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Abstract
The study is focused on the connection between cognitive dysfunction, inflammatory processes, oxidative stress, 
and various associated biological factors. Postoperative cognitive dysfunction is a condition where a patient 
exhibits a temporary deterioration in cognitive function after surgery, which may include problems with memory, 
concentration, and overall cognitive performance. While most common among elderly patients, it can occur in 
individuals of any age. The causes are not fully elucidated, but it is assumed that peripheral trauma during long-
term surgical interventions is behind the development of inflammation and the creation of conditions of oxidative 
stress, which leads to the disruption of the blood-brain barrier and the subsequent development of cognitive 
impairment. This review aims to describe the detected changes at the level of selected markers of inflammation 
and oxidative damage in patients, primarily in connection with cardiac surgery.
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INTRODUCTION
According to recent data, more than 300 million surgical procedures are performed worldwide annually, 
with elderly patients accounting for more than a quarter of the total number of patients[1,2]. Postoperative 
cognitive dysfunction (POCD) is a complex neurological condition that manifests itself in the deterioration 
of cognitive functions in patients after surgical procedures. The 1980s saw significant advances in clinical 
research on cognitive dysfunction following surgery[3,4]. Several studies have begun to closely examine 
cognitive aspects, including memory and concentration, through neuropsychological assessments even after 
cardiac surgery[5]. POCD is associated with risk factors that may be critical determinants of the development 
of neurological events. Oxidative stress, or hypoxia, which is often associated with surgical procedures, 
contributes to the development of POCD. These processes can trigger inflammatory reactions and the 
formation of reactive oxygen species (ROS, oxidizing compounds formed from oxygen), causing nerve cell 
damage and, subsequently, cognitive impairment. microRNAs (miRNAs) are also already an important 
research direction in connection with POCD, as the regulation of gene expression may play an important 
role in the pathological alterations associated with cardiac surgery and carotid stenosis.

The paper provides a comprehensive view of the mutual interactions between ROS producers, such as 
anesthesia, oxidative stress conditions, hypoxia, inflammatory processes, miRNAs, and some of the surgical 
procedures.

We focused primarily on the resources and role of ROS. Analyzing existing knowledge and identifying 
ambiguities in the understanding of these relationships will bring a significant contribution to the 
development of preventive and therapeutic measures aimed at minimizing the occurrence of POCD in the 
surgical environment.

PERIOPERATIVE NEUROCOGNITIVE DISORDERS
Cognitive function includes the brain's mental ability to acquire, store, process, and extract information[6,7]. 
It is the ability to understand complex relationships between different information, perform tasks, 
remember information, use language, solve problems, and make judgments[8]. Several brain regions are 
involved in cognitive functions, including the hippocampus, prefrontal cortex, striatum, and amygdala[9-11]. 
The hippocampus is a critical neural region involved in memory regulation and learning processes, allowing 
individuals to track where objects are located and orient their body position relative to the objects around 
them.

Memory develops in the hippocampus through a mechanism of long-term potentiation (LTP). Although 
the mechanisms of initiation and conservation of LTP at various synapses in the CNS are very complicated 
and contentious, LTP is mediated by high-frequency glutaminergic activation of hippocampal neurons[12]. 
Quiescent Schaffer cells transmit signals to postsynaptic CA1 collateral neurons containing three kinds of 
glutamate receptors (Glu2, AMPA, and NMDA). Magnesium blockade of NMDA channels is reversed by 
recurrent CA1 stimulation, leading to depolarization, receptor activation, calcium inflow, and stimulation of 
the second messenger. Next, phosphorylation enhances AMPA receptor sensitivity, stability of synapses, 
and memory formation[12]. Proinflammatory cytokines pronounce deleterious effects on signaling 
neurotransmitters in the hippocampus, leading to excitotoxic neuronal damage and cognitive deficiency.

The hippocampus is sensitive to proinflammatory cytokines, such as IL-1 or TNF-α, produced in 
neuroinflammatory processes due to the presence of high concentrations of receptors for such 
cytokines[13,14].
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The occurrence of increased expression of interleukins in the hippocampus has been associated with a 
decline in cognitive function, even after minor surgical procedures in mice, suggesting a role for the neuro-
inflammatory response that is activated after surgical procedures[15-17]. Following cytokine receptor 
activation, metabotropic Glu2 receptors are downregulated, causing increased AMPA/NMDA signaling and 
disruption of the LTP process. Meanwhile, HMGB1 (High-mobility group box 1 proteins) can enhance 
glutamate signaling over NMDA, which causes elevated glutamate flow in hippocampal neurons, and this 
ultimately leads to glutamate toxicity. In addition, TNF-α can suppress inhibitory neurotransmission 
through downregulation of GABA receptors, thereby disordering the equity of excitatory and inhibitory 
neurotransmission, further increasing glutamate toxicity, and leading to apoptosis and cognitive damage[18]. 
Thus, perioperative stress (various factors in the pre-, intra-, and postoperative period affecting the 
signaling of inflammation) has a significant impact on CNS homeostasis[19,20], negatively affecting synaptic 
plasticity, regulation of the cholinergic system, microglial activity, and hippocampal function[21,22].

Perioperative neurocognitive disorder (PND) is a general term that includes cognitive impairments that 
may occur before or after surgery[23,24]. PND includes debilitating impairments: cognitive function before 
surgery (referred to as neurocognitive impairment, NCD); postoperative delirium (POD), where patients 
experience acute changes in mental status; perceptible deterioration recognized within 4 weeks following 
surgery (delayed neurocognitive recovery); cognitive deterioration recognized within a year after 
surgery[23,25]. POD causes fluctuations in the state of consciousness and usually occurs 1-3 days after surgery, 
lasting only a few days[26]. It is essential to differentiate POD from emergent delirium, which affects 8% to 
20% of patients after general anesthesia application, particularly at a younger age[27,28]. Conversely, POCD 
can persist for weeks to several years. POCD refers to cognitive deterioration after surgery, assessed through 
various neuropsychological tests[25,29].

Postoperative delirium
POD belongs to the most frequent postoperative complications in over 70% of patients of 60 and more years 
who underwent surgery in the hospital. The highest prevalence of POD is attributed to cardiac surgery and 
major orthopedic operations. Multifactorial influences at the tissue and cellular levels are involved in the 
pathogenesis of POD. The sensitivity of the patient and the presence of triggering risk factors also play an 
important role. The higher the vulnerability, the smaller the triggering factor that can trigger delirium. The 
extent of POD development points to brain vulnerability, and its incidence points to the presence of a 
neurological disorder, like preclinical dementia. Postoperative delirium increases the possibility of POCD in 
the 1st month after noncardiac surgery, but, on the other hand, there was no association between POD and 
the occurrence of POCD in the 2nd and 6th months after surgery. Diagnostic criteria for delirium are 
impaired attention (manifested by a decrease in the ability to concentrate, shift, focus, and maintain 
attention) and perception (impairment of orientation in the environment). The patient can be excited 
(hyperactive) or apathetic (hypoactive).

Confusion develops over a short period, typically over hours and days, and represents a change in attention 
and perception, changes in intensity, often worsening in the evening and at night. Cognitive functions are 
impaired: it is typically manifested by impaired memory, speech, disorientation, and reduced visual and 
auditory perception. POD likely has a multifactorial etiology. Different diagnoses such as POD and 
dementia need to be distinguished. Dementia is a progressive deterioration of cognitive functions. For the 
diagnosis of POD, there are various psychological investigation methodologies and scales, such as 
CAM-ICU - Confusion Assessment Method, Richmond scale, etc.[30].
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Postoperative cognitive dysfunction
POCD is a multifactorial syndrome in patients suffering from post-surgical and anesthetic cognitive 
weakness[31]. Several studies indicate that POCD follows diverse surgical interventions, more often after 
cardiovascular than noncardiac surgery[32]. A major concern after cardiac surgery is neurocognitive 
complications, with POCD reported in 23%-81% of such patients[33,34]. POCD manifests itself in various 
negative consequences and can affect memory, concentration, ability to process information, language 
comprehension, social integration, impaired concentration, personality changes, and reduced ability to 
socialize in severe cases[31,35]. POCD can manifest itself days or weeks after surgery[35], problems persist for 
months or even become permanent[31,36], and can persist or even develop into Alzheimer's disease, which 
seriously affects the health status of patients[35].

In the past, POCD was found to occur with a prevalence of 10% to 54% in the early weeks after surgery[37]. 
The extent of changes in the state and behavior of patients is defined in the period of weeks or even months 
after induction of anesthesia in the intensive care unit, to several months after surgery[25]. Delayed 
development of POCD may indicate a poor prognosis. After 3 months, the prevalence ranged between 
12%-17%; after approximately 12 months after surgery, the prevalence decreased to 3%[38,39]. POCD is 
associated with reduced efficiency of daily living, higher mortality, and lower quality of life. The diagnosis of 
POCD has historically been made through extensive neuropsychological testing. Recently, various cognitive 
tests have been used more and more[40].

Longitudinal studies following patients who have undergone cardiac or noncardiac surgery have shown that 
if POCD persists at discharge or long after surgery, both the risk of mortality and the risk of permanent 
cognitive decline may be increased[41,42]. Intervention measures in patients with a probability of PND can 
decrease the risk of POCD to 40%[43]. These findings highlight the importance of identifying patients at 
increased risk of PND, optimizing perioperative management, and conducting long-term monitoring of 
these patients[43].

CARDIAC SURGERY PATIENTS PRONE TO COGNITIVE DYSFUNCTION
The type of surgery performed is a significant factor in the development of POCD. The consequences differ 
substantially after cardiac surgical procedures[21]. Cardiac surgery and subsequent intensive care unit time in 
aged patients is linked to persistent cognitive deficiency and is closely associated with quality of life[44]. 
Previous scientific research has shown that in adults with physiological cognitive status who underwent 
noncardiac surgery, the incidence of POCD was 3.9% at 2-3 weeks and 12% at 3 months[29]. Conversely, in 
adults undergoing cardiac surgery, the incidence of POCD has been shown in up to 60% of individuals, 
more specifically 33 up to 83% using cardiopulmonary bypass (CPB)[42,45]. The diversity in the occurrence of 
POCD indicates that different types of surgery present different risk factors for the development of POCD. 
In part, this may be due to the fact that coronary artery bypass surgery  (CABG) is accompanied by dynamic 
changes in circulation and brain perfusion and has a pronounced period of anesthesia[42]. It was found that 
the highest frequency of POCD was observed after surgical procedures such as open aorta, transthoracic 
aortic valve, and coronary bypass[46].

Atherosclerosis has an indisputable place in POCD in cardiac surgery patients as it causes plaque rupture, 
artery stenosis, and subsequent intraoperative hypoperfusion of the brain, as well as microembolism of the 
carotid and cerebral arteries[47]. Magnetic resonance imaging of the brain revealed that a compelling part of 
the elderly had an asymptomatic stroke that altered cerebral autoregulation and predisposed them to 
POCD[48]. Coronary artery disease is another risk factor for POCD[49] since cognitive function deterioration 
is similar whether patients were treated surgically or conservatively. In patients with preoperative low 
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cardiac output, however, surgery improves cognitive function[50]. Atherosclerotic alterations in the vessels of 
the brain lead to the faster development of brain function disorders[51]. In this context, carotid artery (CA) 
stenosis plays an important role in influencing autoregulation of cerebral perfusion[52]. It is found that 
patients with CNS vascular disorders of cognitive impairment often show reduced perfusion in the cerebral 
cortex, particularly in frontal and parietal areas located at the borders of different vascular zones[53]. These 
areas of the brain are known as “blood-supplied circuits” and are particularly sensitive to disturbances 
caused by left ventricular systolic and diastolic impaired function, valvular pathology, and atrial fibrillation, 
which are common in cardiovascular diseases, as well as during cardiac surgery[51,54,55].

Vascular cognitive disorders are relatively common in senior individuals[56]. A negative impact on cognitive 
function can be seen even before it causes serious health complications, such as an acute myocardial 
infarction or stroke. Chronic heart failure can lead to an overall reduction in cerebral blood flow[57]. Up to 
19% of patients with coronary disease are affected by cognitive impairment before surgery[58]. Carotid artery 
stenosis may affect cognitive function before stroke or transient ischemic attack[59]. These changes may be 
the result of either hypoperfusion of the frontal part of the brain, leading to impaired cerebrovascular 
reactivity[60] and progressive ischemic changes[61], or embolization from carotid plaques[62], which 
subsequently lead to the loss of nerve cells. Risk factors for the occurrence of postoperative cognitive decline 
after heart surgery can be divided into modifiable, partially modifiable, and non-modifiable[63].

Cardiopulmonary bypass
One of the highlights of cardiac surgery is the use of cardiopulmonary bypass, which can cause neurological 
problems through inflammatory reactions and microembolisms[64], but all types of surgery carry a high risk 
of systemic inflammation (excessive defense reaction of the organism to a stressor). In the case of cardiac 
surgery using cardiopulmonary bypass (CPB), the blood is exposed to foreign surfaces that can induce 
proinflammatory reactions. This inflammation can cause endothelial dysfunction, leading to leakage across 
the blood-brain barrier (BBB, semipermeable and selective membrane separating the brain interstitium 
from the circulation) and tissue edema[65]. Studies have shown a close association of cytokines (for example, 
TNF-α, IL-1, and IL-6) with neuropathology[66]. These underlying changes are thought to affect the brain 
regardless of the microembolic burden during surgery[67], and may potentially explain the occurrence of 
early cognitive decline[68]. Cardiac surgery induces a significant systemic inflammatory reaction, which is 
manifested by an increased number of leukocytes (leukocytosis) and a significant imbalance in the levels of 
cytokines and other inflammatory markers[69]. Cardiopulmonary bypass (CPB) is of a non-physiological 
nature, which induces pathophysiological modifications in the organism and contributes to multi-organ and 
multi-tissue damage to various extents[70].

The underlying mechanisms of POCD associated with the use of CPB involve a complex combination of 
factors, including hypoperfusion, emboli, and systemic inflammation[2]. Inflammation is caused by several 
factors, including the opening of the chest (sternotomy), the use of extracorporeal circulation, the presence 
of temporary endotoxemia, and aortic clamping. Systemic inflammation can result in increased 
communication and signaling from the body's periphery to the brain. Consequently, systemic inflammation 
can trigger the activation of the brain's innate immune cells, specifically microglia and astrocytes, leading to 
a neuroinflammatory response[71,72].

Carotid stenosis
The carotid artery is the third most common site of atherosclerosis, responsible for 30% of ischemic 
strokes[73]. The currently valid 2018 European Society of Vascular Surgery (ESVS) and European Society of 
Cardiology (ESC) recommendations[74] recommend surgery for symptomatic carotid stenosis exceeding 70% 
according to the criteria of the North American Symptomatic Carotid Endarterectomy Trial (NASCET)[75]. 
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Indications for revascularization of asymptomatic carotid stenosis, i.e. in patients without transient ischemic 
events within the last 6 months, are less clear and associated with a lower level of evidence.

The potential benefits of revascularizing patients are not so significant compared to the risk of 
complications if the progress in conservative treatment in recent years is taken into account. The relative 
risk reduction of a first ischemic vascular event is only 4.6% at 10 years[76], showing that most asymptomatic 
patients may undergo unnecessary procedures. Some patients have increased risk factors for cerebral 
ischemia[76]. In such patients, prevention by revascularization could be beneficial. In this context, studies are 
beginning to look at the effect of revascularization on cognitive function, with the assumption that there 
may be improvement in pre-existing impairments. Despite initial controversies, there is now a fairly 
accepted view that asymptomatic carotid stenosis may be associated with cognitive dysfunction[77-79]. In this 
context, two main hypotheses are presented: cerebral hypoperfusion[80] and microemboli[80]. The mentioned 
factors can lead to a decrease in cerebrovascular reactivity[81] and changes in brain functional 
connectivity[78,81].

PATHOPHYSIOLOGY OF COGNITIVE DYSFUNCTIONS
The pathophysiology of POCD is complex and involves various mechanisms[45]. These are primarily 
neuroinflammatory processes[82], oxidative stress[83], and disorders of the integrity of the BBB[84]. Oxidative 
stress is associated with an imbalance between antioxidants and free radicals, which is the basis of the 
pathophysiology numbers of human diseases[85,86]. Subsequently, among the factors that contribute to the 
mentioned mechanisms are the method of anesthesia administration, the choice of anesthetic agent, 
insufficient tissue blood supply, and excessive ventilation[87]. Surgery-induced inflammation of the 
hippocampus is thought to be the main cause of POCD[88]. Lowering damage of neurons can decrease the 
occurrence of POD[89], while neuronal function is directly related to the preservation of mitochondrial 
function[90].

We would further focus on pathophysiological mechanisms primarily from the point of view of modulation 
of oxidative stress conditions not only in the CNS but also in the periphery, which leads to disruption of the 
BBB.

General anesthesia in terms of modulation of the inflammatory response and oxidative stress 
conditions
Anesthetics can impair neutrophil and monocyte function, suppress lymphocyte growth, and cause various 
changes in the release of inflammatory biomarkers[91]. In early scientific research from 2003 and 2011, it was 
shown that the combination of isoflurane, nitrous oxide, and midazolam can cause brain cell damage, and 
negatively affect learning and long-term neurocognitive function[92,93]. In the past, several researchers 
believed that there was no clear relationship between the occurrence of POCD and the choice of different 
types of anesthesia and anesthetic agents[94].

Anesthesia can be divided into general, which involves the unconsciousness of the whole body, and local, 
which is aimed at a specific area and preserves the consciousness of the patient[95]. General anesthesia (GA) 
means a temporary loss of perception and sensitivity. It is often used in major surgical procedures[96]. The 
states of consciousness that can appear during general anesthesia include unconsciousness, disconnected 
consciousness, and connected consciousness[96].

It is still uncertain if the effect of anesthesia is fully reversible and the CNS returns to its original state at the 
end of the anesthetic effect[97]. Adverse effects of GA, such as nausea, vomiting, dry mouth, sore throat or 
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hoarseness, chills, tremors, confusion, muscle aches, itching, bladder problems, and dizziness, are common. 
Perioperative neurocognitive disorders, i.e., POD and POCD, are among the prevalent cognitive disorders 
after GA and surgical procedures[42,98]. The frequency of cognitive impairment associated with GA is 
significantly higher in two vulnerable groups: young ones and seniors[97]. In elective surgery in elderly 
patients undergoing noncardiac surgery, the occurrence of POD is approximately 11.6%[99], while it is as 
high as 60% in children[100]. The frequency of POCD ranges from 30% to 40%[3].

Anesthesia, an integral part of surgical interventions, can also have protective effects[101]. Optimization of 
anesthetic preparations and alternative selection of anesthetic techniques can prevent unwanted effects on 
cognitive functions.

Type of anesthetic
Anesthetics may have a dual nature regarding inflammatory responses and the process of POCD[8]. 
Anesthetic agents can cause excessive production of ROS and impair the antioxidant protection system, 
which leads to the formation of a large amount of ROS[102]. Additionally, anesthesia induces changes in the 
cholinergic system and cell apoptosis, thereby contributing to cognitive disorders[103].

The administration of anesthetics is associated with the microglia activation and the emergence of 
neuroinflammatory processes[104]. Commonnly used anesthetics suppress microglial activation, promote M2 
polarization, and exhibit anti-inflammatory effects[105,106]. Substances administered intravenously during 
general anesthesia have an inhibitory effect on the reticular system of the brainstem via opioid receptors or 
GABA receptors[107]. According to the Meyer-Overton rule, the effectiveness of anesthetics depends on their 
ability to dissolve in lipids[108].

There is an indication regarding the depth of anesthesia in association with POCD disorders. Increased 
concentrations of inhaled anesthetics can increase the permeability of the BBB[109]. A controlled anesthetic 
with bispectral index monitoring was used in the Cognitive Dysfunction after Anesthesia (CODA) study. 
The results showed that in elderly patients undergoing major surgery, achieving and maintaining BIS values 
between 40 and 60 during surgery minimized the events of a deep anesthetic state. This was linked with a 
reduced risk of delirium during the initial care and cognitive decline 3 months after surgery. BIS monitoring 
contributed to faster recovery from anesthesia. Patients monitored by BIS demonstrated a faster return to 
consciousness after anesthesia compared to the usual care group, showing faster eye-opening and faster 
discharge from the postanesthesia care unit[110]. On the other hand, other studies report the opposite 
findings, that a deeper level of anesthesia protects against delirium and POCD[109]. In older adult patients, 
anesthesiologists should monitor age-appropriate end-expiratory concentrations of inhaled anesthetics, 
maintain optimal values of cerebral perfusion pressure, and use EEG to monitor brain function[43].

A proper anesthetic strategy can protect patients from cognitive impairment during the perioperative 
period[103]. An important aspect of POCD is the thorough examination of the optimal method of 
administration of anesthetics based on the type of drug and its dosage[111].

The role of oxidative stress in perioperative neurocognitive disorders
Oxidative stress is a critical cause in the pathophysiology of diverse cognitive disorders. The occurrence of 
POCD may be promoted by oxidative stress and hypoxia in the brain region, as well as changes in the 
phenotype, and receptor expression of microglia and astrocytes in situations of inflammatory 
conditions[112]. High oxygen concentrations were shown to be harmful to various body systems, such as the 
cardiovascular, nervous, respiratory, and gastrointestinal[113]. Surgical interventions can disrupt this delicate 
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balance, interfering with autophagy in the hippocampus and promoting oxidative damage[114].

Increased oxidative stress in the hippocampus was observed in animals after surgery, and affected by 
postoperative cognitive impairment[83,115]. It can result in damage to the extracellular matrix and trigger cell 
necrosis and apoptosis[116]. In the presence of necrotic cells and damaged extracellular matrix, several 
components are released that activate inflammatory processes. Research suggests a positive correlation 
between the severity of cognitive impairment and levels of ROS and NO[117].

Significant sources of ROS production behind neurocognitive dysfunctions
ROS is directly involved in cognitive impairment by damaging neurons[118]. In rats with induced POCD, 
isoflurane anesthesia was found to increase the expression of NOX2 (a major source of ROS) and impair 
contextual fear memory seven days after incision. These findings suggest that hippocampal induction of 
oxidative stress could be connected with the POCD[119]. The prevalence of POCD in cardiac surgery can 
reach 70%, regardless of optimal oxygen saturation[32]. ROS regulates the expression of genes responsible for 
protection against oxidative stress and can interact with important cell signaling molecules such as MAP 
kinases, PI3 kinases, and protein tyrosine phosphatases[120]. This interaction induces signal cascades that 
affect various cellular processes, including cell proliferation and survival[121].

ROS can affect all biological structures[122]. They contribute to neuroinflammation, accumulation of amyloid 
protein (Aβ), excessive phosphorylation of tau protein, and mitochondrial dysfunction[119]. According to 
Abdallah et al., the profile of polyunsaturated fatty acids in erythrocyte plasma membranes is sensitive to 
oxidative damage due to sustained exposure to ROS in the bloodstream[123]. This results in a serious decline 
in the lifespan of circulating erythrocytes. Under pathological conditions such as cardiovascular diseases, 
diabetes mellitus, and the aging process, the frequency of oxidative damage to erythrocytes increases[85]. 
Zhong et al. identified greater severity of carotid disease association with a higher tendency of cognitive 
deficiency during a ten-year follow-up[124].

NOX enzymes
NOX is a family of NADPH oxidases representing molecules transferring electrons through membranes. 
The electron acceptor is O2 forming superoxide radical (O2

•-). Neurons respond to ROS, which are primarily 
generated by NADPH oxidase 2 (NOX2). NOX2 is the most abundant enzyme and is generally present in 
phagocytic cells, especially in the thymus, small and large intestine, spleen, pancreas, placenta, prostate, and 
testis tissues. It is also present in smaller amounts in cells without the ability to phagocytose, such as 
neurons, cardiomyocytes, skeletal muscle myocytes, hepatocytes, endothelial cells, and hematopoietic stem 
cells. In phagocytes, it is present in intracellular membranes and on the plasma membrane. In inactive 
neutrophils, it is located primarily on the membranes of intracellular components, especially secondary and 
tertiary granules, and after activation, it is translocated to the plasma membrane. However, it is also 
activated in granules. In other phagocytic cells, the subcellular distribution differs. In non-phagocytic cells 
and smooth muscle cells, it is located near the nuclear cytoskeleton, in the hippocampus, and the 
membranes of synaptic sites. NOX2 expression is inducible, for example, in phagocytes by interferons, in 
myofibroblasts by carotid damage, in cardiomyocytes after an acute myocardial infarction, or by 
angiotensin II (in adipocytes, aorta, heart, pancreatic islets). However, the amount of NOX2 can also be 
influenced by angiotensin II at the post-transcriptional level[125].

An NADPH oxidase inhibitor, apocynin, was tested on mice that underwent an experimental laparotomy 
with isoflurane anesthesia. This drug has shown the ability to reduce the impairment of contextual memory 
and fear that are induced by surgery as a concomitant brain pathology[126]. Inhibition of NOX2, which is 



Page 9 of Sabolová et al. Vessel Plus 2024;8:27 https://dx.doi.org/10.20517/2574-1209.2024.05 25

involved in oxidative stress, may be proposed as a preventive and healing POCD strategy[127].

Iron and the production of reactive oxygen species
Ferroptosis is caused by impaired iron metabolism, amassing products of lipid peroxidation, decreased 
glutathione, glutathione peroxidase 4, and reduction in mitochondria[128]. Recent research by Masaldan et al. 
suggests that ferroptosis and iron imbalance in the nervous system may be underlying mechanisms of 
cognitive impairment and neurodegeneration[129]. Optimal heart function requires adequate regulation of 
iron levels in the human body[130]. Iron deficiency is the most common condition associated with 
malnutrition in humans, affecting up to 75% of heart failure patients[131]. In the last 10 years, however, 
ferroptosis, due to impaired iron homeostasis, has played a significant role in the pathophysiology of many 
cardiovascular diseases, along with atherosclerosis, drug-induced heart failure, myocardial ischemia-
reperfusion, cardiac injury, sepsis-induced cardiomyopathy, arrhythmias, and diabetic cardiomyopathy[130]. 
Particularly, cardiomyocytes were provably affected[132]. Cardiomyopathies associated with iron metabolism 
disorders are the main matter of mortality and comorbidity in patients suffering from hemochromatosis[133].

The immediate mechanism that leads to the formation of reactive particles is the presence of free iron in the 
cell, which triggers the Fenton reaction. Cells maintain a highly reduced state, so any available metal ion 
should only exist in a reduced form[134]. The Fenton reaction, in which the formation of a hydroxyl radical 
with a high reduction potential occurs, takes place only if a “free” transition metal is present. Free iron can 
occur due to impaired function of transport and storage proteins for iron. However, more common are 
induced conditions of oxidative stress, when the superoxide anion radical is formed through both regulated 
and unregulated mechanisms[135]. O2

•- with an existence of 2-4 μs is subject to either non-enzymatic one-
electron reduction or dismutation. In case of excessive production, especially in mitochondria, it causes 
oxidation of [4Fe-4S]-clusters of enzymes, which releases iron. The oxidation of Fe-S centers is expressed in 
the reactions (1) and (2). The oxidized center loses Fe because the sulfide ligand binds Fe3+ more strongly 
than Fe2+.

[2Fe2+2Fe3+ - 4S] + O2 + 2H+ → [2Fe2+3Fe3+ - 4S] + H2O2               (1)

[2Fe2+3Fe3+ - 4S] → Fe2+ [3Fe3+ - 4S]                                                (2)

The increased production of enzymes containing [4Fe-4S] clusters then increases the availability of free 
iron, causing damage to structures through hydroxyl radicals (HO•), up to the occurrence of spontaneous 
mutations. Another disadvantage of oxidative modification of proteins is their susceptibility to proteolytic 
degradation[134].

Research on ferroptosis induced by abnormal iron metabolism and distribution suggests that neuronal 
death in the hippocampus is responsible for the occurrence and progression of postoperative cognitive 
dysfunction[136]. Inhibiting ferroptosis in the CNS effectively ameliorates cognitive deficits, while promoting 
ferroptosis can exacerbate cognitive impairment in animal experiments[137]. Thus, ferroptosis appears as a 
potential therapeutic target to improve cognitive decline associated with neuroinflammation[138]. The 
formation of excessive amounts of ROS and damage to cellular structures can be prevented by iron 
chelators such as deferiprone, deferoxamine, ciclopirox, and 2,2-bipyridyl[128,129]. Deferoxamine reduces the 
extent of myocardial infarction and neurological deficits in rats after ischemia[139] and in human patients[140]. 
Rosenthal et al. reported that deferoxamine significantly improved neurological status and reduced 
mortality in rats subjected to cardiac arrest for 6.5 min[141]. Deferoxamine also exhibits a positive effect on 
neurological function in a collagenase-induced intracerebral hemorrhage model[142].
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LOX and COX enzymes
Lipoxygenases (LOX) are enzymes containing non-heme iron that enable the formation of hydroperoxides 
from polyunsaturated fatty acids to other biologically active metabolites (for example, arachidonic or 
linoleic acids to linoleic and arachidonic hydroperoxides) prostaglandins, prostacyclins, thromboxanes, 
leukotrienes. LOXs insert oxygen into the corresponding carbon position and form hydroxyeicosatetraenoic 
acids (HETEs). Most LOXs, notably 5-LOX and 12-LOX, utilize arachidonic acid. Reticulocytes (15-LOX) 
and other types of LOX also catalyze the transformation of other lipids, the same as membrane 
phospholipids, losing their stereospecificity. However, the products of oxidation can be cholesteryl 
hydroperoxides, hydroperoxides, epoxides, hydroxycholesterol derivatives, isoprostanes, and aldehydes that 
react with proteins and are cytotoxic[143].

Isoenzymes of cyclooxygenase (COX-1 and COX-2) catalyze the prostaglandin formation from arachidonic 
acid[144]. COX-1 is constitutive and associated with physiological functions, while COX-2 is inducible and 
plays a key role in inflammatory processes[145]. Upregulation of COX-2 is through tissue degradation 
products, lipopolysaccharides, and also inflammatory cytokines (IL-1beta, IL-15, and TNF-α). Among them, 
IL-1beta is considered the most potent inductor of COX-2 during inflammation. MAPK (mitogen-activated 
protein kinase) pathway and peroxynitrite are also involved[146]. However, the mere presence of higher NO 
levels suppresses COX-2 induction, as can glucocorticoids in the spinal cord[147].

COX-2 was expressed at the postsynaptic dendrites and excitatory terminals of cortical and spinal neurons 
in the brain in stable amounts[148]. Much attention has been paid to the induction of COX-2 in the context of 
neurodegeneration and mental disorders linked to neuroinflammation, which, to some extent, contributed 
to the progression of POCD[149]. In response to the activation of synapses, COX-2 can produce prostaglandin 
E2 (PGE2), which also undergoes synaptic transport and stimulates glutamate release from presynaptic 
neurons[148]. Increased glutamate release may reduce the number of GABA small cells[150]. Within the 
hippocampus, PGE2 plays a key role as a mediator of COX-2-mediated synaptic transmission and plasticity. 
PGE2 stimulates amyloid (Aβ) production in microglia, astrocytes, and neurons in vitro and in vivo, which 
is known to adversely affect brain function[148].

Commonly used analgesics are cyclooxygenase (COX-2) inhibitors after surgery[151], reducing the 
production of prostaglandins in peripheral and central tissues[152]. These anti-inflammatory and analgesic 
effects may protect against POCD progression. Animal studies suggest that COX-2 inhibitors represent 
appropriate means for neuroinflammation and cognitive dysfunction after surgery[153].

However, with increased ROS production, only suppression of COX activity may not be sufficient. 
Arachidonic acid can be oxidized by ROS, forming prostaglandin-like products[154]. PGE2 and PGF2 can 
produce oxidatively changed lipoproteins mimicking prostaglandin effects[155]. Body temperature, 
nociception, expression of inflammatory and other genes can also be affected by their effect. It was 
confirmed that this form of oxidation of LDLs is capable of forming both COX and LOX products (for 
example, PGD2 and 11β-PGE2 and 12-, 15-, and 5-HETEs)[156,157].

NOS enzymes
The reactive forms of nitrogen are NO· and peroxynitrite (ONOO-). Nitric oxide synthase (NOS) 
synthesizes nitric oxide by transferring electrons from tetrahydrobiopterin (BH4) to L-arginine, producing 
L-citrulline and NO in a reaction that requires the presence of oxygen and NADPH[158]. In the case of 
insufficient levels of tetrahydrobiopterin (BH4), NOS is disconnected, which transfers electrons from 
L-arginine to oxygen, creating a superoxide radical that immediately reacts with NO to form a powerful 
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oxidizing agent, the peroxynitrite anion[159]. The peroxynitrite anion subsequently further reduces BH4 levels 
within the cycle, leading to increased formation of the peroxynitrite anion[159].

Nitric oxide (NO) is important in many physiological processes[160]. Under inflammatory conditions, 
excessive production of NO triggers neurodegenerative processes[161], including microglial activation, 
neuronal cell apoptosis, and oxidative stress[162]. Increased levels of NO can negatively affect cognitive 
functions[163]. NO levels are considered a risk factor for Alzheimer's disease and early POCD[164].

eNOS and nNOS isoforms within endothel and neurons produce short-lived levels of NO[165]. iNOS does not 
occur under physiological conditions. Its expression is induced by LPS endotoxin stimulation and various 
cytokines (e.g., TNF-α, IL-1)[148]. iNOS production is induced by various stimuli and serves as a dominant 
proinflammatory and devastating mediator in inflammatory diseases[165]. iNOS affects synaptic plasticity and 
causes problems in brain functions, including cognitive impairment[166]. NOS inhibition through the 
substance L-nitroarginine methyl ester, which reduces the formation of NO, can help alleviate brain 
dysfunctions[167]. Reversal of NO-related signaling pathways alleviated cognitive impairment and 
inflammatory responses following carotid artery surgery in mice[168]. Excessive production of NO is 
considered a pathogenic signal related to the diagnosis of POCD[148,168].

Hypoxia
Hypoxic, ischemic, and anemic mechanisms can lead to an insufficient supply of tissues with oxygen[169,170]. 
Each of these categories is independently associated with cognitive decline, which is common in old age. 
There is evidence to suggest that aging may exacerbate the effects of hypoxic stress[171]. Ischemic hypoxia, 
which refers to insufficient oxygen supply to tissues due to limited blood flow, is most often linked to 
cognitive decline[172]. In surgery, ischemia is usually a result of acute or chronic embolic events or 
insufficient perfusion[172]. Embolic, ischemic, and hemorrhagic strokes are widely recognized as important 
factors contributing to cognitive failure[171]. Cognitive and behavioral disorders can affect multiple areas. 
Local brain damage can affect functional networks[171].

Hypoxia readily affects brain function[173]. The lesions that form the core of POCD likely affect the 
hippocampus, which is extremely sensitive to hypoxic damage[174]. In ischemia-reperfusion injury, the 
permeability of the BBB changes, leading to an increased flow of substances from the blood vessels into the 
brain tissue and thus worsening the damage to neurons[175]. Research has shown that in elderly patients 
undergoing cardiothoracic surgery, hypoxia-induced brain damage is associated with a disadvantageous 
prognosis[70]. In addition, major surgical procedures, especially in elderly patients, may involve methods that 
reduce oxygen delivery, including fluid overload, atelectasis, acute anemia, hypoperfusion, and 
hypoventilation[171]. Postoperative sleep-disordered breathing (sleep apnea), as well as narcotics, contribute 
to perioperative hypoxemia[176].

The response of cerebral vessels to hypoxia is manifested by dilation[177]. In anemia, there is a significant 
increase in cerebral blood flow because the body needs more oxygen for the brain[178]. Such an overall 
response does not appear to be significantly affected by aging. There is evidence indicating that restraints in 
regional cerebrovascular supply may contribute to cerebral hypoxia and ischemia in a variety of situations, 
such as severe anemia, hypotension, low cardiac output, and the state of cerebral intravascular obstruction 
and extracranial in nature[171]. An absence of effect on outcomes was observed with deliberate isovolemic 
blood dilution in the treatment of acute ischemic stroke, implying that this measure neither worsens nor 
improves outcomes[179].
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Many scientific studies have reported that hypoxia causes systemic and central inflammation, with hypoxia-
induced neuroinflammatory responses initiated through HIF-α[180]. Neuroinflammatory responses can be 
neuronal or glial and are associated with POCD[171,181]. The effects of hypoxia can be reduced by 
erythropoietin[182]. These parallels support the idea that cerebral hypoxia could underlie the mechanisms 
leading to POCD[171,183].

In response to hypoxia, hypoxia-inducible transcription factor 1-alpha (HIF-1α) accumulates, whereas HIF-
1β is expressed continuously[184]. HIF-1α activates genes for cellular adaptation to hypoxia and 
vascularization. Among the genes are a regulator of angiogenesis, vascular endothelial growth factor 
(VEGF)[185], and vascular permeability-increasing matrix metalloproteinases (MMPs)[186]. MMPs attach to 
collagen and tight junctions of brain endothelial cells, causing disruption of the BBB[187]. Inhibition of HIF-1
α led to increased apoptosis in the hippocampus and poorer cognitive performance[188]. Induction of HIF-1α 
increases glycolysis through activation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 
(PFKFB3)[189], which is an enzyme of glycolysis[190]. Increased expression of PFKFB3 potentiates 
neuroinflammatory reactions during hypoxia.

Several research studies have shown that HIF-1α influences the response to oxidative stress through 
different mechanisms[191]. HIF-1α provides direct protection against oxidative stress by targeting 
mitochondria[192]. Mitochondrial ferritin can protect brain cells from hypoxia-induced death[193]. This 
protective mechanism consists of capturing free iron and preventing redox damage caused by oxygen[194]. 
HIF-1α can increase the expression of FtMt to prevent redox damage that can be caused by oxygen[195].

Inflammation
Especially in elderly individuals, an increased occurrence of the expression of inflammatory cytokines and 
inflammatory cells is observed in the CNS, in combination with an increased sensitivity to the induction of 
inflammatory reactions after stressful situations. This fact leads to the deterioration of cognitive functions in 
elderly people[35,82,196]. Inflammation and activation of the immune system are key mechanisms contributing 
to POCD[36,112]. Surgery and anesthesia trigger inflammatory processes in the body of elderly patients, and 
subsequently, peripheral inflammatory cytokines can damage the blood-brain barrier, which allows 
increased penetration of inflammatory substances and macrophages into the brain[36,66].

If the equilibrium between anti-inflammatory and proinflammatory signals is disturbed, microglia become 
chronically activated, leading to the excessive release of proinflammatory factors, specifically cytokines, and 
the gradual development of neurodegenerative changes such as atrophy and loss of neuronal function[5,197]. 
Microglia can actively release HMGB1[198]. HMGB1 binds to microglial receptors and activates inflammatory 
pathways, promoting microglial activation[199]. Long-term activation of chronic neuroinflammation 
increases the supply of immune cells from the periphery over the BBB, further accelerating the neuro-
inflammatory and neurodegenerative process[5,200]. In a state of neuroinflammation, there is increased 
permeability of the BBB, which allows greater incursion of peripheral immune cells into the CNS[201]. The 
acute neuro-inflammatory response usually serves to protect the CNS, minimizes further damage, and 
contributes to the maintenance of tissue balance[200,201]. Chronic neuroinflammation can lead to severe 
damage to the neuronal environment, disturb its homeostasis, and damage the balance between reparative 
and proinflammatory processes[202].

NF-κB is bound to NFκB inhibitor (IκB) in the cytosol and is, therefore, inactive. However, phosphorylation 
of IκB by IκB kinase causes NF-κB release, its translocation to the nucleus, and leads to proinflammatory 
cytokine upregulation[203]. The subsequently produced proinflammatory cytokines IL1, IL6, and TNFα 
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promote the release of HMGB1, and further amplification of the inflammatory response. In addition, IL-1 
and TNFα reactivate NFκB, leading to increased upregulation of the COX-2 isozyme[204,205], which re-triggers 
local prostaglandin synthesis[206].

Circulating proinflammatory cytokines in the peripheral circulation subsequently affect BBB permeability. 
This leads to increased COX-2 and MMP activity, enabling proinflammatory cytokines to enter CNS[66,207]. 
There is compelling evidence between the increase in serum proinflammatory cytokines and the occurrence 
of POCD in vivo as well as in clinical studies[208]. Impaired memory was observed in patients with a 
significant increase in IL-6 levels. This cognitive dysfunction lasted up to one month after surgery[209]. 
Surgery-triggered release of HMGB1 may contribute to inflammatory cytokine activation, and increased 
amyloid beta and Tau phosphorylation[210,211].

The central cholinergic anti-inflammatory pathway is connected to consciousness and memory 
formation[212]. Cholinergic regulation of the mtROS/NLRP3/IL-1β inflammasome pathway plays an 
important role in cognitive functions[213,214]. Stimulation of α7nAchR by agonists can suppress the production 
of inflammatory mediators in various organs[215]. This process can lower the pathological processes evoked 
by the inflammatory response and improve the immune function[216,217]. An α7nAchR agonist can enhance 
anti-inflammatory mediators releasing and reduction of changes to peripheral and brain tissues[217].

The MIP-1 family plays an important role in T-cell migration across the endothelium. Research has shown 
that higher levels of MIP-1A and MIP-1B are present in patients with cardiovascular disease through a 
complex cytokine profile[218]. Increased levels of the mentioned factors support theories that turbulent blood 
flow in incompetent veins has a proinflammatory effect[219]. MIP-1a can attract macrophages and 
neutrophils to areas of tissue damage. Increased blood levels of MIP-1a have been associated with mood 
changes and impaired cognition[220]. Experimental studies showed that MIP-1a contributes to the 
development of neuropathic pain[221].

Additionally, fibrinogen can induce inflammatory responses by increasing the levels of IL-6, TNF-α, 
monocyte chemoattractant protein (MCP-1), macrophage inflammatory protein-1 (MIP-1a and b ), MMP-
1, MMP-9, and Toll-like receptors (TLR)[222,223]. For that, fibrinogen can trigger the focal adhesion kinase 
(FAK), MAPK, and NFκB pathways[223].

Blood-brain barrier damage
The mechanism of BBB disruption is caused by the action of inflammatory mediators [Figure 1], which are 
induced by peripheral surgical trauma[224]. Peripheral proinflammatory cytokines affect BBB through 
upregulation of the COX-2 enzyme and another group of enzymes, MMPs, allowing their entrance to 
CNS[225]. BBB is formed by a tight junction of transmembrane proteins (occludins, claudins, and junctional 
adhesion molecules) between neurovascular endothelial cells. This structure allows only passive diffusion of 
water, gases, and small fat-soluble molecules. However, upregulation of COX-2 by IL 1 and TNFα in 
neurovascular endothelial cells[226] promotes local synthesis of prostaglandins and impairs BBB 
permeability[66,227]. TNF-α increased MMP-9 transcription, allowing extracellular matrix protein degradation 
and BBB damage[228,229]. TNFα, IL-1β, and IL-6 were found in higher concentrations in the hippocampus of 
rats as well as in human cerebrospinal fluid after surgery, suggesting BBB impairment. Elevations of 
cytokines in the CNS have also been associated with memory impairment in mice and cognitive impairment 
in humans as measured by various neurocognitive measures.
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Figure 1. The effect of factors from the peripheral circulation during cardiac surgery on the disruption of the blood-brain barrier and the 
escalation of inflammatory processes in the brain tissue, which lead to impairment of cognitive functions. BBB: Blood-brain barrier; 
CABG: coronary artery bypass surgery; COX: cyclooxygenase; CPB: cardiopulmonary bypass; LOX: lipoxygenase; NOX: NADPH 
oxidases.

Upon BBB damage, bone marrow-derived macrophages (BMDM) entered the CNS via monocyte MCP-1, 
which interacted with the BMDM surface[230]. BMDMs entered CNS and continued to release 
proinflammatory cytokines, activating the transcription of the NF-κB signaling[231] and thereby promoting 
the activity of microglia, thus amplifying the neuroinflammatory response. In a mouse model, preoperative 
depletion of BMDM was found to reduce the incidence of POCD[232], suggesting that BMDM migration may 
play an important role in POCD. BMDM could freely enter the CNS due to damage to BBB and trigger 
deregulation of immune activities. The immune system was connected in the CNS with the periphery 
through the BBB, which contributed to the worsening of neuroinflammation, and brain tissue injury, 
contributing to POCD[183].

RNA
Changes at the gene level are involved in the pathogenesis of POCD[233]. The expression profiles of non-
coding RNAs (e.g., lncRNAs, miRNAs, and cirRNAs) and mRNAs in mouse hippocampus were 
investigated by chip technology and PCR analysis. Compelling differences were found in the POCD group, 
suggesting that non-coding RNAs can contribute to the pathogenesis of POCD[234-236]. The role of non-
coding RNA in the pathogenesis of POCD can be explained by its ability to regulate the expression of 
relevant genes. It is about the creation of regulatory networks of the so-called competitive endogenous RNA 
(ceRNA) that affects gene expression at the post-transcriptional level. These networks are formed between 
long non-coding RNA (lncRNA), circular RNA (cirRNA), and messenger RNA (mRNA) and involve 
binding to the microRNA (miRNA)[237,238].
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circRNA
With the development of RNA sequencing (RNA-seq) technologies, it was discovered that there is a class of 
non-coding RNAs (ncRNAs) known as circular RNAs (circRNAs)[239,240]. With increasing age, there is an 
increase in the level of circular RNAs (circRNAs), which accumulate in synapses and other neuronal tissues. 
Increased accumulation of circRNA is associated with the occurrence and development of 
neurodegenerative and psychiatric diseases, as reported by several previous studies[241,242]. In addition, 
circRNA is related to neurotransmitter function, neuronal maturation, and synaptic activity, according to 
previous research[243-245]. CircRNA is found in mammalian brains and contains a close association with 
neurological functions[239,240].

In contrast to classical linear RNAs, circRNA (cyclic RNA) represents a subset of endogenous non-coding 
RNAs with a closed loop-like structure and exhibits high resistance to degradation[246]. CircRNAs are closed 
covalently looped molecules that lack 5′ ends or 3′ poly-A tails. They are generated through reverse splicing 
of pre-mRNAs[239,247]. Current studies highlight that circular RNAs (circRNAs) can act as competitive 
endogenous RNAs (ceRNAs) - binding to microRNAs (miRNAs) to eliminate their inhibitory effect on 
target mRNAs via miRNA binding sites[248,249]. The regulatory network formed by the interaction of 
circRNAs, miRNAs, and mRNAs is called the ceRNA network. Recent studies have focused on circRNA 
research and show that circRNA-linked ceRNA networks play an important role in the pathogenesis of 
diseases such as Alzheimer's disease (AD), stroke, and other neurological disorders[250,251]. These findings 
provide new insights into the molecular relationships associated with POCD[252].

CircRNAs play an important role in cognitive disorders such as Alzheimer's disease. Downregulation of 
circCwc27 can lead to improved cognitive function in mice suffering from Alzheimer's disease[253]. Plasma 
circRNA-089763 is positively correlated with the incidence of POCD[235,236]. A total of 210 circRNAs were 
identified with differential expression in the serum of POCD patients after screening by microarray analysis. 
Such circRNAs include,  for  example ,  HSA_circRNA_001145,  HSA_circRNA_101138,  
HSA_circRNA_061570[254], circRNA_28795, circRNA_44122, circRNA_44122, circRNA_22058, 
circRNA_22058, and circRNA42559, which are crucial factors in POCD[255]. Recent research has revealed 
that certain circular RNAs (circRNAs) show abnormal expression in the hippocampus and play an 
important role in postoperative cognitive impairment (POCD) through a microRNA (ceRNA) competition 
network[255].

miRNA
It was found that microRNA has a role in the origin and development of POCD[256]. MicroRNAs (miRNAs) 
represent a group of short single-stranded non-coding RNAs that play a key role in suppressing the 
expression of target genes by either degrading mRNAs or preventing their translation[257]. To date, scientists 
have discovered more than 700 types of miRNAs. As a part of scientific studies, several miRNAs have been 
found to have the ability to influence processes in neurons and the area of the immune system[88,258]. 
miRNAs were found to be either closely related to cognitive processes, nervous system development, 
learning and memory, or cancer and inflammation[259-261].

CONCLUSION
The development of neurocognitive dysfunctions after cardiac surgery is a relatively common phenomenon. 
Many other risk factors can lead to and contribute to the pathogenesis of cognitive dysfunctions after 
surgical interventions, such as genetic polymorphisms, ethnicity, nutritional status, physical fitness, 
substance abuse, liver dysfunction, or diabetes mellitus.
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It is important to recognize the pre-, peri- and postoperative risks especially for the possibility of applying 
preventive strategic measures that should help eliminate the development of neurocognitive impairment, 
such as the selection of appropriate premedication, adjustment of psychological status, length of surgical 
procedure, amount and type of anesthetics/anesthesia, maintenance of body temperature and 
hemodynamics, administration of compounds that suppress inflammation, but also melatonin agonists and 
dopamine antagonists. We tried to approach the factors that are significant sources of reactive oxygen and 
nitrogen species because they are modifiable factors. It does not represent a treatment strategy, but a choice 
of appropriate antioxidant adjuvants can affect the patient's condition.
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