extended temporal sequence. Experimental results
obtained from real vehicle data demonstrate that the proposed method achieves an accuracy of 89.84% in third-
level fatigue driving detection, with an omission rate of 10.99%. These findings affirm the feasibility of the approach
presented in this study.

Keywords: Traffic safety, fatigue driving, operational behavior, whale optimization, neural network

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, shar-

ing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you
give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

www.oaepublish.com/ir

https://creativecommons.org/licenses/by/4.0/
www.oaepublish.com/ir
OAE
图章

https://orcid.org/0000-0002-8154-3968
http://crossmark.crossref.org/dialog/?doi=10.20517/ir.2024.15&domain=pdf


Page 231 Li et al. Intell Robot 2024;4(3):230-43 I http://dx.doi.org/10.20517/ir.2024.15

1. INTRODUCTION
Based on data from the traffic management department, the occurrence of road traffic accidents in China has
surpassed 20,000 over the last five years [1]. It is worth noting that nearly 20%of these accidents can be attributed
to drowsy driving, so drowsy driving is one of the main causes of road traffic accidents. Hence, offering early
warnings to fatigued drivers holds significant practical merit in safeguarding lives and properties. Presently,
fatigue driving detectionmethods are categorized into three groups, focusing on driver physiological character-
istics, facial features, and driving operation behavior characteristics as detection targets [2]. Notably, methods
reliant on drivers’ physiological features involve intrusive detection, potentially impacting driving operations
due to the use of wearable data collection devices [3]. Facial feature-based detection methods face susceptibil-
ity to external factors such as weather and light, leading to reduced stability [4]. In contrast, behavior-centric
detection methods remain unaffected by environmental changes [5], ensuring low-cost feasibility for practical
applications. Consequently, these methods have emerged as a prominent research area in contemporary fa-
tigue driving detection. In recent years, researchers have compared the parameters of steering wheel angle
(SWA) and lateral vehicle displacement in both fatigued and alert states of drivers, discovering that these pa-
rameters can serve as indicators of driver fatigue. Wu et al. found that the fatigue characteristics extracted from
SWA are more reflective of the driver’s fatigue state compared to lane departure [6]. Forsman et al. conducted
a simulated driving experiment and concluded that changes in SWA can be used to develop an economical
and efficient fatigue driving detection device [7]. Li et al. proposed a dual time window method to extract
approximate entropy features of the SWA and used a binary decision classifier to identify the driver’s fatigue
state, achieving an average recognition accuracy of 78.01% [8]. Li et al. extracted approximate entropy features
of the SWA combined with support vector machine (SVM) , showing an average recognition accuracy of 84.6%
for three levels of fatigue [9]. Li et al. extracted various features from SWA signals and used a decision tree-like
classifier, achieving an average recognition accuracy of 82.07% [10]. Li et al. employed robust feature learning
and a fuzzy recurrent neural network, achieving a recognition accuracy of 87.30% [11]. Cai employed a random
forest algorithm with an average recognition accuracy of 78.5% [12]. These studies demonstrate the significance
of SWA and lateral vehicle displacement features in fatigue detection. The combination of different algorithms
and feature extraction methods can significantly improve recognition accuracy. Fatigue induces psychological
and physiological changes in drivers, leading to decreased control accuracy and abnormal driving behaviors.
For instance, in the awake state, SWA exhibits frequent, small fluctuations. As fatigue sets in, the amplitude
of these fluctuations increases, and in extreme fatigue, SWA may show significant fluctuations with periods
of stationary motion. Similarly, throttle opening remains stable with minor fluctuations when the driver is
awake. Under fatigue, control diminishes, resulting in pronounced throttle fluctuations, and in very fatigued
states, there may be prolonged stationary throttle with reduced fluctuation amplitude. The prevailing litera-
ture on fatigue driving predominantly focuses on steering wheel dynamics, with limited exploration of other
driving behaviors. Notably, most extracted features are of statistical nature, and achieving a recognition accu-
racy exceeding 80% is primarily based on laboratory simulation data, lacking robust verification in real-world
road conditions. Consequently, this study addresses this gap by investigating six driving behaviors under
authentic vehicle conditions: SWA, vehicle speed, transverse angular velocity, throttle opening, and vehicle
transverse and longitudinal acceleration. Discriminative indexes characterizing fatigue levels are extracted,
selected through the cross-validation recursive feature elimination method, and utilized to construct a fatigue
driving detection model. This model, integrating whale optimization and the Attention-gated recurrent unit
(GRU) neural network, facilitates real-time monitoring and early warning of driver fatigue.

2. METHODS
2.1 Feature extraction and optimization
2.1.1 Driving behavior feature extraction
The extracted driving behavior features are shown in Figure 1. This paper explores time-frequency domain
features,

http://dx.doi.org/10.20517/ir.2024.15


Li et al. Intell Robot 2024;4(3):230-43 I http://dx.doi.org/10.20517/ir.2024.15 Page 232

Driving operation behavior

Vehicle 
speed

Vehicle 
longitudinal 
acceleration

Steering 
wheel 

cornering

Vehicle 
traverse 
angle

Peak-to-
peak

Absolute 
mean 
value

Waveform 
factor

Root-
mean-
square

Wavelet 
energy 
entropy

Wavelet 
scale 

entropy

Wavelet 
singular 
entropy

D
riving behavior 

feature extraction

Vehicle 
lateral 

acceleration

Throttle 
opening 
degree

Variance

Dimensionless FeaturesDimensional Features

Skewness Kurtosis

Figure 1. Block diagram of driving behavior feature extraction.

including wavelet energy entropy, wavelet scale entropy, and wavelet singular entropy. The chosen wavelet
basis function is db6 within the dbN series, and a three-layer wavelet packet decomposition is employed. The
computational steps are outlined as follows: (1) Utilize the db6 wavelet basis function to decompose driving
behavior data into three layers of wavelet packets, yielding eight subbands. Reconstruct the wavelet subband
components to ensure the new driving behavior data’s length matches that of the original data; (2) Determine
the two-parameter number for each node, square it to yield the node’s energy value, and then sum the energy
across nodes to compute the total wavelet energy. Subsequently, derive the wavelet energy entropy based on
the total wavelet energy; (3) Compute the wavelet scale entropy for each subband; (4) Extract singular values,
construct a vector, generate the singular value spectrum, and perform singular value decomposition to obtain
the wavelet singular entropy.

2.1.2 Driving behavior feature extraction
The recursive feature elimination with cross-validation (RFECV) method involves iterative training of data
using a base model, eliminating features with low weights based on weight coefficients in each round until
the candidate subset meets termination conditions. Given challenges such as fluctuations in real car driving
behavior data, significant noise, and sample imbalance, the paper adopts the random forest as the basemodel to
address these issues. The algorithm consists of the following steps: (a) Train models using all driving behavior
features, calculate feature importance, and rank them. Extract the top 𝑆𝑖 most important features for each
subset 𝑆𝑖 , where i ranges from 1 to S; (b) Split the training set into a new training set and a validation set. Train
the model using the new training set and all features, and then evaluate the model with the validation set; (c)
Input the filtered features into the random forest as the initial feature subset and calculate feature importance.
Remove features with the lowest importance from the current subset to obtain a new feature subset. Repeat
this process, inputting the new subset into the random forest, calculating the importance of each feature, and
determining the classification accuracy using cross-validation; (d) Recursively repeat Step 3 until the feature
subset is empty. Ultimately, obtain k feature subsets with varying numbers of features, selecting the subset with
the highest classification accuracy as the optimal feature combination.

2.2 Attention-GRU identification of fatigue levels
2.2.1 GRU neural network
The driving behavior data is inherently sequential, and the connections among the hidden layers of recurrent
neural networks involve integrating the output of the hidden layers from the previous moment into the current
network state [13]. This sequential network structure is effective in preserving dependencies within the data.
Notably, the GRU is particularly skilled at capturing long-range dependencies and efficiently mitigating the
challenges of gradient explosion and gradient disappearance observed in basic recurrent neural networks. The

http://dx.doi.org/10.20517/ir.2024.15


Page 233 Li et al. Intell Robot 2024;4(3):230-43 I http://dx.doi.org/10.20517/ir.2024.15

Ht

1-

σ tanhσ 

Input Xt

Hidden state 
Ht-1

Candidate
Hidden state 

Ht
~……

Rt Zt

Figure 2. Structure of GRU neurons. GRU: Gated recurrent unit.

architectural representation of GRU neurons is illustrated in Figure 2.

where 𝑋𝑡 represents the input at moment t, 𝑅𝑡 indicates the reset gate; 𝑍𝑡 stands for the update gate; 𝐻𝑡 denotes
the hidden state; 𝐻̃𝑡 refers to the candidate hidden state. According to the model structure of GRU, it can be
calculated by:

𝑅𝑡 = 𝜎 (𝑋𝑡𝑊𝑥𝑟 + 𝐻𝑡−1𝑊ℎ𝑟 + 𝑏𝑟 ) (1)

𝑍𝑡 = 𝜎 (𝑋𝑡𝑊𝑥𝑧 + 𝐻𝑡−1𝑊ℎ𝑧 + 𝑏𝑧) (2)

where 𝑅𝑡 and 𝑍𝑡 are the relationship functions between the input feature 𝑋𝑡 at the current moment and the
hidden variable 𝐻𝑡−1 at the previous moment, using the sigmoid activation function so that the threshold is
set within the range of 0 to 1. Where𝑊𝑥𝑟 ,𝑊ℎ𝑟 ,𝑊𝑥𝑧 , and𝑊ℎ𝑧 are the matrices to be trained, and 𝑏𝑟 and 𝑏𝑧 are
the bias terms to be trained.

𝐻𝑡 = tanh(𝑋𝑡𝑊𝑥ℎ + (𝑅𝑡 · 𝐻𝑡−1)𝑊ℎℎ + 𝑏𝑧) (3)

𝐻𝑡 = 𝑍𝑡 ⊗ 𝐻𝑡−1 + (1 − 𝑍𝑡) ⊗ 𝐻𝑡 (4)

Where 𝐻̃𝑡 denotes the candidate hidden state, which can also be expressed as the present information, and
is determined by the past information 𝐻𝑡−1 over the reset gate together with the current information. 𝐻𝑡
incorporates both long-term and short-term memory outputs.

2.2.2 Attention mechanism
Within this research, we integrate the Attention mechanism to focus on crucial features within the sequence of
driving behaviors. This entails assigning a higher weight to important information and filtering out low-value
information. The calculation process diagram for the Attention mechanism is illustrated in Figure 3.

(a) Calculation stage 1
The inner product value of 𝑄𝑢𝑒𝑟𝑦 and 𝑘𝑒𝑦 is found by the dot product method, and the similarity 𝑆𝑖 between
them is counted.

𝑆𝑖𝑚𝑖 = 𝐾𝑒𝑦𝑖 · 𝑄𝑢𝑒𝑟𝑦 (5)

(b) Calculation stage 2
Normalization is performed by 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥, which uses an internal mechanism to further emphasize the weights
of key elements.

𝑎𝑖 = Soft(Sim𝑖) (6)

(c) Calculation stage 3
Weighted summation of Value with 𝑎𝑖 .

Attention(Query, Source) =
𝐿𝑥∑
𝑖=1

𝑎𝑖 · Value𝑖 (7)
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2.2.3 Whale optimization algorithm
Whale optimization algorithm (WOA) is a group intelligence optimization algorithm proposed by Mirjalili
and Lewis in 2016, which originates from the simulation of the hunting behavior of whale groups in nature.
The whole algorithm process includes three stages: encircling prey, bubble netting and searching for prey [14].

(a) Surround the prey
Assuming that in k-dimensional space, there is already a whale that finds the best position to surround its
prey [15], other whales will choose this position to approach, and the mathematical model equation is estab-
lished as follows:

𝑋
𝑗+1
𝑘 = 𝑋best

𝑘 − 𝐴 · 𝐷𝑘 (8)

𝐷𝑘 =
��𝑐 · 𝑥𝑏𝑒𝑠𝑡𝑘 − 𝑥𝑘

�� (9)

where 𝑥𝑏𝑒𝑠𝑡 denotes the current optimal individual whale position; 𝑥 𝑗 denotes represents the current individ-
ual whale position [16]; The position that the whale individual affected by the position of the optimal whale
individual will reach in the next moment is set to be 𝑥 𝑗+1. 𝑥𝑘 𝑗+1 is the kth component of 𝑥 𝑗+1.

𝐶 = 2𝑟1, 𝐴 = 𝑎 · (2 · 𝑟2 − 1)𝑎 = 2 · (1 − 𝑡

𝑇max
) (10)

where 𝑟1 and 𝑟2 are random variables in the interval [0, 1]; the value of a decreases linearly from 2 to 0 as the
number of iterations 𝑡 increases; and 𝑇max denotes the maximum number of iterations.

(b) Bubble net predation
Whales have two ways to contract the envelope and swim spirally toward their prey when they drive the encir-
cling prey. The spiral wanders toward the prey using the spiral to update the position to represent this roundup
behavior. The mathematical model equation is established as follows:

𝑋
𝑗+1
𝑘 = 𝐷𝑘 · 𝑒𝑏𝑙 · 𝑐𝑜𝑠(2𝜋𝑡) + 𝑋𝑏𝑒𝑠𝑡𝑘 (11)

𝐷𝑘 =
���𝑥𝑏𝑒𝑠𝑡𝑘 − 𝑥 𝑗𝑘

��� (12)

where 𝐷𝑘 denotes the optimal whale-to-prey spacing; 𝑏 represents the logarithmic spiral shape constant; and 𝑙
indicates a randomnumber uniformly distributed in the interval [-1, 1]. The contraction surroundmechanism,
which is basically the same as the formula of the mathematical model to surround the prey [17], differs in that
the value interval of 𝐴 is adjusted from [-a, a] to [-1, 1]. Then, one of these two methods is chosen with a 50%
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probability in the whale feeding process [18], with:

𝑋
𝑗+1
𝑘 =

{
𝐷𝑘 · 𝑒𝑏𝑙 · cos(2𝜋𝑡) + 𝑋𝑏𝑒𝑠𝑡𝑘 if 𝑝 ≤ 0.5
𝑋𝑏𝑒𝑠𝑡𝑘 − 𝐴𝐷𝑘 if 𝑝 ≥ 0.5

(13)

where the value interval of 𝑝 is [0, 1].

(c) Search for predation
The value of 𝐴 determines whether the whale swims toward the optimal individual or toward a random indi-
vidual, when |𝐴| ≤ 1, the whale chooses to swim toward the optimal individual [19], as provided in Equations
(13) and (14); when |𝐴| > 1, the whale chooses to swim toward a random individual, which will enhance the
search ability of the whale population as a whole [20], and the mathematical model equation is expressed as
follows:

𝐷𝑘 =
���𝐶 · 𝑋𝑟𝑎𝑛𝑑𝑘 − 𝑋 𝑗

𝑘

��� (14)

𝑋
𝑗+1
𝑘 = 𝑋𝑟𝑎𝑛𝑑𝑘 − 𝐴 · 𝐷𝑘 (15)

where 𝑋rand
𝑘 is a random position vector.

2.2.4 WOA-Attention-GRU fatigue state recognition
TheWOA is a heuristic optimization algorithm based on the principles of natural selection and biological be-
havior. Inspired by the hunting behavior of whales, it efficiently identifies the global optimal solution within
few iterations [21]. Furthermore, WOA circumvents the intricacies of parameter tuning, thus reducing the risk
of overfitting, which greatly benefits our handling of the problems with multiple parameters. In our work, the
role of WOA is to optimize the Attention-GRU model; to be precise, it seeks the optimal model parameters,
thereby maximizing the model’s accuracy on the fatigue driving behavior dataset. The algorithmic progres-
sion of the fatigue driving detection [22], grounded in the synergy of the WOA and Attention-GRU, is visually
depicted in Figure 4. It encompasses three main components: whale optimization, processing of driving be-
havior data, and the establishment of the Attention-GRU neural network model. In the whale optimization
phase, the mean squared difference [mean squared error (MSE)] between the predicted fatigue level by the
Attention-GRU model and the true fatigue level serves as the fitness function. The aim is to ascertain a set
of hyperparameters that minimize this mean squared difference when fed into the Attention-GRU model [23].
The mean squared deviation is expressed as follows:

𝑀𝑆𝐸 =
1
𝑛

𝑛∑
𝑖=1

(
𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 − 𝑃𝑡𝑟𝑢𝑒

)2 (16)

Where 𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡 denotes the predicted value of fatigue level, 𝑃𝑡𝑟𝑢𝑒 indicates the true value of fatigue level, and 𝑛
is the total number of fatigue samples.

In the WOA-Attention-GRU model, the overall framework can be divided into three main components: the
WOA part, the data processing part, and the Attention-GRU model part [Figure 4] [24]. In the data process-
ing part, we extract features from driving behavior data and conduct relevant analysis and selection. The main
steps include data collection and preprocessing: collecting driving behavior data, including vehicle speed, SWA,
acceleration, etc., and cleaning the data to remove outliers and noise, ensuring the data’s accuracy and relia-
bility. Subsequently, operational behavior features are extracted from the preprocessed data, including but
not limited to the rate of change of the SWA , vehicle acceleration, and braking frequency. These features are
then selected using correlation analysis methods closely related to driving fatigue. Through correlation and
preference analysis, the most representative features are selected as input variables for the model. In the whale
optimization part, WOA is used to optimize the hyperparameters of the Attention-GRU model. The main
steps include initialization: WOA encodes the initial values, including the number of iterations, batch size,
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rent unit.

number of neurons working in the GRU layer, and dropout rate. Fitness value calculation: the fitness values
of the initialized whale population are calculated, and the global optimum is updated. Iterative optimization:
based on the fitness values, the positions of the whale individuals are updated, gradually approaching the
global optimum, and finally outputting the optimal hyperparameters of the Attention-GRU model. In the
Attention-GRU model part, the model is trained and tested using the hyperparameters optimized by WOA.
Themain steps include model training: training the model using the training set provided by the data process-
ing part. The attention mechanism focuses on important features in the sequences of driving behavior data,
assigning greater weight to important information and reducing information loss. Model testing: testing the
trained model using the test set to evaluate the model’s performance. The model’s predictive performance is
then assessed by calculating the MSE.Through these steps, we can effectively detect the fatigue state of drivers,
providing more accurate and reliable detection results. “Optimal hyperparameters” refer to the best set of pa-
rameters that can minimize the MSE between the predicted fatigue level and the actual fatigue level. These
hyperparameters include the number of iterations, batch size, the number of neurons in each GRU layer, and
the dropout rate. The network model structure of Attention-GRU is presented in Figure 5.

2.2.5 Fatigue state recognition based on Transformer
Transformer excels at handling long-range dependencies in sequence data, which is particularly beneficial
for time series analysis. We use the standard Transformer architecture, including self-attention mechanism.
The number of layers, number of attention heads, and hidden layer dimensions were adjusted to optimize
performance on our dataset. The model is trained using the same driving behavior data set and adopts the
same preprocessing method as the WOA-Attention-GRU model. The results show that although Transformer
performs well in capturing long-range dependencies, in the context of driving behavior analysis, the method
combiningWOA and Attention mechanisms in the GRUmodel provides more targeted feature extraction and
optimization.
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Figure 6. Experimental driving path.

3. RESULTS
3.1 Experimental data
In this paper, the experimental data sampling path is a 270 km long section of Beijing-Harbin Expressway
from Beijing to Qinhuangdao [Figure 6]. The number of participants is 8, the acquisition time is 1-3 h, and
the acquisition frequency is 100 Hz. The collected data are sliced according to the standard of about 1 min,
and the consistency of the sliced driving behavior data with the driver’s facial video is determined according
to the synchronization pulse signal. Each segment was scored as 0 (awake), 1 (fatigued) and 2 (very fatigued)
according to the driver’s facial fatigue score. A new fatigue driving sample dataset was obtained. The vehicle
speed below 60 km/h in the dataset is considered as indicating slow sections, and the steering wheel turning
angle over 20° is considered as indicative of overtaking lane change. There are 243 sober samples, 71 fatigue
samples and 30 very fatigue samples after excluding these abnormal data, totaling 237 samples. Considering
the unbalanced and too few samples of the three-level fatigue samples, the smote method was used to expand
171 fatigue samples and 212 very fatigue samples, each containing 12 dimensions and 6,000 lines of operation
behavior data.

3.2 Data analysis
The fatigue state induces psychological and physiological changes in the driver, leading to a decrease in the
driver’s control accuracy over the vehicle and subsequent abnormal operating behaviors. Consequently, mon-
itoring indicators related to driving operation behaviors allows for a real-time assessment of the driver’s state.
The SWA , being the device most directly manipulated by the driver, is also the most frequently operated. The
data is illustrated in Figure 7 [24]. In the awake state, the SWA exhibits frequent fluctuations with a small am-
plitude. In the fatigue state, the fluctuation amplitude increases, and in a very fatigued state, the SWA may
show stationary motion with significant fluctuations. The driver modulates vehicle speed through the throttle
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Figure 8. Waveform of throttle opening (adapted from Li et al., 2023 [24]).

opening and brake pedal. Throttle opening (CAN_throttle) data [Figure 8] [24], remains stable for a period with
small fluctuations in the awake state. In the fatigue state, diminished control accuracy results in pronounced
throttle fluctuations. In a very fatigued state, delayed driver consciousness may lead to a prolonged stationary
throttle, accompanied by a decrease in fluctuation amplitude.

Cross-swing angular velocity (YawRate) serves as a crucial indicator reflecting the vehicle’s stability and driving
smoothness [Figure 9] [24]. The sustained stability of vehicle speed and the limited acceleration and deceleration
contribute to understanding the driver’s state. Speed (Speed) data is visualized in Figure 10 [24]. Horizontal
and longitudinal acceleration (X_Accel and Y_Accel) denote the motion acceleration of the car vertically and
horizontally in the driving direction, respectively, with data presented in Figures 11 [24] and 12 [24].

The variations observed in the waveforms presented in the six driving behavior data graphs above indicate the
presence of numerous indicators associated with fatigue characteristics within the driver’s operational behav-
ior. As a result, this paper employs six types of driving behavior data collected from real vehicles - comprising
SWA, vehicle speed, vehicle transverse and longitudinal acceleration, and throttle opening - as the experimen-
tal dataset.

3.3 Experimental results
The fatigue driving recognitionmodel,WOA-Attention-GRU, developed in this study, utilizes a cross-validation
method with ten sample clusters. To evaluate the performance of the proposed Attention-GRU method, we
compared it with the Transformer-based model on the same dataset. The results are presented in Table 1 [24].
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Figure 9. Waveform of transverse angular velocity (adapted from Li et al., 2023 [24]).
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Figure 10. Waveform of vehicle speed (adapted from Li et al., 2023 [24]).

-0.05

0.00

0.05

0.10

0.15

0.20

La
te

ra
l a

cc
el

er
at

io
n

Time length (58s)

 Sobriety
 Fatigue
 Very fatigue

Figure 11. Waveform of lateral acceleration (adapted from Li et al., 2023 [24]).

In the experimental results, the prediction accuracy for the fatigue state is indeed significantly lower than for
the awake and very fatigued states. This discrepancy can be attributed to the subtler behavioral indicators as-
sociated with the fatigue state, which makes it more challenging to distinguish compared to the more distinct
characteristics of alertness and extreme fatigue. The awake state is characterized by highly responsive and con-
sistent driving behaviors, while the very fatigued state exhibits more pronounced deviations and irregularities
due to extreme tiredness. In contrast, the fatigue state presents less obvious signs, such as slight deviations
or minor lapses in attention, which can be harder to detect accurately. Additionally, individual differences
in how drivers exhibit fatigue can contribute to this challenge. While some drivers may show clear signs of
fatigue, others may have more subtle or varied manifestations, making it difficult for the model to generalize
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Figure 12. Waveform of longitudinal acceleration (adapted from Li et al., 2023 [24]).

Table 1. Comparison of recognition accuracy of WOA-Attention-GRU algorithm (adapted from Li et al., 2023 [24])

Projections WOA-Attention-GRU Attention-GRU GRU Transformer-based
recognition accuracy recognition accuracy recognition accuracy recognition accuracy

Awake 94.44% 84.09% 84.38% 83.42%
Fatigued 81.63% 79.59% 64.06% 70.52%
Very fatigued 93.44% 86.79% 84% 84.26%
Overall percentages 89.84% 83.56% 75.34% 82.65%

WOA:Whale optimization algorithm; GRU: gated recurrent unit.

Table 2. WOA-Attention-GRU fatigue recognition model detection results (adapted from Li et al., 2023 [24])

Actual test Projections Actual sample size

Awake Fatigued Very fatigued

Awake 34 (TN) 8 (FP) 1 (FR) 43
Fatigued 2 (FN) 40 (TP) 3 (FR) 45
Very fatigued 0 (FN) 1 (FP) 57 (TR) 58
Predicted sample size 36 49 61 146

WOA:Whale optimization algorithm; GRU: gated recurrent unit.

and predict the fatigue state with high accuracy.

3.4 Methodological evaluation
This paper introduces four evaluation metrics - Precision, Recall, Condition positive, and F1-score - alongside
Accuracy to comprehensively assess the fatigue recognition model. The results of the WOA-Attention-GRU
fatigue recognition model are presented in Table 2 [24].

In the confusion matrix presented in Table 2, 𝑇𝑁 denotes samples accurately predicted as awake, 𝑇𝑃 indicates
samples correctly predicted as fatigued, and 𝑇𝑅 represents samples accurately predicted as very fatigued, 𝐹𝑁
stands for fatigued and very fatigued samples falsely predicted as awake, 𝐹𝑃 refers to awake or very fatigued
samples falsely predicted as fatigued, and 𝐹𝑅 points to awake or fatigued samples predicted as very fatigued.
Using the awake sample as an illustration, the equations for each evaluation metric are established below:

a. Exact rate: indicates the probability that actual positive samples are among those predicted to be positive.

𝑃 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁 (17)

b. Recall rate: indicates the probability that samples predicted to be positive are among those actually positive.

𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑅 (18)
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Table 3. Evaluation results of theWOA-Attention-GRU fatigue driving detection model (adapted from Li et al., 2023 [24])

Type of sample Precision Recall Condition positive F1-score

Awake 94.44% 79.07% 20.13% 86.07%
Fatigued 81.63% 88.89% 11.11% 85.11%
Very fatigued 93.44% 98.28% 1.72% 95.80%
Overall percentages 89.84% 88.75% 10.99% 88.99%

WOA:Whale optimization algorithm; GRU: gated recurrent unit.

c. Underreporting rate:

𝐶𝑃 = 1 − 𝑇𝑁

𝑇𝑁 + 𝐹𝑃 + 𝐹𝑅 (19)

d. F1-score:

𝐹1 =
2 · 𝑅 · 𝑃
𝑅 + 𝑃 (20)

Applying the definitions given in the equation above, the evaluation results for the Attention-GRU fatigue
driving detection model, optimized by the whale algorithm in this research, are presented in Table 3 [24]. The
model achieves an accuracy rate of 89.84%, a recall rate of 88.77%, a miss rate of 10.99%, and an F1-score of
88.99%.

4. DISCUSSION
This study presents a fatigue driving recognition method based on a WOA-enhanced Attention-GRU model.
After optimization through theWOA, the overall recognition accuracy of the Attention-GRUmodel for fatigue
driving reaches 89.84%. This represents a 6% improvement over the non-optimized Attention-GRU model, a
14% enhancement over the GRU model, and approximately an 11% increase compared to fatigue driving de-
tection methods that focus solely on the real vehicle steering angle. The missed detection rate is 10.99%. The
proposed fatigue driving recognition method utilizes real car driving operation data, which enhances its prac-
tical engineering applicability. However, this study does not account for individual driver differences. In
future research, it is imperative to expand the fatigue driving sample database and explore the variations in
operational behavior among different drivers to improve the robustness and generalizability of the fatigue driv-
ing recognition model. Additionally, to enhance the model’s performance in long-term monitoring scenarios,
more extensive studies are planned to investigate how drivers adapt to the fatigue monitoring system over time,
tracking behavioral changes post-implementation.

5. CONCLUSIONS
In this paper, we developed a fatigue driving recognition model, WOA-Attention-GRU, which demonstrated
promising results in detecting various states of driver fatigue. The model was validated using real measured
data, ensuring its reliability and relevance to practical driving scenarios. However, we acknowledge that the
generalizability of our findings can be further enhanced by testing the model on larger datasets. Future work
will involve collecting more extensive data for further verification and validation of the proposed method to
ensure robustness and wider applicability across different driving scenarios. Furthermore, acknowledging the
importance of addressing long-term monitoring challenges, we plan to update and improve the monitoring
system based on actual usage feedback, ensuring that it can adapt to evolving driver needs and behaviors.
Special algorithm adjustments or model updates may be necessary to address time-related changes effectively.
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