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Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder primarily caused by mutations in the MECP2 gene. 
Neuronal damage is the main factor contributing to RTT, and the loss of MeCP2 function can result in reduced 
neuronal somas size, decreased dendritic abundance, and impaired neuronal function. While specific restoration of 
MeCP2 expression in neurons has been reported to partially rescue the behavioral phenotype and prolong the 
lifespan of mice, it cannot provide a complete cure. Therefore, other cells may be involved in the development of 
RTT. Although imaging and autopsy findings have revealed decreased white matter volume and corpus callosum 
thickness in RTT patients, the mechanisms underlying the development of white matter abnormalities remain 
unclear. These abnormalities are predominantly caused by damage to mature oligodendrocytes. This review 
provides an overview of the proliferation, differentiation, and function of oligodendrocyte lineage cells and 
elucidates the role of MeCP2 in these cells.
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INTRODUCTION
Rett syndrome (RTT) is a severe and rare neurodevelopmental disorder with no effective treatment for its 
complex pathogenesis[1]. It has a female preponderance (rarely occurs among men), with the incidence rate 
ranging from 1/10000 to 1/15000 among female patients[2]. RTT is caused by gene mutations and can be 
classified as classic and non-classic RTT based on the specific mutation involved. Classic RTT results from a 
loss-of-function mutation in the X-linked methyl CpG-binding protein 2 (MECP2) gene, which encodes the 
MeCP2 protein. Clinical studies have reported that 90%-95% of cases are attributed to classic RTT[3]. In 
contrast, non-classic RTT is primarily caused by mutations in the cyclin-dependent kinase-like 5 (CDKL5) 
and forkhead box G1(FOXG1) genes[4,5]. It exhibits clinical features similar to those of classic RTT, including 
early-onset epilepsy and developmental delay[6]. Therefore, MeCP2 has become the focus of research on 
RTT. Hundreds of MECP2 mutation sites that can cause classic RTT have been identified[7,8]. It is 
noteworthy that large segment deletions and eight hotspot mutations account for approximately 80% of the 
reported cases[7]. The mutations of MECP2 have been validated in relevant mouse models.

Research on RTT has been primarily focused on the process and function of neurons. Autopsy reports of 
patients have shown reduced brain volume, neuronal soma size, dendritic arborization, and dendritic spine 
abundance[7]. Therefore, neurons have become the core of research into the pathological mechanisms of 
RTT. The abovementioned pathological features commonly observed in neurons have been validated in 
different mouse models with various mutations[9,10]. In addition, specific restoration of MeCP2 expression in 
neurons has been shown to restore relevant behaviors and prolong the lifespan of mice[11,12]. However, some 
phenotypes cannot be restored through this approach, suggesting that MeCP2 in the central nervous system 
(CNS) may be involved in RTT development through the regulation of other cells[13,14]. In the CNS, MeCP2 
can be detected not only in neurons but also in astrocytes, oligodendrocytes (OLs), and microglia. Relevant 
studies have demonstrated that restoring the expression of MeCP2 in astrocytes, OLs, and microglia can 
alleviate some symptoms in knockout mouse models, indicating that glial cells also play an indispensable 
role in RTT[15]. With a deeper understanding of the function and structure of glial cells, novel mechanisms 
have been proposed to elucidate the development of RTT.

The application of Magnetic Resonance Imaging (MRI) in biological research has facilitated dynamic 
observation of abnormal brain development in patients. Brain imaging has revealed significant 
abnormalities in the total volume of white matter (WM) in RTT patients, in addition to gray matter (GM) 
abnormalities commonly observed on pathological examination[16,17]. WM is primarily connected through 
WM fiber bundles across the left and right hemispheres and various brain regions, forming a complex WM 
signal network[18]. WM fiber bundles are primarily composed of axons of neurons and myelin sheaths 
wrapped around them.

Given that neuronal bodies are not found in WM and only mature OLs can form myelin sheaths in the 
CNS, we have proposed that MeCP2 leads to WM abnormalities by regulating the abnormal development of 
OL lineage cells and myelin formation. The OL lineage cells include oligodendrocyte precursor cells (OPCs) 
and OLs. OPCs undergo a series of biological regulations and eventually differentiate into functionally 
specific mature OLs at specific locations[19]. In the CNS of mammals, myelin sheaths are exclusively formed 
by mature OLs[19]. This review summarizes the mechanisms underlying the development of WM 
abnormalities resulting from MeCP2 dysfunction and explores the role of MeCP2 in regulating cell 
proliferation, differentiation, and myelin sheath formation in OLs, thereby providing a rational basis for the 
study of MeCP2 in OLs.
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STRUCTURE AND FUNCTION OF MECP2
MeCP2, a member of the methyl-CpG-binding protein family, has two subtypes, MECP2-E1 and 
MECP2-E2, each containing four exons that encode four structural domains, including the N-terminal 
domain (NTD), methyl-CpG-binding domain (MBD), transcription repression domain (TRD), and C-
terminal domain (CTD)[7]. Analysis of the expression of the two subtypes revealed that the expression levels 
of E1 in the human and mouse brains were about 10 times higher than E2, but there was no difference in 
their expression levels in the liver and testes of mice[20,21]. MeCP2 was initially identified as a nuclear protein 
that binds to methylated DNA, which led to its characterization as a transcriptional repressor[22] [Figure 1] 
However, recent studies have demonstrated that MeCP2 is involved in various functions, including 
activation and inhibition of transcription, RNA splicing, and miRNA regulation within the nucleus[23,24].

Mutations in MeCP2
The majority of RTT cases (over 95%) are due to de novo mutations in the MECP2 gene, mainly occurring 
on the paternal X chromosome[25]. Because the X chromosome of spermatozoa is hypermethylated, the 
methylated cytosine residue can undergo spontaneous deamination to form thymine[7,26]. Familial 
inheritance of RTT is rare and is due to X-chromosomal inheritance from a carrier mother[27]. To date, over 
500 MECP2 mutations have been identified, including missense mutations, nonsense mutations, insertion 
mutations, and small or large deletions[28]. Point mutations are the most common mutation types, with C > 
T being the most frequently observed[29]. Eight single-point mutations, R106W, R133C, T158M, R168X, 
R255X, R270X, R294X, and R306C, account for about 70% of the reported cases[6] [Figure 1]. R106W, 
R133C, and T158M are located in the MBD domain of MeCP2, which can affect the methyl binding capacity 
of MeCP2[30]. Patients with R106W or T158M mutation exhibit severe pathological phenotypes[31,32]. R306C 
is located in the TRD domain, preventing MeCP2 from binding to the NCoR/SMRT complex, thus affecting 
transcriptional activation or inhibition[30,33]. Four nonsense mutations, R168X, R255X, R270X, and R294X, 
give rise to premature stop codons, resulting in truncated MeCP2. R255X, R270X, and R294X are located in 
the TRD domain[6]. R168X is located in the intervention outcome domain (ID), which can cause the MeCP2 
to lose the entire TRD domain[30]. Patients with T168X exhibited the most severe clinical phenotypes, with 
the majority losing their walking ability[7,34,35]. In addition, the large segment deletion and C-terminal 
domain deletion of MeCP2 account for about 13% of RTT cases[25]. Large segment deletion often causes 
more severe clinical phenotypes, whereas the C-terminal domain deletion is relatively mild[25]. Researchers 
have established various RTT animal models based on different mutation types, which have greatly assisted 
in understanding the pathogenesis of RTT.

MeCP2 and transcription
MeCP2 was originally known as a methyl-binding protein that regulates transcription [Figure 1]. The MBD 
of MeCP2 has a strong affinity for CpG-methylated DNA, and the affinity of MeCP2 for chromatin is 
significantly reduced in MeCP2-deficient cells. Mellén et al. revealed that MeCP2 could bind to 5-
hydroxymethylcytosine (5hmc) with an affinity similar to that for 5-methylcytosine (5mc) in actively 
transcribed genes[36]. However, the biological significance of the binding between MeCP2 and 5hmc remains 
unclear. In addition to binding to CpG, MeCP2 can bind to methylation sites such as CpA, CpC, and 
CpH[37,38]. But the implications of this binding warrant further investigation. Lyst et al. demonstrated that 
MeCP2 acted as a junction protein between DNA and the NCoR/SMRT complex to repress the 
transcription of target genes[33]. Continuous investigation of the structure and function of MeCP2 has 
improved the understanding of mechanisms through which MeCP2 regulates transcription.

MeCP2 and RNA splicing
Although MeCP2 can directly regulate gene transcription, recent studies have shown that MeCP2 can 
regulate gene expression by splicing mRNA [Figure 1]. Young et al. found that truncated MeCP2 can lead to 
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Figure 1. Characteristics of MECP2 gene and its protein function. Note: (A) MECP2 gene subtypes, functional domains, and common 
mutation types (eight hotspot mutations). Two isoforms of the MECP2: MECP2-E1 (encoded by exons 1, 3, 4) and MECP2-E2 (encoded 
by exons 1, 3, 4). Red arrows indicate the transcription start sites (ATG) of the two isoforms. MeCP2 protein structure is composed of 
five major domains, N-terminal Domain (NTD), Methyl Binding Domain (MBD), Inter-Domain (ID), Transcription Repression Domain 
(TRD), and C-terminal Domain (CTD). The AT-Hook domain is located in the CTD, which allows binding to adenine-thymine (AT) rich 
DNA. Eight Hotspot Mutations: R106W (Arginine to Tryptophan), R133C (Arginine to Cystine), T158M (Threonine to Methionine), 
R168X (Arginine to termination codon), R255X (Arginine to termination codon), R294X (Arginine to termination codon), R270X 
(Arginine to termination codon), R306C (Arginine to Cystine); (B) Mechanisms through which MeCP2 regulates transcription, RNA 
splicing, and mRNA cleavage. The MBD and CTD domains of MeCP2 can activate or inhibit transcriptional regulation by binding to DNA. 
MeCP2 can regulate the alternative splicing of RNA by combining it with YB-1 and other proteins. MeCP2 can also regulate the 
expression of miRNAs through the interaction with the Dorsha complex. AT: adenine-thymine; CTD: C-terminal Domain; ID: Inter-
Domain; MBD: Methyl Binding Domain; NTD: N-terminal Domain; TRD: Transcription Repression Domain.

abnormal RNA splicing in Mecp2308/y male mice[39]. They reported that MeCP2 directly interacts with Y box-
binding protein 1 (YB-1) mediated by RNA and regulates the splicing of genes such as CD44 molecule 
(CD44), nuclear receptor 1(NR1), and homeobox gene distal-less homeobox 5(Dlx5)[39]. Brito et al. also 
reported that MeCP2 can regulate mRNA splicing through intron retention or exon skipping[40]. LaSalle 
laboratories reported that MeCP2 can regulate RNA splicing by binding to YB-1 to promote the formation 
of neurons and regulate the plasticity of synapses in neuronal cells cultured in vitro[41]. In addition to 
binding to YB-1, MeCP2 can interact with RNA splicing factors such as martin 3 (MATR3), splicing factor 
proline and glutamine-rich (SFPQ), and serine and arginine-rich splicing factor 1 (SFRS1) to regulate RNA 
splicing[42]. The loss of MeCP2 function can lead to intron retention in blood cells as well as intron retention 
and exon skipping in some genes in neurons[41,43].

MeCP2 and miRNA
Recent studies have demonstrated that MeCP2 can regulate the expression of miRNAs [Figure 1]. MeCP2 
represses the transcription of primary miRNAs (pri-miRNAs), including miR-137[44], miR-15a[45], miR-
184[46], and miR-7b[47], by binding to mCG sites in gene promoter regions. Consequently, the loss of MeCP2 
enhances the transcription of pri-RNAs, resulting in the expression of mature miRNAs[48]. Furthermore, 
MeCP2 can alter the differentiation fate of cells by affecting the expression level of miRNAs. For example, 
MeCP2 can lead to the upregulation of miR-199, which could inhibit the ERK signaling pathway by 
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targeting PAK4, thus hindering early neuron development[49]. In MeCP2 knockout male mice, Mellios et al. 
observed that the absence of MeCP2 resulted in the upregulation of Let-7f miRNA by suppressing BDNF 
expression. Subsequently, the elevated Let-7f miRNA levels exerted a direct inhibitory effect on IGF-1 
synthesis, consequently leading to perturbed neuronal and astrocytic morphology as well as compromised 
functional integrity[50]. The deficiency of MeCP2 is associated with the downregulation of miR-146a and 
miR-146b, leading to the concomitant upregulation of their target gene, IL-1 receptor-associated kinase 1 
(Irak1). As a consequence, this dysregulation instigates inflammatory responses, specifically within 
neurons[51]. Horvath et al. conducted a study on the hippocampus, revealing that MeCP2 exerts regulatory 
control over synaptic function through its interaction with miR-101a[52]. However, the specific molecular 
mechanisms underlying this phenomenon have yet to be elucidated. Altogether, the abovementioned 
studies suggest that RTT-associated mutations can alter multiple miRNA pathways downstream of MeCP2 
and lead to impaired brain development and maturation. An in-depth understanding of MeCP2 function 
may help to elucidate the pathogenesis of RTT and develop effective therapeutic strategies.

CLINICAL CHARACTERISTICS OF RTT
The clinical presentation of RTT is closely related to the age of female patients and can be divided into four 
stages accordingly[53]. Patients develop normally during the first 6 - 18 months of life, and then experience 
four sequential stages of onset: stagnation (age 6-18 months), rapid regression (age 1-4 years), pseudo 
stationary (age 2-potentially life) and late motor deterioration (age 10-life)[7]. Despite their poor physical 
conditions, patients with RTT can typically survive until adulthood and even up to 70 years of age (70% of 
patients survive until 45 years of age)[22]. Cardiopulmonary problems are the main cause of death in patients 
with RTT[54]. Compared with female patients, male patients present with more severe phenotypes that are 
typically accompanied by severe congenital brain disease. MECP2 mutations have been detected in male 
fetal tissues and are considered lethal[55]. Owing to its typical sex preference and a sex ratio opposite to that 
of autism spectrum disorder (ASD) (male: female = 4:1), RTT is no longer classified as ASD in the fifth 
edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V).

RTT AND WM ABNORMALITIES
The pathogenesis of RTT remains largely unclear due to the limited research available, which is primarily 
based on autopsy reports. However, the rapid development of imaging technology, particularly MRI, and its 
application in the medical field have improved the understanding of brain developmental abnormalities in 
RTT patients, providing valuable guidance for further research. MRI scans conducted on patients of varying 
ages and with different mutation types have revealed that abnormal brain regions in patients with RTT are 
primarily localized in the frontal lobe, caudate nucleus, putamen, thalamus, parietal lobe, and 
hippocampus[56]. In addition to the commonly observed GM abnormalities, a decrease in the overall volume 
of WM and thickness abnormalities in the genu and splenium of the corpus callosum (CC) suggest that 
functional defects in MeCP2 can lead to WM abnormalities[57]. MRI has been used to image mouse and 
monkey models to examine the potential association between abnormal brain structure development and 
behavioral phenotypes in RTT. Grand et al. used MRI and detected overall brain shrinkage and significantly 
decreased motor cortex and CC thickness in MECP2-knockout mouse models[58]. The presence of CC 
abnormalities indicates the occurrence of WM abnormalities in mouse models[59]. Similarly, we have 
observed abnormalities in WM development, particularly in brain regions such as the prefrontal lobe and 
motor cortex, through brain imaging of monkey models established using Clustered Regularly Interspaced 
Short Palindromic Repeats (CRISPR/Cas9) technology[55]. Both mouse and monkey models exhibit WM 
development abnormalities similar to those found in patients. As shown in Table 1, the results of MRI 
detection of brain dysplasia in patients with RTT (including atypical RTT) and RTT models (mouse and 
monkey) show that WM abnormalities (especially in the CC) are common in RTT. Owing to the absence of 
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Table 1. Differences in brain imaging findings between patients with RTT and animal models of RTT

Gene Species Sex Mutation Cerebral 
Atrophy

The total 
volume of 
WM

Abnormal brain regions 
in GM

Abnormal brain regions in 
WM Ref.

MECP2 Human Female 
Male

-- √ √ Frontal lobe, parietal Lobe, 
and cerebellum

Superior longitudinal 
fasciculus, CC, and middle 
cerebellar peduncle

Mahmood[
57]

MECP2 Human Female -- √ -- The parietal lobe, prefrontal 
lobe, and white matter fiber 
bundles

-- Carter[65]

MECP2 Human Female -- √ -- -- All Tani[66]

MECP2 Human Female R190H √ -- -- All 
(delayed myelination)

Zhou[67]

MECP2 Human Female -- √ -- Frontal lobe CC Ryo[60]

MECP2 Human Male -- √ -- -- -- Takaji[68]

CDKL5 Human Female -5bp √ -- Frontal lobe CC Saitsu[69]

FOXG1 Human Female -- × × Frontal lobe Kumakura[
70]

Mecp2 Mouse Male 308 √ -- X CC De[71]

Mecp2 Mouse Male KO √ √ All All Akaba[59]

MECP2 Monkey Female KO √ √ occipital gyri, inferior 
temporal gyrus, and 
annectant gyrus

cingulate WM 
CC

Chen[55]

neuronal bodies in WM, it can be inferred that WM abnormalities are closely associated with glial cells. 
With the rapid development of imaging technology and improved understanding of glial cells, the role of 
WM in the brain is gradually receiving substantial attention from scholars.

The clinical symptoms of RTT are similar to those of ASD, and the imaging results of ASD patients also 
found that the abnormalities of CC are also similar to those of RTT patients[60,61]. Given that the WM 
abnormalities of RTT and ASD are similar, this finding suggests that WM abnormalities have common 
features among neurodevelopmental disorders[16,61,62]. The main cell group in WM is OL lineage cells, and 
OLs are one of the most important components of nerve fiber bundles[63,64]. OPCs differentiate into mature 
OLs through a series of complex and precise processes[19]. Therefore, we speculate that inhibition of 
oligodendrocyte precursor cells (OPCs) differentiation is the primary cause of WM abnormalities in 
patients with RTT. The following sections describe the developmental process of OPCs, which may help to 
understand the cause of WM abnormalities.

Generation of OPCs
OPCs are widely distributed throughout the CNS and account for approximately 5% of the total cells in the 
CNS[72]. They can continuously proliferate and differentiate, with their primary function being the 
differentiation into mature OLs. Additionally, OPCs have the capacity to differentiate into astrocytes and 
neurons[73]. They play a crucial role in the CNS by participating in immune regulation, neurogenesis 
regulation, and the formation of synapses with neurons[73]. It is important to note that OPCs are 
heterogeneous, meaning that their functions vary across different brain regions. Despite originating from 
the neural tube epithelium, OPCs exhibit functional heterogeneity throughout the CNS, which can be 
attributed to variations in their time of generation[74,75]. Studies have demonstrated that the developmental 
process of OPCs and the timing of their development are different between humans and mice. In mice, 
OPCs are generated in different brain regions at three distinct time points during development. Initially, 
OPCs emerge in the embryonic cerebellum at E11.5d[74]. OPCs in the cerebral cortex are produced in the 
medial ganglionic eminence and the medial prefrontal region at E12.5d; these OPCs migrate dorsally and 
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ventrally, eventually reaching the developing cortex at E16.5d[76]. The second phase of OPC proliferation 
mainly originates from the striatum at E15.5d; these cells migrate to the cortex and eventually become 
distributed throughout the brain[76]. The third stage of OPC production occurs in the subventricular zone 
(SVZ) at birth; these cells migrate to the CC and neighboring cortex[76]. Notably, the earliest OPCs that 
migrate to the cortex are gradually replaced by OPCs produced during the third stage of development, with 
complete replacement occurring approximately 10 days after birth[77]. At present, the understanding of 
OPCs in the human brain is not as clear as that in the mouse brain. Studies have suggested that OPCs in the 
human brain are generated during two concentrated periods. The first peak appears around week 10 of 
pregnancy. During this stage, OPCs can be observed in the frontal brain, lasting until approximately week 
15[77,78]. The second peak occurs during the postnatal period and extends up to 5 years of age, followed by a 
decrease in OPC proliferation efficiency; however, OPC proliferation can be detected in the adult human 
brain[79].

OPC differentiation
In the CNS, only OPCs can differentiate into mature OLs through complex and strict regulatory 
mechanisms. According to different developmental stages, OL lineage cells can be classified as OPCs, 
immature OLs, and mature OLs. Studies have demonstrated that the maturation of OLs is regulated by 
factors such as extracellular signaling molecules, epigenetic regulation, and transcription factors. 
Subsequent chapters will delve into the elucidation of mechanisms influencing OPC differentiation, 
focusing on miRNA, mitochondrial abnormalities, and immune-related factors.

Transcription factors
Transcriptional regulators play an essential role in maintaining the proliferation and differentiation of 
OPCs. Common transcriptional regulators include OL transcription factor 2 (Olig2), SRY-box 10 (Sox10), 
NK2 homeobox 2 (Nkx2.2), and myelin regulatory factor (MYRF)[19]. During the differentiation of NSCs 
into OPCs, Olig2 is first expressed and can be used as a marker of OPCs[80]. Some researchers have referred 
to Olig2-positive cells as Pri-OPCs. Olig2 can promote the early differentiation of OPCs, and its expression 
gradually decreases as differentiation progresses[81]. Wu et al. reported that the combination of proline-rich 
coiled-coil 2A (Prrc2a) and N6-methyladenosine (m6A) maintained the transcription level of Olig2[82]. 
Moreover, insufficient myelination was observed in mouse models with a specific knockout of Prrc2a in 
OPCs, suggesting that Olig2 can promote the differentiation of OPCs[82]. Olig2 can induce the expression of 
Sox10, which acts as a DNA-binding protein to directly regulate the expression of myelin basic protein 
(MBP) and promote the differentiation of OPCs[83]. Sox10 can directly regulate the transcription factor 
MYRF[84]. Together, Sox10 and MYRF can collectively regulate the expression of MBP, myelin 
oligodendrocyte glycoprotein (MOG), and other genes and promote the differentiation of im-OLs to ma-
OLs[84,85]. Nkx2.2 plays an important role in the occurrence and differentiation of OPCs. Related studies have 
demonstrated that Nkx2.2 can directly bind to the PDGF-α promoter to inhibit its expression, thereby 
promoting OPC differentiation[86]. However, the underlying mechanisms remain unclear. Studies have 
demonstrated that the transcription factors inhibitor of DNA binding 2/4 (Id2/4), transcription factor 4 
(TCF4), and zinc finger protein 24 (ZFP24) play an indispensable role in OPC differentiation and OL 
maturation[19]. Altogether, recent novel findings may help to elucidate the development of OL lineage cells.

Epigenetic regulation
Studies on OL lineage cells have reported that epigenetic regulation, such as chromatin remodeling, histone 
modification, and RNA regulation, can promote OPC differentiation and myelin formation. Chromosomal 
condensation and decondensation during OPC differentiation are mainly mediated by the ATPase subunit 
Brahma-related 1 (BRG1, also known as Smarca4)[87]. Olig2 can recruit BRG1 to the enhancers and 
promoters of Sox10, MBP, and other OPC differentiation-related genes to promote their transcription[88]. 
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Chromodomain helicase DNA binding protein 7 (CHD7), another chromatin remodeling-related factor, 
can promote transcription by forming a complex with BRG1 or with the promoters of genes involved in 
OPC differentiation, such as Sox10 or Nkx2.2[89]. Furthermore, the acetylation and methylation of histones 
can regulate the differentiation of OPCs. Loss of the core enzyme EZH2 in polycomb repressive complex 2 
(PRC2), a histone methyltransferase, can prevent the differentiation of OPCs and reduce the number of 
OLs[90]. miRNAs can regulate OPC differentiation and myelin formation through post-transcriptional 
regulation. For example, miR-219 can promote OPC differentiation by specifically recognizing and 
inhibiting platelet-derived growth factor receptor, alpha polypeptide (PDGF-α), SRY-box transcription 
factor 6 (SOX6), hes family bHLH transcription factor 5 (HES5), forkhead box J3 (Foxj3), and other RNAs 
that inhibit genes related to OPC differentiation[91]. In addition, it can repress the expression of ELOVL fatty 
acid elongase 7 (Elovl7), a fatty acid elongation factor, to avoid excessive accumulation of fat in OLs, thereby 
maintaining the activity of OLs[92]. Other miRNAs involved in the regulation of the differentiation of OL 
lineage cells include miR-338, miR-138, miR-219, miR-200, and miR-9[93,94].

Signaling molecules
Extracellular hormones, growth factors, and other related factors promote the proliferation and 
differentiation of OPCs by activating specific signaling pathways. Some common regulatory factors include 
Triiodothyronine (T3), platelet-derived growth factor (PDGF), Insulin-like growth factor-1 (IGF-1), and 
fibroblast growth factor 2 (FGF2). T3 produced and released by the thyroid gland can enter the CNS 
through the blood–brain barrier to regulate the proliferation and differentiation of OL lineage cells[95]. T3 
activates the PI3K/AKT signaling pathway by binding to the thyroid hormone receptor (TR), thereby 
terminating the cell cycle of OPCs and consequently promoting their differentiation into OLs[96]. In 
addition, T3 can promote the differentiation of NSCs into OPCs and the morphological and functional 
maturation of OLs[97]. IGF-1 is primarily synthesized by neurons and glial cells in the CNS. During the 
development of OPCs, IGF-1 mainly induces the PI3K/AKT and MAPK/ERK signaling cascades by binding 
to the IGF-1 receptor (IGF-1R), thus inhibiting OPC apoptosis and promoting proliferation[98]. Similar to 
IGF-1, PDGF is synthesized by neurons and glial cells. PDGF promotes the migration, proliferation, 
survival, and maturation of OPCs by binding to the PDGF-α receptor on OPCs[99]. In addition, PDGF can 
maintain the activity of OPCs by activating the JAK/STAT signaling pathway[100]. FGF2 can promote the 
differentiation of neural progenitor cells into OPCs, and can also induce the differentiation of OPCs into 
OLs[101]. Other signaling molecules that regulate the development of OPCs include ciliary neurotrophic 
factor (CNTF), leukemia inhibitory factor (LIF), and epidermal growth factor (EGF)[102-104]. However, the 
mechanism of action of these molecules warrants further investigation.

POTENTIAL MECHANISM OF ACTION OF MECP2 IN OL LINEAGE CELLS
In previous studies, developmental abnormalities in WM have been observed on MRI and pathological 
examination in both RTT patients and animal models of RTT[16,58]. These abnormalities are characterized by 
a common trend of decreased WM volume and CC thickness. To verify whether the OL lineage cells lead to 
developmental abnormalities in WM, mouse models with specific knockdown of MeCP2 in OPCs have 
been used. According to the results of electron microscopy, these knockout mouse models have decreased 
CC thickness, decreased abundance of OPCs and OLs, and abnormal number and thicknesses of myelin 
sheaths in the CC[105]. These findings support the hypothesis that WM abnormalities result from the 
impaired development of OL lineage cells. However, the mechanisms through which MeCP2 regulates the 
development of OL lineage cells remain unclear. This section briefly summarizes the developmental process 
and regulatory mechanisms of OL lineage cells and describes the mechanisms through which MeCP2 
regulates their proliferation, differentiation, and function. The findings reported in this section may 
improve the understanding of WM developmental abnormalities in RTT and even ASD.
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MeCP2 regulates the differentiation of OPCs
Reduced CC thickness has been observed in both Mecp2-knockout mouse models and in the imaging and 
autopsy reports of human patients[56,105]. These findings suggest that MeCP2 regulates abnormal myelin 
formation. However, the underlying mechanisms remain elusive. Studies on primary culture of rat OPCs 
have demonstrated that Mecp2 expression increases with OPC differentiation and that MeCP2 can bind to 
the promoter regions of genes encoding myelin proteins such as MBP and PLP to regulate myelin formation 
in mature OLs[106]. Knockdown of MeCP2 can increase the expression of genes encoding MBP, PLP, myelin-
associated oligodendrocyte basic protein (MOBP), MOG, brain-derived neurotrophic factor (BDNF), and 
transcription factor (YY1) and in the levels of MBP, PLP, and BDNF proteins[106]. Given that these genes are 
involved in OL differentiation and myelin formation, MeCP2 may play a negative regulatory role in myelin 
formation. A study using Mecp2-knockout mice revealed 130 differentially expressed genes (DEGs) in the 
brain. Among those DEGs, 34 genes were also abnormally expressed in the autism mouse model (Ptenm3m4 
and Tcf4+/Mut). Enrichment analysis of these 34 genes was significantly enriched in several myelin formation-
related gene ontology terms[107]. Approximately 15% of genes were associated with myelin regulation, and 
their expression was significantly increased, which was consistent with the results of in vitro 
experiments[107]. However, studies investigating the role of MeCP2 in regulating the proliferation and 
differentiation of OLs are limited. Therefore, understanding the precise mechanisms through which MeCP2 
regulates OLs proliferation, differentiation, and myelin formation may facilitate the study of pathological 
mechanisms underlying WM abnormalities in RTT.

Function of MeCP2 in oligodendrocyte lineage cells
To date, studies on the pathogenesis of RTT have mainly focused on neurons and elucidated the specific 
mechanisms through which MeCP2 regulates neurogenesis and neuronal maturation. However, only a few 
studies have investigated the regulatory mechanisms of MeCP2 in OL progenitor cells. This section 
summarizes the potential functions of MeCP2 in OL progenitor cells based on the understanding of its 
functions in neurons and from the perspective of miRNAs, mitochondrial abnormalities, and immunity.

miRNA regulation
MicroRNAs (miRNAs) are small non-coding RNAs that consist of 20-24 nucleotides and typically inhibit 
gene expression by binding to the 3’-UTR of mRNAs[108]. miRNAs can be categorized into different types 
and have various biological functions. Recent studies have reported that most miRNAs are located within 
the introns of protein-coding genes[109]. Transcription of miRNAs results in the production of pri-miRNA 
transcripts with multiple hairpins in the nucleus. pri-miRNAs are cleaved by the Dorsha enzyme to produce 
hairpin precursor miRNAs (pre-miRNAs), which are cleaved by the ribonuclease Dicer1 in the cytoplasm to 
form mature miRNA[108]. miRNAs can regulate various biological functions such as cell proliferation, 
differentiation, apoptosis, and metabolism at the transcriptional level[110]. In addition, they are involved in 
regulating developmental processes such as neural development, neuronal maturation, and synaptic 
plasticity[111]. Abnormal miRNA expression has been observed in patients with RTT, Mecp2-null mouse 
brains, and in vitro cultured neurons[112]. As shown in Figure 2, MeCP2 can regulate miRNA expression 
either directly or indirectly. Although no relevant studies have demonstrated that MeCP2 affects OPCs 
development by regulating miRNA expression, considering that miRNAs have been reported to play a 
crucial role in the proliferation, differentiation, and myelination of OPCs[113,114], MeCP2 may regulate the 
proliferation and differentiation of OPCs through miRNAs.

Direct regulation of miRNA
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Figure 2. Prediction of mechanisms through which MeCP2 regulates miRNAs in oligodendrocyte lineage cells. MeCP2 may regulate the 
expression of miRNA through two pathways in the nucleus. The first way is that MeCP2 can directly bind to the mCG site of the miRNA 
gene promoter to inhibit transcription. The second way is that MeCP2 can affect the number of Dorsha complexes by controlling the 
binding of the Dorsha and DGCR8. Dorsha complexes can cleave pri-miRNAs to generate pre-miRNAs. MeCP2 regulates the expression 
of pre-miRNAs in the nucleus and then inhibits the translation of downstream target mRNAs by affecting the expression levels of 
intracellular miRNAs. Black arrows indicate downregulation, and red arrows indicate upregulation.

The way MeCP2 directly regulates transcription is that it can specifically recognize and bind to the mCG 
site in the miRNA promoter region, inhibit the transcription of pri-miRNA and reduce the expression of 
miRNA[112] [Figure 2]. MeCP2 exerts direct inhibitory effects on miR-15a transcription, whereas miR-15a, in 
turn, modulates neuronal growth through the regulation of brain-derived neurotrophic factor (BDNF) 
expression[45]. The methylation of the 5’-flanking region of miR-7b plays a crucial role in recruiting MeCP2 
and subsequently represses miR-7b expression. Simultaneously, miR-7b exhibits a specific binding affinity 
towards the MECP2-3’UTR region, thereby exerting inhibitory control over its expression. These reciprocal 
interactions establish a dynamic equilibrium between miR-7b and MeCP2[47]. Studies on gastric cancer cells 
have demonstrated that MeCP2 specifically recognizes CpG islands in the miR-338 promoter and inhibits 
the expression of miR-338-3p and miR-338-5p[115,116]. These two miRNAs can suppress the proliferation of 
gastric cancer cells by regulating the expression of phosphatidylinositol-3,4,5-trisphosphate dependent Rac 
exchange factor 2 (P-REX2) and BMI1 proto-oncogene, polycomb ring finger (BMI1), respectively[117]. 
Additionally, miR-338 inhibits the expression of proteins that promote OPC proliferation, thus promoting 
their differentiation into myelinating Ols. MiR-338-5p and miR-338-3p can promote the differentiation of 
OPCs by inhibiting the expression of differentiation inhibitors such as Sox6 and HES5[118]. This indicates 
that MeCP2 may have the ability to regulate the proliferation and differentiation of OPC through miR-338-
5p and miR-338-3p.

Indirect regulation of miRNA
About indirect regulation in Figure 2, dephosphorylation of MeCP2 at pS80 leads to its dissociation from 
the chelated DiGeorge syndrome critical region 8 (DGCR8) and allows DGCR8 to recruit Dorsha 
complexes to cleave pri-miRNAs[48,108]. It is noteworthy that abnormal MeCP2 phosphorylation in different 



Page 11 of Zhang et al. Ageing Neur Dis 2023;3:12 https://dx.doi.org/10.20517/and.2023.13 21

cell types may be the primary reason for abnormal miRNA expression. Mellios et al. found that MeCP2 
delayed the early differentiation of neurons by upregulating miR-199 and miR-214 expression. MiR-214 can 
target and inhibit the expression of PTEN, thereby activating the AKT signaling pathway to inhibit neuronal 
differentiation[49,119]. Nakashine et al. demonstrated that MeCP2 upregulates the expression of miR-199a in 
NSCs by binding to the Dorsha receptor, while miR-199a promotes NSC differentiation into neurons by 
decreasing the expression of Smad1[120]. In addition, studies on OPCs derived from human ES cells have 
reported that miR-199a and miR-214 can inhibit OPC differentiation by suppressing the expression of 
MOBP and MYRF[121,122]. Therefore, MeCP2 may regulate OPC differentiation by regulating miR-199 and 
miR-214. In non-classic RTT, the FOXG1 protein regulates miRNA biogenesis by recruiting Dorsha, 
indirectly indicating the importance of miRNAs in the development of RTT[123].

Based on a literature search and analysis of miRNAs that are commonly regulated by MeCP2 in both neural 
cells and OPCs, it has been hypothesized that MeCP2 regulates OPC differentiation through miR-26[124,125], 
miR-30[126,127], miR-146[51,128], and miR-203[52,129], and regulates OLs maturation and myelination through miR-
9[130,131], miR-21[132,133], miR-23[130], miR-184[46,134]. Figure 2 shows the potential signaling pathways that are 
affected by MeCP2 through the regulation of miR-199 and miR-214, and miR-338 in OPCs. This 
information may guide future studies investigating the regulatory effects of MeCP2 on miRNAs during the 
proliferation, differentiation, and myelination of OL lineage cells.

Mitochondrial abnormalities
RTT is considered a mitochondrial disease because of the shared clinical features between RTT syndrome 
and mitochondrial diseases, such as oxidative damage, abnormalities in electron transport chain (ETC) 
complexes, and elevated levels of lactate and pyruvate in the peripheral blood and cerebrospinal fluid[135-137]. 
Loss of MeCP2 can lead to abnormalities in the structure and function of mitochondria in RTT. 
Investigation of mitochondria in the muscle, skin, and different brain regions of patients with RTT has 
revealed pathological features such as abnormally enlarged mitochondria and dumbbell-shaped 
vacuoles[138-140]. A study demonstrated that loss of Mecp2 in 3-week-old mice resulted in an increase in the 
volume of mitochondria and the abundance of mitochondrial cristae without forming bubble-like 
structures[135]. Although no differences in mitochondrial morphology were observed in 12-week-old mice, 
significant abnormalities were observed in their mitochondrial function[135]. The primary function of 
mitochondria is to provide energy to cells through ATP synthesis. In addition, they play a role in regulating 
biological processes such as oxidative stress, lipid metabolism, and cell apoptosis.

To date, no studies have reported mitochondrial abnormalities in OLs in RTT. F2-isoprostanes are 
biomarkers for OS damage and have been detected in WM from patients with RTT[141], indicating that 
MeCP2 may induce OS and eventually lead to WM abnormalities by affecting mitochondrial function. OLs 
synthesize lipids required for myelin sheath formation and provide substances for neurons, such as lactate 
and pyruvate. Therefore, they require more mitochondria to maintain their energy expenditure[142,143]. To 
investigate the impact of MeCP2 on the structure and function of mitochondria, Aldosary et al. performed 
an integrated analysis of gene expression data from the brains and blood of patients with RTT and identified 
77 common differentially expressed genes[137]. And most of them are involved in mitochondrial dysfunction 
and oxidative stress (OS) responses, which exacerbate the development of RTT[137].

OS abnormalities
OS is primarily caused by abnormal accumulation of ROS, which is mainly produced by mitochondria 
within cells. Therefore, MeCP2 may induce OS by regulating mitochondrial function. Elevated OS levels 
have been detected in Mecp2-null mice[144,145]. In a study, MeCP2 expression was restored in Mecp2-null mice 
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to verify the causal relationship between Mecp2 and OS. The results revealed that reactivating MeCP2 in the 
MeCP2-deficient mouse brain restored the levels of OS markers such as F4 NeuroPs, F2 IsoPs, and 
NPBI[144]. Additionally, a decrease in superoxide dismutase (SOD) and glutathione (GSH) levels have been 
observed in symptomatic mouse models of RTT[146,147]. Downregulation of SOD and GSH may lead to 
excessive accumulation of ROS and induce OS responses. In addition, abnormal expression of genes 
associated with mitochondria or OS, such as uncoupling protein 3 (UCP3), cardiolipin synthase (CRLS1), 
NADH: ubiquinone oxidoreductase subunit A5 (NDUFA5), mitogen-activated protein kinase 9 (MAPK9), 
ATP synthase peripheral stalk subunit OSCP (ATP5PO), MAF bZIP transcription factor (MAF), Fos proto-
oncogene (FOS), and stress-activated protein kinase (SAPK), has been observed in the brain tissues of mice 
with RTT[137]. In neurodegenerative diseases such as MS, an abnormal increase in mitochondrial activity in 
OLs can exacerbate oxidative damage, which may be the cause of demyelination[148]. This phenomenon 
indirectly verifies our hypothesis. In studies on OLs, abnormal accumulation of ROS has been demonstrated 
to cause damage to DNA and mtDNA, which not only leads to a decrease in the levels of mitochondrial 
respiratory chain-related proteins but also reduces the ability of OLs to form myelin[149]. In addition to 
providing cellular energy, mitochondria play a necessary role in lipid biosynthesis and myelin formation in 
OLs. Elevated ROS levels can lead to lipid peroxidation (LAHP) and inhibit myelin formation[150]. When 
ROS levels are extremely high, LAHP is oxidized to MDA, and the abnormal accumulation of MDA can 
lead to cell apoptosis.

MeCP2 and electron transport chain abnormalities
Because intracellular ROS are generated by the mitochondrial respiratory chain complex II, the detection of 
decreased ATP synthesis in Mecp2-null cells suggests that MeCP2 can affect OS levels by regulating 
mitochondria[151]. Studies on abnormal mitochondrial function in hippocampal neurons have demonstrated 
that MeCP2 deficiency significantly reduces the enzymatic activity of respiratory chain complex I, II, and IV 
and also results in an abnormal increase in ROS levels[152]. MeCP2 can directly upregulate the promoter of 
the uncoupling CQR-1 complex III protein gene (Uqccr1 complex III) with ubiquinone cytochrome c 
reductase core protein I[153]. However, Mecp2 knockout can increase the respiratory rate related to complex 
III in mitochondria in the brains of mice and accelerate the generation of ROS by increasing the electron 
chain non-coupling rate[138,153]. However, the energy demand of OPCs is higher than that of OLs, indicating 
that OPC differentiation is a high-energy-consuming process[154]. High-energy-demanding cells lead to an 
increase in ROS levels, which promotes OPC differentiation and myelin formation[148,155]. MeCP2 deficiency 
can induce mitochondrial abnormalities in neurons and astrocytes. If this phenomenon occurs in OLs, high 
energy demand and mitochondrial dysfunction can accelerate the abnormal accumulation of ROS, possibly 
leading to the release of cytochrome C (Cyt C) in the cytoplasm and inducing OPCs or OLs apoptosis. In 
addition, calcium ion disorders have been found in MeCP2-deficient astrocytes, and calcium ion 
accumulation owing to mitochondrial abnormalities can lead to Cyt C release in the cytoplasm and induce 
cell apoptosis[156].

As shown in Figure 3, we associate the mechanisms underlying MeCP2-induced mitochondrial 
abnormalities with research on mitochondria in neurodegenerative diseases and infer the role and function 
of MeCP2 in OLs.

Immunoregulation
Loss of MeCP2 function could cause immune dysfunction and chronic inflammation, exacerbating the 
deterioration of clinical characteristics[157]. Therefore, exploring the regulatory effects of MeCP2 on immune 
cell function and pro-inflammatory signaling could promote our understanding of the pathogenesis of RTT. 
As immune cells, microglia produce cytokines, such as interleukin (IL) -1β, tumor necrosis factor (TNF), 
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Figure 3. Abnormal MeCP2 function may lead to changes in mitochondrial structure and function. MeCP2 may regulate the function of 
mitochondria by affecting electron transport chain complexes. The loss of MeCP2 function can lead to the release of cytochrome C into 
the cytoplasm and induce apoptosis. MeCP2 mutations can also lead to abnormal accumulation of reactive oxygen species, resulting in 
DNA damage and even apoptosis. However, an appropriate increase in ROS can make OPC exit the cell cycle and promote its 
differentiation. The abnormal function of MeCP2 can also reduce the coenzyme of dehydrogenase (NAD+) and the generation of ATP, 
thereby reducing the synthesis of lipids by affecting the reaction of tricarboxylic acid. OPC:oligodendrocyte precursor cell; ROS: reactive 
oxygen species.

and IL-6, in the CNS to regulate the developmental process[158,159]. Although specific knockout Mecp2 in 
microglia could not induce RTT pathological phenotypes in mice, specific restoration of Mecp2 in microglia 
can rescue the pathological phenotype in RTT mice and extend their lifespan, indicating that the microglia 
play an important role in the pathogenesis of RTT[160]. A recent study showed that the expression of TNF 
was upregulated in the microglia of an RTT mouse model, which can promote the occurrence of 
inflammatory reactions[161]. The upregulation of TNF can inhibit the mTOR signaling pathway by activating 
AMP-activated protein kinase (AMPK), preventing differentiation, and even inducing apoptosis of 
OPCs[162]. In addition, Feldhaus et al. found that TNF can also reduce the expression of MBP during OPC 
differentiation, which may be the main reason why MeCP2 inhibits OPC differentiation[163]. IL-9, IL-4, IL-1β
, and IL-17 were upregulated in the plasma of RTT patients[164,165]. IL-9 can inhibit OPC differentiation, but 
the mechanism is unclear[166]. IL-4 can stimulate the microglia to secrete IGF-1, inhibiting the apoptosis of 
OPCs. IL-1β and IL-17 can directly inhibit the apoptosis of OPCs and promote their proliferation[167,168]. The 
mechanism of MeCP2 in regulating proliferation, differentiation, and apoptosis of OL lineage cells through 
affecting the expression of immune factors is not yet clear, and further studies are needed.

OPCs and immunoregulation
OLs are well-known as myelin-forming cells in the CNS. However, with the in-depth investigation of OL 
lineage cells, it is reported that OPCs also have immune functions, including secreting inflammatory factors, 
expressing cytokine receptors, and responding to inflammation[169]. Moyon et al. found that OPCs can 
release immune regulatory factors, such as IL-1β and CCL2, in a demyelination mouse model during the 
process of proliferation and migration to damaged areas[170]. Zeis et al. also confirmed that OPCs can express 
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various immune regulatory factors, such as chemokines, cytokines, and complement[169]. Zveik et al. used 
cerebrospinal fluid from MS patients to treat OPCs in vitro and found that the treated OPCs showed 
inhibited proliferation and differentiation ability as well as reduced expression of histocompatibility 
complexes (MHC)-II and reduced secretion of TNF-α and NF-κB, which also provide evidence that OPCs 
has the immune function[171]. In addition, OPCs can also express immune-related proteins such as 
interleukin-17A (IL-17A), C-X-C motif chemokine ligand 10 (CXCL10), CD55, CD59, CD200, and CD47, 
further confirming that OL lineage cells can actively participate in the regulation of CNS 
inflammation[169,172]. The mechanism of OPCs in secreting immune factors remains unclear. Kishi et al. 
showed that MeCP2 can regulate cytokine expression through the NF-κB signaling pathway. Using RTT 
mouse cortex, they found that MeCP2 deficiency results in the loss of its transcriptional inhibitory effect on 
Irak1, which can activate the NF-κB signaling pathway to promote the entry of p65/RelA complex into the 
nucleus, thereby promoting the transcription of immune factors[173]. This may explain the immune 
dysfunction in RTT patients. In addition, Falcão et al. found that OPCs, like activated microglia, can 
phagocytose myelin granules[174]. Under inflammatory stimuli, immune-competent OPCs exit the cell cycle, 
exhibit the immune phenotype, and maintain immune function for a long time[73,175]. It remains unaddressed 
whether OPCs with an immunophenotype have the potential to differentiate.

Other regulatory effects
MeCP2 is involved in regulating the aging phenotype of OPCs and OLs. Studies have shown that MeCP2 is 
upregulated in primary cultured OPCs from the spinal cords of aged rats; however, the underlying 
mechanisms require further investigation[106]. Aging is often associated with OS, and MeCP2 may be 
involved in regulating the aging phenotype by regulating OS[176]. Because OPCs can form synapses with 
neurons, and this ability gradually disappears as they differentiate, MeCP2 can regulate the formation of 
OPC-neuron synapses like how it regulates synaptic plasticity in neurons[177-179]. Additionally, OPCs can 
secrete neuroregulatory factors to participate in cellular interactions, and MeCP2 may be involved in 
regulating the expression of neurotrophic factors[180,181]. Altogether, aging and OPC-neuron synapses may 
represent novel perspectives for investigating the regulatory mechanisms of MeCP2 in OL lineage cells.

CONCLUSION
Although classic RTT occurs owing to the functional loss of MeCP2, the complex types of mutations in the 
MECP2 gene and the diversity of MeCP2 protein functions have increased the difficulty of studying the 
pathogenesis of RTT. The mechanisms through which MeCP2 affects neuronal morphology and function 
are relatively well-understood, and the corresponding treatment methods or interventions have been shown 
to restore RTT-like phenotypes and prolong lifespan in mouse models. However, these approaches do not 
result in successful treatment. Glial cells play an essential role in the development of RTT. However, the 
underlying mechanisms warrant further investigation. In addition to aberrant neuronal morphology and 
function, abnormalities in total WM volume and CC thickness are observed in RTT. Abnormal OL function 
plays an integral role in causing WM abnormalities. Recent advances in epigenomics and transcriptomics, 
as well as their application in research on CNS, have improved the understanding of the regulation and 
function of OL lineage cells.

In conclusion, this review summarizes the function of MeCP2 in neurons. MeCP2 regulates various 
functions in OLs through transcription activation and inhibition, OS, miRNA expression, 
immunoregulation, and aging-related phenotypes. These findings may provide a rational basis for further 
investigating the role of MeCP2 in OL lineage cells and expediting research on WM abnormalities.
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