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Abstract
In a time of food abundance and waste, and when sedentarism is the norm, metabolic-associated fatty liver disease 
(MAFLD) has become a major health threat in the Western world. While research is committed to finding a 
pharmacological treatment for MAFLD, it is time to go back to the basis and address the behavioral pathogenesis 
of MAFLD. All patients with MAFLD, irrespective of body weight, should be submitted to thorough dietary 
counseling. Diet is a learned behavior and should be addressed holistically and in a personalized fashion. The 
benefits of a suitable diet surpass an improvement of liver disease, having the potential to improve cardiovascular- 
and cancer-related mortality, in patients with MAFLD. This review summarizes the current state of the art of diet 
on MAFLD, presenting straightforward recommendations for everyday practice.
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INTRODUCTION
Throughout human evolution, dietary changes evolved at a rhythm that was not caught up by adaptations 
in human genome[1]. Dramatic changes in diet occurred in the past two centuries, after the industrial 
revolution allowed the introduction of prepackaged processed foods, hydrogenated vegetable oils and 
refined grains[1]. Indeed, humans are not adapted to the “western diet”, which is hypercaloric, with surplus 
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fat and refined sugars, and deficient in vegetables and fibers. This disruptive shift in diet couples with the 
growing threat of sedentarism, creating the perfect conditions that have led to obesity being the pandemic of 
the 21st century.

The metabolic syndrome (MS) and metabolic-associated fatty liver disease (MAFLD) are manifestations of 
energy surplus, adiposopathy, and obesity. The prevalence of MAFLD increased more than 50% in the last 
35 years, and it is already the number one cause of liver disease worldwide, afflicting one fourth of the 
overall population[2]. Furthermore, MAFLD is the most rapidly increasing etiology for end-stage liver 
disease[3], having recently reached the podium as the leading cause of chronic liver diseases in women on 
waitlist for liver transplantation and the second leading cause overall[4]. MAFLD is also associated with 
cardiovascular and all-cause mortality[5].

Recently, a panel of international experts defined as diagnostic criteria for MAFLD the presence of hepatic 
steatosis in overweight/obese or with type 2 diabetes mellitus (T2DM). In lean non-diabetic patients, besides 
liver steatosis, the diagnosis of MAFLD requires the presence of at least two metabolic disturbances, such as 
increased waist circumference, high blood pressure, dyslipidemia, insulin resistance (IR) and prediabetes, or 
high plasma C-reactive protein[6].

Despite intense research on the quest to find pharmacological treatment for MAFLD, currently no drug has 
yet been approved for it[7]. We do know, however, that weight loss is effective and can lead to reversal of the 
disease, with weight loss above 10% of body weight resulting in steatosis improvement in virtually all 
patients and fibrosis improvement in four out of five patients[8].

The famous quote from the 19th century by the German philosopher Ludwig Feuerbach “we are what we 
eat”[9] is echoing in the field of MAFLD. Indeed, awareness of the effects of our diet on the development and 
progression of MAFLD is increasing, and a dietary intervention must have a central position in the 
management of these patients.

This review critically summarizes the associations between diet and MAFLD, as well as the dietary 
recommendations clinicians should implement on their daily practice.

QUANTITY VS.  QUALITY OF THE DIET AS A DRIVER FOR MAFLD
The first important question is whether diet composition is relevant to the development of MAFLD, or if, 
on the contrary, it all comes down to a mathematical equation of calories consumption. Table 1 summarizes 
the nine top epidemiological/observational studies regarding dietary behaviors of patients with 
MAFLD[10-18], and only two showed an increase in daily energy intake[14,15], even in the studies in which 
patients with MAFLD had clearly a higher body mass index as compared to controls. On the other hand, 
epidemiological studies presented very heterogeneous differences in the composition of diet in patients with 
MAFLD as compared to controls, the most consistent one being an increase in proteins intake[10,12,14-18].

The evidence of an association between excessive caloric intake and the development of MAFLD is stronger 
in interventional studies. Small short-term overfeeding studies on healthy subjects, in which excessive 
calories were presented either as fat[19] or carbohydrates[20], both were associated with increased body weight 
and liver fat[21]. In the reverse way, overweight or obese subjects submitted to hypocaloric diets restricting 
carbohydrates or fat presented similar reductions on body weight, liver fat content, and liver enzymes[22,23]. 
The effect of carbohydrates restriction may be faster than with fat restriction, with more pronounced effects 
after acute restriction (48 h), but similar after chronic restriction (from 11 weeks up to 2 years), when 
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Table 1. Summary of the main epidemiological studies evaluating an association between diet and MAFLD

Differences in MAFLD vs. control group
Ref. Country Study design n BMI 

(kg/m2) Physical activity E intake 
(kcal/day) Alcohol intake Macronutrients composition

Musso et al.[10] 
2003

Italy Case-control 
NASH by liver 
biopsy

25 NASH 
25 controls

= 26 vs. 25 - = 2638 vs. 2570 = 13.3 g/day vs.
13.5 g/day

% kcal: 
= Fat (35 vs. 32); [↑ SFA (14 vs. 10), = MUFA (18 vs. 17), ↓ 
PUFA (3 vs. 5), ↑ cholesterol (506 mg vs. 405 mg)] 
= Carbohydrates (45 vs. 49); ↓ fiber (13 vs. 23) 
↑ Proteins (20 vs. 17)

Cortez-Pinto et al.[11] 
2006

Portugal Case-control 
NASH by liver 
biopsy

45 NASH 
856 controls

↑ 31 vs. 27 - = 2253 vs. 2218 - Intake in g: 
↑ Fat (80 vs. 73); [= SFA (23 vs. 23), ↑ MUFA (38 vs. 32), = 
PUFA (12 vs. 12), = cholesterol (307 mg vs. 330 mg)] 
↓ Carbohydrates (244 vs. 261); = fiber (23 vs. 23) 
↓ Proteins (100 vs. 105)

Zelber-Sagi et al.[12] 
2007

Israel Cohort 
MAFLD by 
ultrasound

349 (31% 
MAFLD)

↑ 30 vs. 26 - = 2493 vs. 2382 - % kcal: 
= Fat (37 vs. 38) 
= Carbohydrates (47 vs. 47) 
= Proteins (18 vs. 17), but ↑ in men (18 vs. 17)

Jia et al.[13] 2015 China Cohort 
MAFLD by 
ultrasound

4206 (32% 
MAFLD)

↑ 27 vs. 24 = 12 MET/week vs.
12 MET/week

= 2218 vs. 2165 ↓ Daily intake: 4.3% 
vs. 8.6%

↑ Carbohydrates intake in women: highest quartile of 
intake/sweet pattern score, OR 2.19 for MAFLD

Wehmeyer et al.[14] 
2016

Germany Case-control 
MAFLD by 
ultrasound

55 MAFLD 
88 controls

↑ 30 vs. 24 - ↑ 2739 vs. 2173 - g/1000 kcal: 
= Fat (43 vs. 45); [= SFA (18 vs. 18), = MUFA (16 vs. 18), = 
PUFA (7 vs. 8)] 
= Carbohydrates (104 vs. 102); ↓ fiber (9 vs. 10) 
↑ Proteins (36 vs. 35)

Cheng et al.[15] 2016 China Case-control 
MAFLD by 1H-MRS

19 MAFLD 
17 controls

↑ 36 vs. 27 = > 120 min/week: 
23% vs. 21%

↑ 2901 vs. 2423 - Intake in g: 
↑ Fat (87 vs. 60); [↑ SFA 8 vs. 6), = MUFA (11 vs. 9), ↑ PUFA 
(16 vs. 11)] 
↓ Carbohydrates (434 vs. 391); = fiber (21 vs. 20) 
↑ Proteins (97 vs. 80)

Rietman et al.[16] 
2017

Netherlands Cohort 
MAFLD by FLI

1128 (21% 
MAFLD)

↑ 31 vs. 26 ↓ > 30 min, moderate: 2 
days vs. 3 days

= 1985 vs. 2048 ↑ 9.8 g/day vs. 6.8 
g/day

% kcal: 
= Fat (37 vs. 36); [= SFA (12 vs. 12), = MUFA (13 vs. 13), = 
PUFA (8 vs. 9)] 
↓ Carbohydrates (42 vs. 44); ↓ Fiber (4 vs. 5) 
Proteins (14 vs. 14)

% kcal: 
↑ Fat (33 vs. 32); [↑ SFA (12 vs. 11), = MUFA (11 vs. 11), = 
PUFA (6 vs. 6)] 
= Carbohydrates (45 vs. 49); = fiber (3 vs. 3) 

Alferink et al.[17] 
2019

Netherlands Cohort in elderly 
MAFLD by 
ultrasound

3882 (34% 
MAFLD)

↑ 29 vs. 26 ↓ 35 MET/week vs. 44 
MET/week

↓ 1996 vs. 2052 = 0.45 units/day vs. 
0.45 units/day
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↑ Proteins (16 vs. 15)

Noureddin et al.[18] 
2020

USA Case-control 
MAFLD by 
Medicare claims 
data

2974 NASH 
29474 
controls

↑ 27 vs. 26 ↓ > 0.36 h/day: 20% 
vs. 23%

= 2122 vs. 2127 ↓ 2.8 g/day vs. 6.7 
g/day

% kcal: 
= Fat; [= SFA, = MUFA, = PUFA, ↑ cholesterol (OR = 1.16)] 
= Carbohydrates; ↓ fiber (OR = 0.84) 
↑ Red meat (OR = 1.15) and processed red meat (OR = 1.18)

↑Increased intake in cases vs. controls. ↓Decreased intake in cases vs. controls. BMI: Body mass index; E: energy; MAFLD: metabolic dysfunction-associated fatty liver disease; MUFA: mono-unsaturated fatty acids; 
NASH: nonalcoholic steatohepatitis; PUFA: polyunsaturated fatty acids; SFA: saturated fatty acids.

achieving similar weight loss[24].

Besides how much we eat, when we eat seems to have an effect on the risk for developing MAFLD[25]. An overfeeding study provided excessive calories given as 
sugar at the main meals (hence increasing the size of the meal) or between meals as snacks (hence increasing the frequency of meals). Although the weight gain 
was not significantly different between groups, the group that increased the frequency of the meals had a dramatic increase in the liver fat content. This was 
associated with an increase in visceral fat and hepatic de novo lipogenesis (DNL).

More recently, how fast we eat might also have a role in MAFLD. Cross-sectional studies found that eating fast associated with a 4-fold increased risk for 
MAFLD[26], particularly in lean subjects[27].

THE ROLE OF CARBOHYDRATES IN THE PATHOGENESIS OF MAFLD
Epidemiological studies do not favor an association between the proportion of energy intake as carbohydrates and the risk of having MAFLD or steatohepatitis 
[Table 1]. Similarly, interventional studies with high carbohydrates isoenergetic diets did not result in an increase on body weight or intrahepatic lipid 
content[28].

The type of carbohydrate ingested may modulate the risk of MAFLD, if not in hypercaloric[29-31] at least in isocaloric diets[32]. For example, a small crossover 
study provided two isocaloric diets with half of the energy from carbohydrates as fructose or almost all as complex carbohydrates (cereals, bread, pasta, rice, 
and potatoes). The high-fructose group developed an increase in DNL and a significant increase in liver steatosis[33].

Fructose and sugar-sweetened beverages
Preclinical and interventional human studies showed that, when compared to glucose, fructose supplementation was associated with higher adiposopathy and 
increased visceral fat, IR, and hypertriglyceridemia, at the expense of an increase in hepatic DNL, despite similar increase in body weight[29,34,35]. This is 
extremely relevant since, although the contribution of DNL for the intrahepatic lipid content is only 5% in patients without liver steatosis, it increases to 25% in 
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patients with MAFLD[36]. In addition, newly synthesized fatty acids are fully saturated, and hence DNL-
derived fatty acids are potentially more lipotoxic[37]. Indeed, studies with rodents showed that fatty acids 
derived from fructose-driven DNL induced ER stress and cellular injury, which was not observed when the 
fatty acids overload came directly from the diet[38].

From a physiological point of view, fructose can promote liver steatosis both directly via DNL and indirectly 
via DNL feedback inhibition of fatty acids oxidation[39]. Indeed, unlike glucose metabolism, which is highly 
regulated, fructose phosphorylation is not regulated by the hepatic energy status. As such, ingested fructose 
suffers a first-pass metabolism, in which fructose is retained in the liver not reaching systemic circulation. 
Ingested glucose, on the other hand, is only partially retained in the liver and can be utilized by peripheral 
tissues as an energy source for exercising muscle and DNL/storage in the adipose tissue. This results that 
ingested fructose may act as unlimited substrate for hepatic DNL[40]. Additionally, fructose activates SREBP-
1c independently of insulin, with activation of genes involved in DNL[41]. Furthermore, fructose inhibits 
PPAR-α activity and decreases FGF-21 expression, through a ChREBP-dependent manner[42].

Fructose also depletes ATP in hepatic cells, which promotes an increase in AMP-derived uric acid 
synthesis[43,44]. Uric acid may be a link between fructose consumption and the MS through a decrease in NO 
bioavailability, as NO is required for the insulin-stimulated glucose uptake. Accordingly, studies in rodents 
and randomized clinical trials in humans showed that fructose, but not dextrose, induced features of 
MS[45,46], which were prevented or reversed by allopurinol, an inhibitor of uric acid synthesis[45,47]. Fructose 
promotes small bowel bacterial overgrowth and increased gut permeability[48], increasing endotoxinemia, 
which also promotes IR[42]. Lastly, fructose inhibits leptin expression, blunting a satiety response to a meal[49].

Taking all into consideration, it comes with no surprise that different studies showed that, compared to 
controls, patients with MAFLD consume 2-3 times more fructose[50]. Patients with MAFLD with higher 
fructose consumption are also at increased risk of having steatohepatitis and advanced fibrosis[51]. Meta-
analyses suggested a dose threshold for the deleterious effects of fructose, with fructose consumption lower 
than 10% of energy intake (< 50 g/day for a 2000 kcal diet) not inducing weight gain or dyslipidemia[52,53]. 
Animal models also corroborate a threshold effect for fructose-induced MAFLD and liver injury. Indeed, a 
study feeding rodents with 10%, 20%, and 30% energy from fructose showed a dose-response increase in 
liver steatosis. Furthermore, fibrosis only developed when fructose consumption was at least 20% of energy 
intake[54].

Fructose is a naturally occurring simple sugar present in fruit and honey, but it is mostly consumed as 
sucrose (a disaccharide that combines one molecule of glucose with one molecule of fructose) and the 
artificial sweetener high-fructose corn syrup (with a usual ratio of 55% glucose and 45% fructose)[55]. A 
major source of fructose in the western diet is sugar-sweetened beverages (SSBs) or soft drinks. The average 
sugar content of SSB is 10 g/100 mL (10 g for juices, 8.5 g for tea-based beverages, 5 g for sports drinks, and 
7 g for energy drinks)[56]. Importantly, SSBs, besides fructose, contain other components such as caramel and 
aspartame, both with proinflammatory and diabetogenic properties. Furthermore, SSBs, unlike solid foods, 
induce lower satiety and hence promote an increase in caloric ingestion[57].

An interventional study on non-diabetic obese or overweight subjects delivered isocaloric diets with 
consumption of 1 L/day of SSB, low-fat milk, aspartame-sweetened drinks, or water for 6 months. At the 
end of the follow up, body weight was similar, but the sucrose group experienced an increase in visceral 
adipose tissue, liver and muscle steatosis, and dyslipidemia[58].
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Epidemiological studies showed us that consumption of SSB is associated with an increased risk for central 
obesity and increased visceral fat[59-62], MS[59,63], dyslipidemia[64], T2DM[63,65-67], cardiovascular diseases[63,68], and 
mortality[69].

SSB consumption is also associated with MAFLD, as shown in different populations, independently of the 
presence of the MS[12,31,70-72]. Two studies from Israel showed that four out of five patients with MAFLD 
regularly drunk SSB, as opposed to only one out of five controls[70,71]. The effect can be seen with intakes ≥ 1 
serving of SSB per week[72]. For intakes of ≥ 1 serving/day, the risk of having MAFLD increases by 50%[12], 
liver fibrosis by 250%[51], and hepatocellular carcinoma by up to 2-fold[73,74].

Artificially sweetened beverages (ASBs) and 100% fruit juices seem to have similar dismal effects as SSB, 
regarding increasing the risk for obesity[75] and T2DM[76,77].

We should advise our patients that fruit should be eaten and not drunk. Consumption of 100% fruit juices 
increases by 15% the risk of developing T2DM, whereas whole fruit consumption decreases it. The effect of 
whole fruit consumption depends on the fruit ingested, with blueberries being associated with a 25% 
decrease in the risk of T2DM; grapes, raisins, and prunes by about 10%; and apples, pears, bananas, and 
grapefruit by about 5%. As an exception, cantaloupe has been associated with a 10% increased risk[78]. Unlike 
fruit juices, fruit intake, as a source of fructose, seems to be metabolically beneficial[79]. Low doses of fructose 
consumption paradoxically seem to have a beneficial effect on glucose metabolism, being associated with 
lower levels of glycated hemoglobin (HbA1c)[53]. Indeed, some authors found that a 7.5 g fructose intake per 
meal can improve long-term glycemic control in humans, through a decrease in the post-prandial glycemic 
response to high glycemic index carbohydrates[80]. This protective effect is mediated by an increase in the 
activity of glycogen synthase, shunting glucose for storage as glycogen[81].

ABSs seem to be diabetogenic and steatogenic mainly because their consumption increases appetite[82], but 
also through their effects on altering gut microbiota[83]. It could also be the case of reverse causation, in 
which patients at increased risk for obesity/T2DM and cardiovascular diseases would be more likely to 
switch from SSB to ASB in an attempt to control body weight.

Two studies also found that ingestion of ≥ 1 diet cola/soda per day increases by 40% the risk of having 
MAFLD[70,84]. Importantly, ASB, similar to SSB, also increases mortality, particularly cardiovascular 
mortality[85,86].

Fibers
Fibers can be classified in soluble fibers (present in barley, oats, beans, figs, prunes, and sweet potatoes) and 
insoluble fibers (present in cereals, whole-wheat bread, lentils, apples, avocado, and strawberries). The 
former delay gastric emptying, restricting caloric intake, whereas the latter promote satiety and act as 
prebiotics, for example increasing the abundance of Bifidobacteria and being metabolized by the microbiota 
to produce short-chain fatty acids[49]. Short-chain fatty acids have anti-diabetogenic and anti-inflammatory 
properties[87].

Interventional studies with fiber-rich diets consistently showed a beneficial effect, decreasing body weight, 
body fat, and waist circumference, as well as improving insulin sensitivity[88-91].

Epidemiological studies consistently found a protective association between fiber intake and the prevalence 
of MAFLD[11,14,15,92,93] and steatohepatitis[10]. A dietetic interventional study on MAFLD patients, with an 
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increase in fiber intake for 6 months was associated with an improvement in liver enzymes and intestinal 
permeability[94]. However, a shorter duration small clinical trial (12 weeks), on prediabetic subjects, failed to 
find a benefit on liver steatosis[95].

Higher fiber intake also seems to protect from hepatocellular carcinoma. A meta-analysis comprising more 
than one million participants showed an 8% decrease in the risk for hepatocellular carcinoma for each 
100 g/day intake of vegetables[96].

THE ROLE OF FATS IN THE PATHOGENESIS OF MAFLD
Several epidemiological studies showed an association between higher percentage of energy intake as fat and 
the risk of having MAFLD[11,15,17], even though this association was not consistently observed[10,12,14,16,18]. 
Importantly, the type of fat ingested, particularly saturated fat and cholesterol, appears to have a dismal 
effect on the development and progression of MAFLD[10,15,17,18].

Saturated, polyunsaturated, and monounsaturated fatty acids and trans-fats
Saturated fatty acids (SFAs), such as palmitic acid, have all carbons in the hydrocarbon backbone connected 
by single bonds. As a result, the molecules in saturated fat are packed close together; the fat is solid at room 
temperature and very heat stable. SFAs are present mainly in animal products such as red meat, butter, and 
whole milk dairy products; some vegetable products such as coconut oil and palm oil; and prepared foods 
such as deserts and sausages[97]. SFAs have the potential to induce dysmetabolism and are toxic to 
hepatocytes. SFA can induce IR and inflammation, among other mechanisms, through direct binding to 
TLR-4 and indirectly through the synthesis of diacylglycerol and ceramides[98]. SFAs are highly hepatotoxic, 
inducing oxidative stress, ER stress, and apoptosis on hepatocytes[99-101]. SFAs also modulate gut microbiota 
to assume a more obesogenic and inflammatory phenotype[102,103].

Polyunsaturated fatty acids (PUFAs) have multiple double carbon bonds. PUFAs have anti-steatogenic 
actions, inhibiting the lipogenic transcription factor SREBP-1c while inducing PPAR-α, a regulator of fatty 
acids oxidation.

SFA intake seems to be associated with cardiovascular diseases[104], with a 10% decrease of coronary events 
for every 5% of energy intake conferred by PUFAs in substitution of SFAs[105]. Furthermore, intakes lower 
than 10% of energy as SFA decreases IR and dyslipidemia, whereas lower than 7% does not confer additional 
benefit and it may even be detrimental[49]. Recently, SFAs have also been associated with advanced 
fibrosis[106] and hepatocellular carcinoma, with an increase of 4% of liver cancer for each 1% energy intake 
from SFA[107].

Different dietary studies, with iso- or hypercaloric diets supplemented with SFAs or PUFAs, for as short as 
3 weeks, consistently found SFAs supplementation, but not PUFAs, to induce an increase in liver fat 
content, circulating ceramides, markers of lipogenesis as well as IR, and increase in endotoxinemia, despite 
maintaining stable body fat and visceral adipose tissue depots[108-111].

Although most epidemiological studies did not find an association between dietary PUFA and MAFLD, 
patients with steatohepatitis seem to present lower PUFA intake[112,113].

PUFAs can be classified as omega-3 (Ω-3) or Ω-6 according to the position of the first double carbon bond 
(counting from the terminal methyl). Examples of Ω-6 PUFAs are linoleic acid and arachidonic acid. They 
derive from sunflower and meat/eggs and dairy, respectively, and have proinflammatory and prothrombotic 
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properties. Examples of Ω-3 PUFAs are eicosapentaenoic acid and docosahexaenoic acid (DHA), and they 
derive mainly from fatty fish. Ω-3 PUFAs tend to have anti-inflammatory, insulin-sensitizer, and anti-
lipogenic properties[114]. Western diets typically contain higher amounts of Ω-6 compared to Ω-3 PUFAs[115]. 
Patients with MAFLD, compared to controls, tend to present lower hepatic levels of DHA, increased 
Ω-6/Ω-3 ratio, and negative correlation between hepatic Ω-3 PUFAs levels and SREPBP-1c (pro-
lipogenic)/PPARα (pro-lipolytic) ratio[116,117]. Furthermore, compared to controls, patients with 
steatohepatitis seem to present a higher Ω-6/Ω-3 ratio in the diet[11]. Lastly, fish consumption appears to be 
associated with a 35% reduction and Ω-3 PUFA intake with a 50% reduction in the risk for hepatocellular 
carcinoma[118-121].

Supplementation with high doses of Ω-3 PUFAs seems to improve dyslipidemia[122] and cardiovascular 
morbidity/mortality[123]. However, effects on MAFLD were disappointing, with studies only demonstrating 
benefit in steatosis assessed by ultrasound, for doses of at least 0.83 g/day[124]. Supplementation with Ω-3 
PUFAs did not seem to improve liver histology[125,126].

MUFAs, such as oleic acid, only have one double carbon bon and are mainly present in olive oil, avocado, 
nuts, and seeds. MUFAs are liquid at room temperature and less heat stable than SFAs. MUFAs are known 
to promote lipid oxidation while protecting from IR and seem to be protective from the MS and 
cardiovascular diseases[97].

Even though epidemiological studies failed to find an association between dietary MUFA intake and 
MAFLD, interventional studies in prediabetic and diabetic patients submitted to isocaloric diets with 
MUFA supplementation achieved a decrease in liver fat content and improvement in hepatic insulin 
sensitivity[95,127].

Olive oil is a major source of MUFAs. Extra-virgin olive oil contains 70%-80% MUFAs and 20% palmitic 
acid. It also contains α-tocopherol, polyphenols, and other anti-inflammatory and antioxidant 
phytochemicals[97,128]. When refined or heated, olive oil loses its natural compounds; hence, it should not be 
cooked at high temperature. The FDA recommends the intake of 20 g/day of extra-virgin olive oil to 
prevent cardiovascular disease, since it has been shown that each 10 g per 2000 kcal diet is associated with 
7% decrease in overall and 13% cardiovascular mortality[129]. Regarding MAFLD, three small clinical trials 
also suggested benefit of dietary olive oil in serum lipid profile and improvement of hepatic steatosis[130-132].

Trans-fatty acids differ from unsaturated fatty acids by having a double bond in the trans instead of cis 
configuration, making them straighter and resembling the structure of SFA. Trans-fats are abundant in 
ultra-processed foods such as margarines and fast food. Trans-fatty acids probably have a role in the 
pathogenesis of MAFLD, since higher intakes of trans-fatty acids seem to be associated with increased risk 
of having MAFLD[17]. In addition, patients with MAFLD tend to present higher serum levels of trans-fatty 
acids[133]. Finally, preclinical studies in rodents suggest that trans-fats are associated with worse MAFLD and 
worse liver injury[134,135].

Importantly, high trans-fat-containing ultra-processed food intake has recently been shown to be associated 
with many chronic diseases such as obesity, MS, hypertension, T2DM, cardiovascular diseases, cancer, and 
mortality[136-140].
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Cholesterol
Two large epidemiological studies found an association between high cholesterol intake and MAFLD, 
steatohepatitis, and advanced fibrosis[10,18,106]. Dietary cholesterol seems to have higher relevance in lean 
MAFLD[141]. Finally, dietary cholesterol seems to be associated with an increased risk for hepatocellular 
carcinoma, with a particularly aggressive phenotype, in rodent models[142].

Cholesterol has steatogenic effects, as its oxysterol metabolites are agonists of liver X-receptor-α, a 
transcription factor that increases SREBP-1c expression, and hence DNL[143]. Hepatic free cholesterol is also 
highly lipotoxic, inducing ER stress, mitochondrial dysfunction, and hepatocyte cell death. It also 
accumulates in Kupffer cells, inducing a proinflammatory response, as well as in hepatic stellate cells, 
promoting fibrogenesis[144].

THE ROLE OF PROTEINS IN THE PATHOGENESIS OF MAFLD
The association between higher protein intake and increased risk for MAFLD is the most consistent finding 
in dietary epidemiological studies[10,12,14-18]. Indeed, the risk of having MAFLD increased around 25% for each 
1% of energy intake as proteins[16]. Data from epidemiological studies, however, conflict with those from 
interventional studie, suggesting that high-protein diets blunt the steatogenic effect of high-fat diets[145-147]. 
Importantly, those anti-steatogenic effects of high-protein diets were achieved for moderate intakes of 
proteins (25% of energy from protein), with no additional benefit for high intakes (40% energy from 
proteins)[148]. In addition, high-protein diets seem to improve body composition, increasing lean body mass 
and decreasing fat mass and waist circumference, as well as increasing muscle endurance[149-151]. However, it 
is also associated with an increase in inflammatory markers possibly through the promotion of gut 
microbiome dysbiosis[151,152]. Other potential negative impacts of high-protein diets are the potential to 
accelerate the progression or even induce chronic kidney disease in the long run[153]. Protein-derived 
nitrosamine and heterocyclic amines also increase the risk for colorectal cancer[154]. Furthermore, studies on 
rodent animal models suggest that high-protein diets may promote the development of MAFLD with a 
more inflammatory phenotype[155].

Importantly, not all proteins have the same effect on health, with animal protein, as opposed to plant 
protein, having a detrimental effect. Indeed, ingestion of animal proteins seems to be associated with 
obesity, MS, and T2DM, while plant protein tends to be protective[156,157]. Plant protein intake is also 
associated with a decrease in all-cause and cardiovascular-related mortality[158-160]. Similarly, regarding 
MAFLD, epidemiological studies found animal proteins to increase its risk, while plant proteins to decrease 
it[16,17]. The difference between plant and animal proteins may relate to the nutritional characteristics of 
foods containing those proteins. For example, animal proteins usually come from foods that have high 
index of SFA, whereas plant proteins come from foods that contain fibers and phenolic compounds[161,162]. 
Plant and animal proteins also have different amino acid compositions, with plant proteins being enriched 
in arginine, glycine, and glutamate/glutamine while animal proteins in branched-chain amino acids 
(BCAAs). Arginine provides substrate for NO, which has vasodilator properties and beneficial effects on 
endothelial function and other cardiometabolic functions. Glycine and glutamine potentiate the action of 
insulin and lower blood pressure. On the other hand, BCAAs are associated with obesity, IR, and 
cardiovascular diseases[161].

Recently, it has become clear that the type of animal protein has a role in cardiometabolic health, with red 
meat being the most deleterious one. Indeed, large epidemiological studies showed a positive association 
between red meat ingestion, and a negative one between white meat (e.g., poultry and fish), and all-cause 
and cancer-, cardiovascular-, and liver-related mortality[163]. Similar associations were found for chronic 
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liver disease and hepatocellular carcinoma[120,121,164]. Epidemiological studies unraveled an association 
between meat and processed meat consumption and MAFLD[12,17,165,166], with intakes higher that 36 g/day of 
meat protein (equivalent to 110 g of red meat) being associated with more than 3.5-fold increased risk[12]. 
Importantly, unhealthy cooking of red meat, such as fried or grilled and broiled to well-done level, are also 
associated with further increase in IR and the risk of having MAFLD. Unhealthy cooking increases the 
generation of heterocyclic amines, which promote inflammation and oxidative stress, having diabetogenic 
and steatogenic properties by itself[166]. Heterocyclic amines are also mutagenic compounds and can be 
associated with some types of cancer such as breast and colorectal cancer[167]. Additionally, unhealthy 
cooking of red meat increases the generation of advanced glycation end products[168], which have also been 
associated with MAFLD[169].

Regarding plant proteins, interventional studies with high-soy diets have suggested a beneficial effect in 
patients with MAFLD, resulting in a decrease in liver enzymes and the oxidative stress marker 
malondialdehyde[170]. However, those effects on liver enzymes were not supported by a recent meta-
analysis[171]. Importantly, research on the cardiometabolic effects of soy protein only found benefit for 
intakes higher than 25 g/day, which are extremely difficult to achieve[172]. For example, a community with 
particularly high soy consumption, the Adventist vegans in the United States on average only consume 
13 g/day[173].

ALCOHOL AND MAFLD - MORE THAN THE SUM
There is consensus that more than 2 drinks/day (20 g of alcohol) in women and 3 drinks/day (30 g of 
alcohol) in men are potentially hepatotoxic. There is still no consensus on the effect of lower amounts of 
alcohol intake (i.e., moderate alcohol consumption) in patients with MAFLD. Several epidemiological 
studies and meta-analyses suggested that moderate alcohol consumption could be protective for the 
development of MAFLD, steatohepatitis, and advanced fibrosis[174-181]. Such studies, however, have been 
criticized for having methodological flaws, not taking into consideration alcohol patterns, with potential 
underestimation of alcohol consumption, and incomplete adjustment for confounders[182]. Furthermore, that 
protective effect was observed for wine but not for beer and was lost with binge drinking (defined as 
drinking more than four drinks for women or five drinks for men on one occasion)[177,183]. Indeed, binge 
drinking at least monthly is associated with progression of liver fibrosis in MAFLD patients[184], and binge 
drinking weekly increased more than 3-fold the risk for decompensated liver disease[185]. Importantly, 
several recent cross-sectional[186,187] and longitudinal studies were in disagreement with previous studies and 
did find a positive association between moderate drinking and progression of steatohepatitis and liver 
fibrosis in MAFLD patients[188-190].

Before we recommend moderate alcohol intake for patients with MAFLD, we must keep in mind that there 
is a synergistic effect for the development of liver disease among alcohol consumption, obesity, MS, and 
T2DM[191]. Indeed, whereas in subjects with normal weight there is no association between moderate alcohol 
intake and elevated liver enzymes, overweight who drink > 2 drinks/day and obese who drink ≥ 1 drink/day 
have an increased risk for altered liver enzymes[192-194]. In addition, in overweight, drinking > 1 drink/week 
was associated with a 2-fold increased risk for chronic liver disease[195]. Moderate alcohol consumption and 
T2DM synergistically increase the risk for advanced fibrosis in MAFLD[187]. Obesity and any alcohol use 
have a synergistic effect not only in the risk for liver cirrhosis but also for hepatocellular carcinoma[196,197]. 
Furthermore, for patients with MAFLD-associated cirrhosis, any alcohol intake seems to be associated with 
a 3.5-fold increased risk of hepatocellular carcinoma[198] and should be highly discouraged.
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Regarding mortality, a recent study suggested that regular drinking less than 1.5 drinks/day was associated 
with a 40% decreased mortality in patients with MAFLD, but drinking higher than that with a 45% increased 
mortality[199]. Of note, the beneficial effect on mortality was only verified in men and patients without 
fibrosis (assessed by FIB-4 < 1.79)[199]. Importantly, obese patients who drink > 1 drink/week presented a 5-
fold increased liver-related mortality[195].

Lastly, recently the J-shape effect of alcohol intake on mortality, in the general population, has been 
challenged. In fact, despite that the J-shape may occur for cardiovascular- and T2DM-associated mortality, 
overall, because alcohol intake is linearly associated with other causes of mortality such as cancer and 
infections, any alcohol intake is linearly associated with progressively increased mortality[200]. Of note, the 
beneficial arm in the J-curve for cardiovascular mortality was lost in smokers.

COFFEE SEEMS PROTECTIVE FOR MAFLD
Unlike alcohol, data on coffee seem more consensual in decreasing around 30% the risk of developing 
MAFLD and progressive fibrosis[201,202]. There seems to be a non-linear dose-response for coffee intake, with 
decreased risk for MAFLD and liver fibrosis when drinking at least three coffees/day[203,204].

Coffee contains different biologically active compounds such as antioxidant chlorogenic acids, kahweol, 
cafestol, and caffeine. The protective effect of coffee on liver health appears to be specific for coffee and not 
shared with other caffeinated drinks such as tea, soft drinks, and energetic drinks[205].

Not all coffee seems to have the same protective effect, with protection from MAFLD described for 
filtrated/regular coffee (which better preserves its chlorogenic acids) but not for espresso coffee (obtained 
from high-pressure boiling water through a column of coffee, which can modify several of its 
components[206])[207]. Decaffeinated coffee has shown the same beneficial effect on MAFLD as compared to 
regular coffee[208].

Finally, a similar non-linear response was found for hepatocellular carcinoma, with a decreased risk for 
subjects who drank at least two coffees/day (or decaffeinated coffees)[209].

EATING PATTERNS AND MAFLD
Different diets have been proposed for the management of MAFLD, the most studied ones being the 
Mediterranean diet (MD), the Dietary Approaches to Stop Hypertension (DASH) diet, and the intermittent 
fasting diet.

MD has its origins in the traditional diet from Mediterranean countries and is characterized by a high 
consumption of plant-based foods such as vegetables (up to 6 servings/day), fruits (up to 3 servings/day), 
whole grains, seeds, nuts, and legumes. It is relatively low in carbohydrates (40% of the calories), particularly 
sugars and refined carbohydrates[210]. It allows moderate consumption of protein-source foods such as fish 
and poultry, but it is scarce in red meat. MD is rich in MUFAs, primarily from olive oil (which is the main 
added lipid) and olives, and restricts fatty dairy products. MD is particularly enriched in fibers and provides 
a high Ω-3/Ω-6 ratio. It also allows for moderate drinking, particularly red wine[211,212].

Epidemiological studies found that higher adherence to MD was associated with lower severity of hepatic 
steatosis and lower likelihood of steatohepatitis, liver fibrosis, and hepatocellular carcinoma[213-217]. 
Interventional studies showed that consuming MD was associated with an improvement in liver enzymes, 
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steatosis, liver stiffness, and lipid profile, even without weight loss[218-227]. We still need long-term trials to 
understand the role of MD on liver histopathology. Importantly, high adherence to MD has also been 
associated with decreased all-cause and cardiovascular mortality[228].

The DASH diet was developed in the early 1990s as an intervention to manage arterial hypertension, 
emphasizing a low sodium intake and the consumption of minimal processed fresh foods[229]. Two 
epidemiological studies found that high adherence to the DASH diet was associated with lower risk of 
having MAFLD[230,231]. A small randomized controlled trial on MAFLD also suggested that engaging a DASH 
diet for 8 weeks resulted in improvement in liver enzymes[232].

The newest diet is time-restricted feeding as a form of intermittent fasting, which restricts the eating 
window, without emphasizing calorie restriction. This diet seems effective in decreasing body weight[233], 
whereas many authors disclaimed that the effect is resultant of an actual calorie restriction. A recent meta-
analysis, in patients with MAFLD, found intermittent fasting to be beneficial in weight loss and liver 
enzymes[234], even though it failed to demonstrate additional metabolic benefit compared to calorie-
restriction diets[235]. Long-term feasibility and stronger endpoints require further research. For the time 
being, it is wise to advise against this diet for patients with MAFLD-associated cirrhosis, due to the effect of 
fasting on sarcopenia development in those patients.

RECOMMENDATIONS
The recommendations from the international guidelines[236-240] are summarized in Table 2.

Patients should be clearly informed regarding the severity of their illness and its prognostic consequences, 
but also the reversibility that could be expected when engaging weight loss-directed lifestyle behaviors[241]. 
Exercise recommendations should always be a part of the lifestyle changes advised, keeping in mind that the 
benefits of exercise occur even without weight loss[242].

Simple recommendations should be given [Table 3], particularly the advice to eat less[14], tailoring the weight 
loss according to the severity of liver disease: 3%-5% if isolated steatosis, 7% if steatohepatitis, and 10% when 
fibrosis is present[8].

Regarding the macronutrient composition, daily intake of energy should be 45%-65% from carbohydrates, 
20%-35% from fat, and 10%-35% from proteins[243]. Not all carbohydrates are the same. Added sugar should 
be restricted to no more than 5%-10% of daily calories[244], while fibers ingestion should be at least 25 g/day 
in women and 38 g/day in men, particularly promoting a high intake of vegetables and legumes. A practical 
tip is to suggest vegetable soup as a starter in every meal. Regarding fruit intake, it should be no more than 
2-3 portions per day and should be eaten as whole fruit rather than drunk as fruit juice. Patients should 
abstain from drinking SSB, including ASB. Patients should also be advised on the type of fat they should 
consume, avoiding processed food, desserts, and fast food (high in saturated and trans-fats), while electing 
MUFA-rich olive oil as the preferred oil. Recommended olive oil intake is 20 g/day, avoiding cooking it at 
high temperatures. To achieve a good Ω-3/Ω-6 PUFA ratio (minimum Ω-3 PUFA intake of 0.35-0.40 g/day), 
prefer fish to meat, eating 2-3 portions of fatty fish per week. Red meat meals should not surpass three meals 
per week and may be substituted for plant proteins (e.g., soy).

Coffee, including decaffeinated coffee, should not be restricted, and two coffees/day seem to help prevent 
hepatocellular carcinoma, while three coffees/day prevent steatohepatitis and fibrosis.
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Table 2. International Guidelines on diet for patients with MAFLD

AGA 2021[236] AASLD 2018[237] EASL, EASD, EASO 
2016[238] NICE 2016[239] WGO 2014[240]

Energy restriction Hypocaloric: 1200-
1500 kcal/day or ↓ from 
baseline 500-1000 kcal/day

Hypocaloric: ↓ from 
baseline 500-
1000 kcal/day

Hypocaloric: ↓ from 
baseline 500-
1000 kcal/day

Hypocaloric: ↓ from 
baseline 
600 kcal/day

Hypocaloric: ↓ 
calories intake 
25%

Weight loss 
target

≥ 5% if steatosis 
≥ 7% if NASH 
≥ 10% if fibrosis

3%-5% if steatosis 
7%-10% if NASH ± 
fibrosis

7%-10% - 5%-10%

Macronutrient 
composition

Minimize SFA, ↓ red and 
processed meat

Less relevant Low to moderate fat and 
moderate to high 
carbohydrates

Low fat diets Avoid trans-fats 
↑ Ω-3/Ω-6 PUFA

Fructose intake Avoid fructose commercially 
produced

- Avoid fructose-containing 
foods and beverages

- Avoid fructose 
and soft drinks

Dietary pattern Mediterranean diet Mediterranean diet? Mediterranean diet - -

Alcohol intake Restrict. Abolish in smokers 
(current or former)

Insufficient data < 30 g/day in men and < 
20 g/day in women. 
Abolish if cirrhosis

< 14 drinks/week -

Coffee intake - - No liver limitations - -

↑Increase. ↓Decrease. MAFLD: metabolic dysfunction-associated fatty liver disease; AGA: American Gastroenterological Association; AASLD:
American Association for the Study of the Liver; EASL: European Association for the Study of the Liver; EASD: European Association for the
Study of Diabetes; EASO: European Association for the Study of Obesity; NASH: nonalcoholic steatohepatitis; NICE: National Institute for
Health and Care Excellence; PUFA: polyunsaturated fatty acids; SFA: saturated fatty acids; WGO: World Gastroenterology Organization.

Table 3. Simple dietary recommendations for patients with MAFLD

Avoid/do not or drink or eat May/should drink or eat

• Soft drinks 
• Fruit juices 
• Alcohol (no more than 1-2 drinks/day and total abstinence if smoker, obese or with 
liver cirrhosis)

• Coffee (2-3 servings/day)

• Processed fruits 
• Sugar-added fruits (no more than 1-2 servings/week) 
• Red meat (no more than 2-3 servings/week) 
• Animal-origin fat/butter

• Fresh fruits (3 servings/day); nuts weekly 
• Vegetables and legumes (6 servings/day) 
• Unrefined cereals (8 servings/day) 
• Fish (4-6 servings/week); poultry/egg (2-4 
servings/week) 
• Olive oil (20 g/day) 
• Low-fat milk, cheese or yogurt (2-3 servings/day)

While there are still not enough data to advise regarding moderate alcohol consumption in patients with 
MAFLD, it should be strongly advised against in patients with liver cirrhosis, obese, and smokers (current 
or former).

Two dietary patterns that seem to promote improvement of MAFLD and that incorporate the above 
recommendations are the Mediterranean and the DASH diet, and they should be considered when advising 
patients.

CONCLUSIONS
MAFLD is associated with adiposopathy and energy surplus, conditions that are the result of an imbalance 
between the energy intake and the energy expenditure. As such, what one eats and how much one eats, in 
harmony with individual metabolism and physical activity, are clearly the basis of the pathophysiology of 
MAFLD. Despite this intuitive aphorism, it is difficult to scrutinize the role of diet and individualize diet 
components in the development and progression of MAFLD. This relation is even more intricate, as we 
know today that our genetics and gut microbiota modulate the way diet programs our metabolism.

MAFLD: metabolic dysfunction-associated fatty liver disease.
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Having all that in mind, we can still safely advise MAFLD patients to “eat less” to promote a tailored weight 
loss according to the severity of their overweight and liver disease. Dietary recommendations should be 
provided by a specialized multidisciplinary team, with dedicated dietitians, and psychological cognitive-
behavioral support as needed. Secondly, we should advise patients to “eat better”, advertising a 
Mediterranean-like diet, favoring unprocessed fresh foods and fish, in detriment to fast foods, sugar-added 
foods, and trans-fat-rich foods including red meat. Water is the best drink to promote, and there should be 
no place for sugary or artificially sweetened drinks. If no other contraindication, coffee might be beneficial 
in preventing progression of liver disease and hepatocellular carcinoma. While the effects of moderate 
alcohol intake are still controversial, it should be strongly discouraged for patients with liver cirrhosis, 
obesity, or smokers.
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