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Abstract
Low-grade heat (below 373 Kelvins) is abundant and ubiquitous, yet the lack of cost-effective recovery 
technologies frequently impedes its effective utilization. The advent of thermogalvanic hydrogel thermocells has 
garnered significant attention due to their high thermopower, inherent flexibility, low cost, and scalability. 
Thermogalvanic hydrogels have significantly enhanced their thermoelectric performance, resulting in the 
development of functional materials that exhibit flexibility, stretchability, self-healing, and frost resistance. 
However, there are substantial challenges in developing multifunctional thermogalvanic hydrogels that combine 
high power density and efficiency with practical applicability. This review discusses the synthesis of the novel redox 
couple, improving the performance of electrolytes to increase thermopower, creating electrodes with extensive 
surface areas for better current density and flexibility, and optimizing thermocell structure design to improve 
performance further. This comprehensive review aims to propel progress toward higher performance levels and 
broader applications of thermogalvanic hydrogel thermocells.
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INTRODUCTION
Low-grade heat energy from natural and anthropogenic sources (such as solar radiation, industrial plants, 
automobiles, and the human body) is abundant but underutilized, leading to significant energy wastage[1-7]. 
Consequently, developing and effectively using this thermal energy has become a meaningful way to 
promote sustainable development[8-12]. As a critical component of green energy, thermoelectric materials can 
convert thermal energy into electricity[13-19]. They also play an essential role in improving energy efficiency 
and reducing environmental burdens[20-23]. Although inorganic solid-state thermoelectric materials have 
been the subject of extensive research[24-27], their constituent elements are often rare and expensive. They 
typically generate thermopower at the microvolt level, hindering their widespread commercialization[28]. 
Ionic thermoelectric materials, such as thermogalvanic hydrogels, are intriguing because their thermopower 
is two to three orders of magnitude higher than their inorganic counterparts[21,29-31].

Thermogalvanic hydrogel materials have significant prospects for low-grade thermal energy harvesting 
because of their low cost, excellent scalability, flexibility, and high thermopower[32-39]. The high thermopower 
implies the generation of high voltages with a slight temperature gradient, thereby simplifying device design 
and integration[40-43]. Regarding thermogalvanic hydrogel preparation techniques, researchers can access 
diverse methods. Hydrogels can be broadly categorized into physically and chemically crosslinked types 
based on their crosslinking methods[44-46]. The physical crosslinking method mostly uses hydrogen bonds, 
van der Waals forces, and other non-covalent interactions to keep the hydrogel network structure 
stable[47-50]. Conversely, chemical crosslinking enhances the structural integrity of hydrogels by forming 
covalent bonds[51-53]. Each of these crosslinking techniques possesses unique advantages and application 
scenarios[54,55]. Through meticulous design and optimization, thermogalvanic hydrogels are poised to emerge 
as pivotal components in thermal energy harvesting technologies[2,15,56,57].

The principle of thermogalvanic hydrogels converting thermal energy into electrical energy differs from 
traditional electronic materials[58-60]. The principle in thermogalvanic hydrogels is mainly based on the 
thermogalvanic effect[61]. This effect is based on the redox reaction of redox couples in ionic conductors at 
the electrode interface under the thermal drive[40,62]. Owing to the disparity in reaction entropy between 
anions and cations, the ions undergo oxidation reactions in the high-temperature region and reduction 
reactions in the low-temperature region. The reaction generates a thermal voltage between the two 
electrodes, typically reaching several millivolts per Kelvin.

In recent years, significant progress has been achieved in thermogalvanic hydrogels. For example, by adding 
chaotropic cations and highly soluble amide derivatives to the redox couple electrolyte, the thermopower of 
thermogalvanic hydrogels was as high as 6.5 mV·K-1[63]. Furthermore, efforts to improve the output 
performance of electrodes by utilizing a large specific surface area to promote reaction kinetics have also 
proven effective[64]. In addition to the significant progress in performance, functional thermogalvanic 
hydrogels with properties such as flexibility, stretchability, toughness, antifreeze and self-healing are crucial 
for practical applications. Compared to traditional solid-state thermocells, hydrogel thermocells - 
extensively investigated in recent years - are more competitive and practical, as illustrated in Figure 1. 
However, thermogalvanic hydrogels still face challenges, including low energy conversion efficiency, low 
power density and stability issues in integrated devices for practical applications. In recent years, some 
excellent reviews have been made on thermogalvanic hydrogels. This paper aims to provide new insights to 
guide future research toward more efficient single thermocells and higher-performance low-grade heat-
harvesting devices, among other directions.
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Figure 1. Comparisons of (A) thermopower and (B) merits between inorganic thermoelectric materials and hydrogel thermocells. The 
materials used in hydrogel thermocells are abundant, inexpensive, and low-toxic. Furthermore, hydrogel thermocells exhibit excellent 
flexibility and stretchability, which can meet the needs of flexible wearable electronics[33,63,65-69].

THERMOGALVANIC HYDROGEL FUNCTIONALITY AND PERFORMANCE INFLUENCING 
FACTORS
Working principle
Thermogalvanic hydrogels represent a new class of materials exhibiting thermoelectric properties, and their 
thermoelectric conversion mechanism is mainly based on the thermogalvanic effect[56,70-72]. This 
phenomenon refers to generating electric potential under a temperature difference. The hydrogel thermocell 
is mainly composed of two electrodes and an electrolyte [Figure 2]. The two electrodes are in complete 
contact with the electrolyte containing the redox couple, and they are connected by an external circuit[73,74]. 
Applying a temperature difference across the two electrodes of a thermocell causes the redox couple to 
undergo oxidation at the anode and reduction at the cathode[75-77]. During this process, the reduced 
substances return to the anode for oxidation through convection, diffusion, and migration within the 
electrolyte. Meanwhile, the oxidized substances migrate towards the cathode. This ensemble of reactions 
and migratory processes constitutes a sustained current loop[78,79]. Ideally, as long as the composition of the 
electrolyte does not degrade, this cyclic reaction can theoretically continue indefinitely[80]. This property 
endows thermogalvanic hydrogels with tremendous potential for energy conversion and storage 
applications, thereby presenting a novel trajectory for advancing renewable energy technologies[32,78,81-86].

Factors influencing the thermoelectric properties of thermogalvanic hydrogels
Firstly, the material itself has a significant impact on its thermoelectric performance. Hydrogel is a three-
dimensional network structure polymer with high porosity and water content, and it can store a large 
number of ions[87,88]. With their unique structure, hydrogel thermocells act as an electrolyte to conduct ions 
and maintain the movement of charge carriers. Additionally, they serve as solidifying matrices for the 
electrodes, addressing the issue of electrolyte leakage typically associated with liquid electrolytes[89]. 
Therefore, the physical and chemical properties of hydrogels (such as molecular composition, crosslinking 
density, pore size, etc.) influence the conductivity, specific heat capacity, thermal expansion coefficient, and 
thermogalvanic effect of thermocells. These properties directly determine the energy density and power 
density of the redox couples. For instance, the polymer chain structure of hydrogels directly influences their 
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Figure 2. The thermocell working diagram (A) [Fe(CN)6]3-/[Fe(CN)6] 4-. Reproduced with permission[33]. Copyright 2022, Royal Society 
of Chemistry; (B) Fe2+/Fe 3+. Reproduced with permission[42]. Copyright 2024, Royal Society of Chemistry; (C) Cu/Cu2+. Reproduced with 
permission[71]. Copyright 2024, Royal Society of Chemistry; (D) I-/I3

- Reproduced with permission[72]. Copyright 2016, American 
Chemical Society.

thermoelectric characteristics, including chain length, degree of branching, and copolymer composition
ratio. Longer-chain polymers usually conduct heat more efficiently, while optimizing the copolymer
composition ratio can enhance thermocell performance. Secondly, the crosslinking density plays a
determinant role in establishing the network density of the hydrogel, thereby significantly influencing its
thermoelectric properties. A high crosslinking density can enhance the mechanical strength of the
thermocell but might decrease its thermal conductivity. On the other hand, a low crosslinking density can
augment thermal conductivity but may compromise mechanical strength. Finally, the conductivity of
hydrogels is crucial to their thermoelectric properties, as excellent conductivity is essential for converting
thermal energy into electrical energy. The conductivity of hydrogels can be enhanced by adding conductive
fillers or constructing conductive networks.

Hydrogel thermocells generate a potential difference at specific temperatures, which is critical in
determining their output power. This potential difference is a consequence of the redox reactions occurring
at that particular temperature. The potential difference directly affects the amount of energy that a redox
couple can deliver, significantly influencing its power output. The redox reactions can be expressed as:

A + ne- B                                                                                                                                                                    (1)

Thermopower refers to the reaction thermodynamics and is determined by the thermopower of redox
species in the electrolytes. In thermocells, the thermopower parameter is also called the temperature
coefficient. It is defined as the ratio of the voltage difference to the temperature change and describes the
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ability to generate electromotive force unit temperature difference. This parameter is an essential factor in 
determining the power output of the device. Thermopower can be calculated using[90]:

(2)

where n represents the number of electrons transferred in a redox reaction, F is the Faraday constant, SA
and SB are the partial molar entropies of substances A and B, SA and SB are the Eastman entropies, and
SE is the entropy of electron transport in an external circuit. The interaction of the ions and their solvated
shells with the solution influences the Eastman transport entropy. Under specific temperature differences,
the output voltage of the hydrogel thermocell will increase accordingly with the thermopower. Because the
internal resistance of the hydrogel thermocell is less sensitive to temperature changes, the thermocell
generates significantly higher current and output power.

Thermal conductivity represents another pivotal factor that influences the performance of thermocells. If
the electrolyte has good thermal conductivity, it can conduct heat more efficiently, reducing the
temperature difference between the electrodes. This reduction may result in lower output power from the
thermocell. It is well known that heat conduction depends on lattice vibrations. The amorphous and
inhomogeneous structure of polymers makes their lattice vibrations discontinuous, resulting in generally
low thermal conductivity. Hydrogel thermocells usually use polymers as matrices, leveraging the lattice
vibrational discontinuities between the aggregated and entangled nanofiber networks of the polymer and
the embedded ions; therefore, their thermal conductivity is generally lower.

STRATEGIES TO IMPROVE THERMOELECTRIC PROPERTIES
Enhancement of thermopower
The main factors restricting the widespread application of thermocells are their low output power, 
conversion efficiency, and stability[91]. To address these challenges, numerous researchers are actively 
working on solutions across multiple levels[92-96].

Thermopower primarily depends on the entropy change of the redox species during the reaction, and the 
entropy change is determined by the thermodynamics of the reaction. Specifically, the entropy change is 
related to the solvation structure entropy difference (∆S) and the concentration ratio difference (∆C) 
between the redox species, indicating that increasing ∆S or ∆C can effectively enhance thermopower[30]. 
Generally, the ∆S value of the redox species can be increased by regulating the interaction between the 
redox species and its solvent environment through special additives. Additives reorient and complicate the 
solvation structure of the redox species, thereby increasing the thermopower. Recent studies have 
demonstrated that the absolute value of the charge of the redox couples and the types of solvents 
surrounding it significantly influence the magnitude of ∆S[29]. Charge transfer leads to a change in entropy. 
Alterations in the charge of redox couples with large absolute charges modify the electron distribution and 
ionization state within the molecule, thereby increasing the complexity of the molecular internal structure. 
This increased complexity raises the entropy difference and the thermopower. For instance, the 
thermopower of [Fe(CN)6]3-/[Fe(CN)6]4- is approximately ~ 1.3 mV·K-1, much larger than that of I-/I3

- at ~ 
0.6 mV·K-1.

To amplify the entropy difference, organic solvents with different numbers of donors (DN) can be 
introduced to the aqueous solution[66,97,98]. The dimensions of the solvation shell are contingent upon the 
electron density of the surrounding solvation molecules. Meanwhile, the size of the solvation shell is 
inversely proportional to its entropy. Jiao et al., Lazar et al., and He et al. reported a series of non-liquid 
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electrolyte thermocells exhibiting high thermopower, with a maximum value of 2.65 mV·K-1[99-101]. Li et al. 
significantly enhanced the performance of the K4Fe(CN)6/K3Fe(CN)6 redox couple within an organic 
hydrogel thermocell [Figure 3][102]. This change also influenced the structure of the solvent shell around the 
redox couples during the reaction, which led to a difference in the concentration of the redox anions. 
Consequently, the thermopower was substantially increased from 1.27 to 2.30 mV·K-1. Owing to the high 
compressibility and inherent stretchability, these thermocells were subsequently assembled into self-
powered strain sensors. These sensors could monitor the movement of the human body under various 
stretches and pressures in real-time with high sensitivity.

To enhance the thermopower beyond improving ∆S, an alternative approach involves increasing ∆C. 
However, the redox couple cannot indefinitely sustain the concentration gradient between the hot and cold 
ends, as this state is thermodynamically unstable and will eventually revert to a uniform state. When the 
electrolyte reaches a steady state, ∆C is zero. Han et al. reported a new concept using methylcellulose to 
capture I3

- at the hot side and then release I3
- at the cold side, creating a concentration gradient of free I3

- in 
the thermocell, leading to an increase and reversal of the thermopower[31]. Zhou et al. successfully increased 
the concentration difference between the hot and cold ends by introducing α-cyclodextrin (α-CD) and 
potassium chloride (KCl)[72]. Due to the host-guest interaction, α-CD bound to I3

- at the cold end, thereby 
reducing the relative concentration of I3

-. Consequently, the equilibrium spontaneously shifted to the right 
at the cold end, where oxidation of 3I- to I3

- occurred. Concurrently, with the temperature elevation, the 
α-CD-I3

- complex spontaneously dissociated, resulting in an augmented concentration of I3
- at the hot end. 

This resulted in the equilibrium shifting towards the reduction of I3
- to 3I-, thereby producing more I- at the 

hot end. Compared to the original I-/I3
- system, introducing host-guest interactions created a larger 

concentration difference between the hot and cold ends, causing the internal cyclic reactions within the 
thermal thermocell to proceed more efficiently. Consequently, the thermopower increased from 0.86 to 
1.97 mV·K-1 [Figure 4].

In addition to the methods above, introducing electrolyte additives is another advantageous strategy[2,31,33,40]. 
Cations with strong chaotropic properties can combine with redox ions, crystallizing redox substances. This 
raises the ∆S of the redox electrolyte and amplifies the ∆C, significantly improving the thermopower of the 
thermocell. Yu et al. added guanidinium ions (Gdm+) to the electrolyte. These ions selectively caused 
[Fe(CN)6]4- to crystallize at the cold end, which led to the formation of thermosensitive crystals [Figure 5A 
and B][30]. Owing to the concentration gradient, these thermosensitive crystals moved toward the hot end 
and dissolved there. This phenomenon generated a substantial concentration disparity between the two 
electrodes, resulting in higher thermopower[103]. This was attributed to the fact that [Fe(CN)6]4- had a higher 
charge density compared to [Fe(CN)6]3-, and it interacted more strongly with Gdm+. Yu et al. corroborated 
this hypothesis through comprehensive experimental and simulation analyses[30]. At the low-temperature 
electrode (293 K), [Fe(CN)6]4- crystallized almost completely, with a concentration ratio of [Fe(CN)6]3-/
[Fe(CN)6]4- of approximately 0.02. Conversely, near the high-temperature electrode (343 K), the [Fe(CN)6]4- 
crystals dissolved rapidly, bringing the [Fe(CN)6]3-/[Fe(CN)6]4- concentration ratio to about 0.94. More 
importantly, the large concentration gradient of the redox couple significantly amplified the thermogalvanic 
effect. Adding Gdm+ caused the thermopower to rise from 1.4 to 3.73 mV·K-1, nearly 2.5 times than before. 
In addition to increasing ∆C, the crystals generated at the cold end could also inhibit thermal convection in 
the system, decreasing thermal conductivity [Figure 5C]. Due to the synergistic optimization of these 
parameters, its Carnot-relative efficiency reached 11.1%. Liu et al. combined stretch-induced crystallization 
with thermoelectric effect and proposed a high-strength quasi-solid stretchable polyvinyl alcohol 
thermogalvanic thermocell (SPTC) [Figure 5D][63]. Thus, the SPTC system had a large thermopower of 6.5 
mV·K-1, a high specific output power density of 1969 μW m-2 K-2. The extraordinary thermoelectric and 
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Figure 3. (A) The schematic operation mechanism for organogel-based thermocells. The thermopower (B) and conductivity (C) of 
thermocells. (D) Illustration showing the wearable application scenario of organized-based thermocells for self-powered strain sensing 
harvesting body heat. (E) The diagram of finger bending activity with a self-powered tensile sensor. (F) The thumb and index finger 
grasping bottle schematic with a self-powered pressure sensor. Reproduced with permission[102]. Copyright 2023, Wiley-VCH Verlag.

mechanical properties of the SPTC were superior to those of most reported quasi-solid stretchable 
thermogalvanic thermocells [Figure 5E].

Enhancement of ionic conductivity
The conductivity of hydrogel thermocells is generally three orders of magnitude lower than that of 
traditional inorganic thermoelectric materials. Consequently, research efforts have been directed towards 
enhancing their conductivity[104-106]. A primary approach to improving conductivity is to increase the 
solubility of redox couples within the electrolyte. However, this strategy could lead to an increase in the 
viscosity of the electrolyte, thereby intensifying mass transfer resistance and diminishing overall 
conductivity. Additionally, the thermopower of certain redox couples is concentration-dependent and can 
decline rapidly at high concentrations. For example, the thermopower could decrease by over 400% when 
the ion pair concentration increases from 0.01 to 2 M in I-/I3

- systems[107]. To solve these problems, 
researchers have proposed methods to optimize the properties of thermoelectric materials through electrode 
modification. For example, they proposed the creation of composite electrodes featuring three-dimensional 
pores or using copper electrodes to create three-dimensional layered electrodes through oxidation-etching-
reduction processes. Im et al. used carbon nanotube aerogel sheets coated on the surface with Pt 
nanoparticles as electrodes, increasing the conversion efficiency to 3.95%[108]. Wei et al. used MXene as the 
core of the electrode structure. They put polyaniline on the carbon nanotubes to make a three-layer thin 
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Figure 4. (A) A schematic figure of the thermocell combined with α-CD and I3
-/I- redox pair; (B) Increase of ionic conductivity and 

power factor of the thermocell with α-CD (4 mM); (C) Comparison of the thermopower values after the addition of α-CD, KCl, and (D) 
estimated concentration of uncomplexed I3

- in the electrolyte solution with simulated thermopower values (Se) at 10/40 oC. 
Reproduced with permission[72]. Copyright 2016, American Chemical Society. α-CD: α-cyclodextrin; KCl: potassium chloride.

film with substantial electrochemically active space [Figure 6][64]. This ternary composite flexible thin film 
electrode demonstrated superior performance in thermoelectrochemistry due to its porous and layered 
architecture. The synergistic interaction between MXene and polyaniline facilitated ion and charge 
transport at the electrolyte-electrode interface, resulting in an output power density of up to 13.15 mW·cm-2 
at a temperature difference of ∆T = 40 K. These methods primarily rely on increasing the specific surface 
area of the electrodes to reduce electron transmission resistance, thereby increasing the current density of 
the thermocell.

THERMOGALVANIC HYDROGEL APPLICATIONS
Thermogalvanic hydrogels, as a multifunctional advanced material, have demonstrated their unique 
application potential across various fields[109-118]. In the energy sector, these materials can be utilized for waste 
heat recovery, solar energy conversion and bioenergy conversion, potentially leading to significant energy 
savings and environmental benefits[65,119]. Thermogalvanic hydrogels have been proven indispensable in 
sensor technology, enabling temperature sensing, stress sensing, and other functions[89,120,121]. Additionally, 
thermogalvanic hydrogels have exhibited important application value in high-tech areas such as flexible 
electronics and smart nanodevices[63,122,123].
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Figure 5. (A) Schematic of Gdm+ induced [Fe(CN)6]4- crystallization and enhanced Se effect in K4Fe(CN)6/K3Fe(CN)6 electrolyte; (B) 
The photo shows the 0.4 M K4Fe(CN)6/K3Fe(CN)6 electrolyte before and after the addition of Gdm+; (C) The open-circuit voltage of the 
liquid [Fe(CN)6]3-/[Fe(CN)6]4- system after the addition of guanidinium chloride. Reproduced with permission[30]. Copyright 2020, 
American Association for the Advancement of Science; (D) A schematic illustration of the Gdm+ contribution to the thermogalvanic 
effect was enhanced in the thermocell; (E) The thermopower and conductivity of thermocells. Reproduced with permission.[63] Copyright 
2023, Wiley-VCH Verlag.
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Figure 6. (A) Diagram illustrating the process of creating a flexible ternary composite thin film electrode that has a porous layer 
structure; (B) Schematics of the configuration and size information of the square thermocell; (C) Optical images of the as-fabricated 
square thermocell; (D) Demonstration of using the square thermocell to light up two LED bulbs under the temperature difference of 
30 K with the assistance of a voltage amplifier. Reproduced with permission[64]. Copyright 2023, Wiley-VCH Verlag.

Energy field
As global energy demands continue to rise, finding efficient ways to reduce energy consumption and lower 
industrial energy usage has become a key focus for researchers[79,124]. Kong et al. prepared a tellurium 
nanowire (Te-NW)-doped poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT:PSS)/
polyvinyl alcohol hydrogel [Figure 7A][83]. After integration with a power management unit, the hydrogel 
module can drive small electronic devices such as commercial calculators and light-emitting diodes, 
showing good application potential in human body thermal energy harvesting. Xu et al. designed a 
PEDOT:PSS-polyacrylamide (PAAm) double network hydrogel as a high-performance interfacial 
photothermal material for solar steam power generation[125]. The hydrogel has good mechanical properties, 
long-term reliability and stability, and high-efficiency photothermal conversion performance. Meanwhile, 
Xu et al. developed a novel, cost-effective, highly porous hydrogel composite integrated with synchronous 
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Figure 7. (A) Demonstration of thermoelectric system in powering electronic devices. Reproduced with permission[83]. Copyright 2023, 
Elsevier B.V; (B) A hydrogel thermocell on a mobile phone battery is demonstrated to achieve effective evaporative cooling while 
converting the waste heat into electrical energy. Reproduced with permission[127]. Copyright 2020, American Chemical Society. TEG: 
Thermoelectric generator; TG: thermogravimetric.

photothermal and photocatalytic effects by a facile two-step immobilization approach[126]. The effective 
recovery of waste heat generated during the production process is crucial. However, efficient heat 
dissipation and waste heat recovery are often contradictory and difficult to achieve simultaneously. To 
address this issue, Pu et al. designed and developed a thermogalvanic hydrogel through collaborative 
innovation [Figure 7B][127]. This hydrogel film was laminated onto heat-generating elements to facilitate 
effective evaporative cooling and convert a portion of waste heat into electricity. More uniquely, the 
hydrogel could absorb moisture from the surrounding air and spontaneously recycle it. The effective 
recovery of waste heat generated during production processes was critical for increasing energy efficiency 
and decreasing industrial energy consumption. Specifically, attaching the hydrogel membrane with a 
thickness of just 2 mm to a phone battery successfully reduced the operating temperature by 20 oC at a 
discharge rate of 2.2 C, while retrieving electricity of 5 μW. This method facilitated spontaneous recycling by 
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Figure 8. (A) Conceptual schematic diagram of the thermogalvanic hydrogel patch resembling skin for self-powered temperature and 
strain sensing. Reproduced with permission[131]. Copyright 2024, Springer Nature; (B) A wireless fire monitoring system tracks the real-
time voltage change during a fire. Reproduced with permission[132]. Copyright 2020, American Chemical Society. PVA: Polyvinyl alcohol.

adsorbing water molecules from the environment when the device was unused. Thus, it provided a novel 
energy conservation and environmental protection solution.

Temperature sensing
As an emerging material, thermogalvanic hydrogels have demonstrated significant potential as temperature 
sensors[89,128-130]. Researchers can monitor temperature fluctuations by measuring voltage differences, as the 
open-circuit voltage of hydrogels directly relates to temperature changes. Temperature sensors based on 
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thermogalvanic hydrogels have gained widespread attention due to their rapid response and high precision. 
Wang et al. engineered a hydrogel-based electronic skin with dual-mode temperature and strain-sensing 
capabilities that harvest thermal energy from human body heat [Figure 8A][131]. They selected the iodine/
triiodide (I-/I3

-) redox couple. By combining the thermogalvanic and piezoresistive effects, self-powered 
temperature and strain sensing are successfully demonstrated through encapsulation and integration of the 
hydrogels into human tissue. Wu et al. have made a significant breakthrough. By connecting ten pairs of p-
n thermoelectric modules in series, they constructed a system capable of real-time fire monitoring 
[Figure 8B][132]. The thermogalvanic hydrogel was a self-powered electrical signal converter, transforming 
the temperature signal into a voltage signal. The signal acquisition module connected to the transmitter was 
responsible for capturing and relaying the temperature change information. The electrochemical 
workstation then recorded voltage changes in real-time. When the signal exceeded the threshold of the 
alarm circuit, the system lit up the red light-emitting diode and activated the speaker to sound the alarm.

Passive wearable sensors
Wearable sensors are another promising application area for thermogalvanic hydrogels[71,110,133-135]. Shen et al. 
reported for the first time a novel non-toxic redox couple of SO4

2-/SO3
2- as a high-performance, p-type 

thermogalvanic electrolyte ion that delivered a high Seebeck coefficient of 1.63 mV·K-1 at the redox couple 
concentration of 0.1 M[77]. Moreover, this PVA-SO4/3

2- hydrogel-based quasi-solid-state device showed the 
capacity for grabbing body heat to operate small electronics. Liu et al. have developed a tough and 
stretchable thermogalvanic hydrogel with superior thermoelectric properties [Figure 9A][63]. This hydrogel 
utilized the stretching-induced crystallization process and the thermogalvanic effect. With the help of 
freeze-thaw cycles and stretching steps, polymer chains crystallize and arrange themselves in the stretching 
direction, creating a layered anisotropic network. The researchers added guanidinium chloride to the 
[Fe(CN)6]3-/[Fe(CN)6]4- system to change the solvent shell around the [Fe(CN)6]4-. The chaotropic cations 
promote the crystallization of [Fe(CN)6]4- and enhance the reversibility of the redox reaction, thereby 
increasing the thermopower. The thermogalvanic hydrogel got a high thermopower of 6.5 mV·K-1 and a 
specific output power density of 1,969 µW·m-2·K-2. This represented a nearly fivefold increase compared to 
the thermopower of liquid [Fe(CN)6]3-/[Fe(CN)6]4- (1.4 mV·K-1) and a fourfold increase in the output power. 
The stretching caused the polymer chains to densify, which increased the mechanical properties. The 
hydrogel had a breaking strength of 19 MPa and a toughness of 163.4 MJ·m-3. The thermogalvanic hydrogels 
were also integrated as an array to harvest low-grade thermal energy from the environment and conduct 
strain sensing and health monitoring. This device generated enough electrical power to drive small medical 
devices, contributing to the promotion of green, sustainable, and wearable electronics in the Internet of 
Things era. Yang et al. constructed a solar thermogalvanic hydrogel[136]. The innovative system used external 
sunlight-induced by swinging arms to dynamically change the temperature difference of the gel during the 
thermoelectric conversion process [Figure 9B]. Han et al. developed a smart glove that integrates multiple 
thermal sensor arrays[121]. By monitoring all sensing nodes, the smart glove can feel the temperature and 
touch the position of an object, showcasing the potential application of flexible thermal sensor arrays in an 
intelligent environment [Figure 9C].

Coupling with catalysis
In addition to applications in energy, temperature sensing, and passive wearable sensors, thermoelectric 
materials can also be used in catalysis[137]. Wang et al. reported an in situ photocatalytically enhanced redox 
reaction that generates hydrogen and oxygen to realize a continuous concentration gradient of redox ions in 
thermogalvanic devices[65]. They used polyacrylic acid (PAA) as a hydrogel matrix, FeCN4-/3- as redox ions, 
and WO3 (Ov-WO3) and ZnIn2S4 as the photocatalysts (Sv-ZIS) for O2 production and H2 production. An O2

-evolution photocatalyst aided the forward reaction from FeCN3- to FeCN4- and facilitated H2O to O2 
production, resulting in a high FeCN4- concentration on the hot side[138]. The H2-evolution photocatalyst 
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Figure 9. (A) Hydrogel thermocells are designed for wearable, flexible electronics and human health monitoring applications. 
Reproduced with permission[63]. Copyright 2023, Wiley-VCH Verlag; (B) Schematic illustration of the self-powered PTE patch for 
human motion detection, the main features of movements such as walking, jogging, and running are recognized by the PTE patch. 
Reproduced with permission[136]. Copyright 2023, Elsevier B.V; (C) Photographs of a smart glove integrated with multiple thermal 
sensor arrays. Reproduced with permission[121]. Copyright 2023, Open Access. iTE: Ionic thermoelectric.

converted the FeCN4- to FeCN3- and facilitated H2 production from H2O, increasing the amount of FeCN3- 
on the cold side[139]. The authors also used in-situ Raman spectroscopy to test the species distribution of the 
system. They found that high concentration difference distribution can indeed be achieved and can exist 
stably, achieving the effect of stable and efficient operation of the thermoelectric battery under light. In 
addition to theoretical feasibility, the system exhibited a thermopower of 8.2 mV·K-1 in actual application 
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tests and a solar-to-hydrogen efficiency of up to 0.4%. A large-area generator (112 square centimeters) 
consisting of 36 units yielded an open circuit voltage of 4.4 volts and a power of 20.1 milliwatts, as well as 
0.5 millimoles of hydrogen and 0.2 millimoles of oxygen after six hours of outdoor operation.

CONCLUSION AND OUTLOOK
In summary, thermal energy conversion technology based on the thermogalvanic effect is a relatively 
cutting-edge form of energy conversion. In this field, various thermoelectric materials play an essential role. 
However, thermoelectric materials have faced challenges in their widespread application in industry, 
households, and other scenarios. The emerging hydrogel thermocell has the advantages of high 
thermopower, low cost, low thermal conductivity, excellent flexibility, and scalability, which may be an ideal 
choice for thermoelectric materials working at room temperature and expanding the application range of 
thermoelectric materials. In recent years, they have made considerable progress by optimizing electrodes, 
designing electrolytes, and improving device modules, but there are still some challenges.

Firstly, the underlying mechanism of hydrogel thermocells has yet to be fully understood. The associated 
theoretical framework has yet to be completely established. There is an urgent need for effective theoretical 
guidance to facilitate material optimization and design for practical applications. Consequently, the current 
research should focus on deepening the understanding of its mechanism and promoting the development of 
a comprehensive and systematic research framework.

Secondly, the efficiency of hydrogel thermocells should be improved. The three parameters of 
thermopower, conductivity, and thermal conductivity within the thermocell are interdependent, presenting 
an extreme challenge in achieving efficient improvement. For example, tuning the solvation structure of the 
redox couple can increase the thermopower but simultaneously decrease the conductivity. Although 
optimizing electrodes can accelerate reactions and enhance conductivity without lowering thermopower, 
thermodynamic constraints impose limits on conversion efficiency. Future research should focus on the 
synergistic optimization of electrolytes and electrodes to circumvent these issues. This approach aims to 
decouple the three parameters, thereby improving the efficiency of a single thermocell.

Finally, given the high thermopower characteristic of thermocells, their application potential in flexible 
sensor and refrigeration fields deserves further exploration. In the field of flexible sensor technology, 
hydrogel thermocells have been combined with various sensor types, such as pressure, humidity, light, and 
power sensors. These integrated systems are poised to find utility in various applications, such as electronic 
skin, monitoring human activities, personalized healthcare, and facilitating advanced human-computer 
interfaces.
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