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Abstract
Primary liver cancer (PLC), which includes hepatocellular carcinoma (HCC, 93% in China; 75%-80% worldwide), 
intrahepatic cholangiocarcinoma (ICC, 4.3% in China; 10%-15% worldwide), and combined hepatocellular 
cholangiocarcinoma (CHC, 1.6% in China), is a global disease that brings a heavy burden to the world and the 
number of incidence cases is on the rise. Chronic liver injury caused by factors such as exposure to aflatoxin B1, 
infection with Clonorchis sinensis, heavy alcohol consumption, chronic infection with hepatitis C virus (HCV), and 
metabolic syndrome are all known risk factors for PLC. Notably, chronic infection with hepatitis B virus (HBV) is the 
major risk factor for HCC. Globally, PLC risk factors are changing from infectious causes to metabolic factors. Here, 
we update the mechanisms of HBV-related HCC (HBV-HCC) development, especially the effect of HBV evolution 
on the development of HCC. The HBV mutations, viral load, and HBV integration, together with parameters of poor 
liver function, are key components to define the highest-risk population of HBV-HCC. Antiviral therapy has been 
proven to be effective for the prevention of HBV-HCC in the highest-risk population. Non-invasive imaging 
combined with key markers is economical and convenient for screening early PLC. Surgical resection and liver 
transplantation are therapeutic options for HCC; however, postoperative recurrence reaches 70% in five years. 
Targeted therapy, immunotherapy, and radiotherapy can improve the survival of PLC. Active prophylaxes, including 
HBV vaccination, antiviral treatment, improving lifestyle to decrease chronic inflammation, and surveillance, are 
cost-effective in decreasing the disease burden of PLC.
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INTRODUCTION
Primary liver cancer (PLC) represents a spectrum of malignant hepatic neoplasms, including hepatocellular 
carcinoma (HCC) originating from hepatocytes, intrahepatic cholangiocarcinoma (ICC) arising from bile 
duct epithelial cells, and combined hepatocellular cholangiocarcinoma (CHC). The etiology of HCC is 
frequently associated with hepatitis B virus (HBV) or hepatitis C virus (HCV) infections[1]. In mainland 
China, the majority of PLC cases are HCC (93.0%), followed by ICC (4.3%) and CHC (1.6%), with HBV and 
HCV infections accounting for 84.4% and 3.2% of HCC cases, respectively[1,2]. Globally, the distribution and 
etiology of PLC vary significantly across different countries and ethnic populations. A comprehensive 
understanding of the global epidemiological characteristics of HBV infection and the mechanism by which 
HBV induces hepatocarcinogenesis is crucial for establishing a specific prevention and control technology 
system and realizing precise prevention and control.

THE GLOBAL EPIDEMIOLOGICAL CHARACTERISTICS OF PLC
According to the statistics from Globocan, PLC ranks sixth in incidence and the third leading cause of 
cancer-related death worldwide in 2022[3,4]. PLC is endemic in East Asia and sub-Saharan Africa. Asia 
accounts for 70% of the global burden of PLC in terms of both incidence and mortality. China has the 
highest number of cases, with 367,657 PLC cases reported in 2022[4-6]. In all regions worldwide, the incidence 
and mortality rates of PLC are higher in males than in females[2], with an age-standardized male-to-female 
ratio of 1.2 to 3.6[7]. It is speculated that by 2040, the number of PLC cases will reach 1.4 million, with 
1.3 million PLC-related deaths[7]. A decline in both incidence and mortality rates of PLC has been observed 
in many high-risk regions, including China, South Korea, the Philippines, and Japan, since the 1990s[7-9]. 
HBV vaccination was introduced in high-risk countries in Southeast Asia in the 1980s[10]. This may have 
significantly reduced HBV infections and the incidence of HCC. Concurrently, with improvements in living 
standards, the rates of overweight individuals and diabetes are increasing in many regions[11]. In recent 
years, an upward trend in the incidence of PLC has been observed in several countries that were previously 
considered to be at low risk, including those in Europe, North America, Oceania, and most countries in 
South America[7,11,12]. Research from the National Cancer Center (NCC) indicates that between 2000 and 
2011, the age-standardized incidence rate (ASIR) and age-standardized mortality rates (ASMR) for PLC in 
China showed a consistent decrease[13]. The decline in ASIR reflects the effectiveness of etiological 
prevention, whereas the decrease in ASMR reflects both the decline in the ASIR and the effects of clinical 
treatment, indicating that clinical treatment contributes little to the decrease in the ASMR from PLC. 
Primary prevention, or etiological prevention, plays a major role in reducing the ASMR from PLC in the 
population. The first condition for achieving primary prevention is to elucidate the modifiable etiologies 
that can be intervened.

HCC is the predominant form of PLC. The global incidence of HCC varies due to differing prevalence of 
risk factors. Sub-Saharan Africa and East Asia are the endemic areas where the majority (80%) of HCC 
occur, with chronic HBV infection and exposure to aflatoxin B1 (AFB1) being the major risk factors[14]. 
China accounts for more than 51% of the global number of HCC cases[15]. According to the global burden of 
disease from 1990 to 2015, HBV and HCV led to 432,000 HCC deaths (54%), alcohol caused 245,000 HCC 
deaths (30%), and other causes accounted for 133,000 HCC deaths (16%)[16]. ICC is a heterogeneous group 
of aggressive tumors of the biliary system, accounting for about 15% of PLC worldwide, with an incidence 
that is low in most high-income countries (0.3-2 cases per 100,000) but much higher (even 40-fold increase) 
in regions such as China and Thailand[16,17]. The incidence of ICC is highest in Asia, especially in South 
Korea (ASR = 2.80), Thailand (ASR = 2.19), and Japan (ASR = 0.95). The incidence of ICC increased in 
most of the countries between 1993 and 2012[12].
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MAIN RISK FACTORS OF PLC
Any factor that can lead to persistent chronic liver injury is the etiology of PLC. The main cause of HCC in 
China is chronic HBV infection, followed by aflatoxin exposure, infection with Clonorchis sinensis (liver 
fluke), heavy alcohol consumption, metabolic syndrome, HCV infection, and smoking. Adding any of these 
risk factors to HBV infection or together with hepatitis D virus infection will substantially increase the risk 
of HCC; liver fluke, metabolic syndrome [obesity, diabetes mellitus, non-alcoholic fatty liver disease 
(NAFLD)], heavy alcohol consumption, HBV and HCV infections are the major risk factors for ICC[2]. 
Recent studies have demonstrated a clear association between metabolic dysfunction-associated fatty liver 
disease (MASLD) and ICC[18]; however, the direct causal chain between them has not been clearly 
verified[19,20].

HBV infection
Chronic HBV infection is mainly transmitted perinatally (mother-to-child) or horizontally (contacted with 
infected blood). Approximately 90% of chronic HBV infections are acquired during infancy or early 
childhood. Booster vaccinations during childhood are effective in preventing HBV infection. In addition to 
this, HBV is spread through needle-stick injuries, tattoos, and piercings. WHO estimates that 254 million 
people were living with chronic hepatitis B and that hepatitis B caused 1.1 million deaths in 2022[21]. Regions 
with a high burden of chronic hepatitis B infection mainly include the Western Pacific (97 million), Africa 
(65 million), and Southeast Asia (61 million)[21].

HCV infection
HCV is a blood-borne virus that is transmitted primarily through sharing unsterilized needles, transfusion 
of unscreened blood, and sexual contact with bleeding[22]. An estimated 50 million people worldwide will be 
chronically infected with HCV by 2024, with approximately 1 million new infections per year. Chronic 
HCV infection occurs in all regions, with the most severely affected regions in the Eastern Mediterranean 
region (12 million people chronically infected), the Southeast Asia region and the European region 
(9 million), the African region (8 million), the Western Pacific region (7 million), and the Americas region 
(5 million cases)[22]. HCV-associated HCC cases are highest in China, Japan, and the United States[23]. 
Countries with a high prevalence of chronic HCV infection in the 2021 GBD database include Mongolia, 
Cambodia, Chad, Uzbekistan, Gabon, Democratic Republic of the Congo, Central African Republic, 
Angola, Turkmenistan, Tajikistan, and Kyrgyzstan[4]. Unlike HBV, HCV does not integrate into the host 
genome but contributes to HCC occurrence through epigenetic dysregulation, including DNA methylation, 
histone modifications, encoded proteins, and HCV genetic variants[24]. Approximately 90% of HCV-
associated HCC cases have liver cirrhosis, so it is hypothesized that HCV may promote tumorigenesis 
through repetitive liver injury, regeneration, and fibrosis[25]. Therefore, WHO recommends treatment with 
pan-genotypic direct antiviral agents (DAAs) for all adults, adolescents, and children under 3 years of age 
with chronic HCV infection[26].

Metabolic dysfunction-associated steatotic liver disease
The International Diabetes Federation (IDF) recently defined MASLD as a condition characterized by 
central obesity (measured by a waist circumference of ≥ 94 cm for European men and ≥ 80 cm for European 
women, with other ethnic groups having their own specific values) plus any two of the following four 
factors [triglyceride (TG) level > 1.7 mmol/L; high-density lipoprotein cholesterol (HDL-C) < 1.0 mmol/L in 
men and < 1.3 mmol/L in women; systolic blood pressure ≥ 130 mm Hg or diastolic blood pressure ≥ 
85 mm Hg; and fasting blood glucose (FPG) ≥ 5.6 mmol/L or a diagnosis of type 2 diabetes][27]. In the Delphi 
Consensus on Nomenclature Updates for Fatty Liver Disease, launched on June 24, 2023, by the American 
Association for the Study of Liver Diseases (AASLD), the European Association for the Study of the Liver 
(EASL), and the Latin American Association for the Study of the Hepatology (ALEH), 53 international 
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experts recommended that the name of NAFLD be changed to MASLD. The name change is intended to 
more accurately describe the metabolic basis of the disease and reduce the potential negative impact of the 
original term[28]. The name change aims to more accurately describe the metabolic basis of the disease and to 
minimize the potential negative impact of the original terminology[28]. The authors still described this risk 
factor according to the original source. One-quarter of the world’s population is estimated to have NAFLD. 
The incidence of non-alcoholic steatohepatitis (NASH) is projected to increase by up to 56% over the next 
10 years[29]. NAFLD is a common cause of chronic liver disease in Western countries and has been the 
fastest-growing cause of HCC in the United States, France, and the United Kingdom[29]. With the increasing 
prevalence of obesity, the incidence of NAFLD has been rising, which has led to an upward trend in the 
proportion of HCC cases caused by NAFLD[30]. Compared with virus-associated HCC, NAFLD-associated 
HCC tends to occur in older adults[31]. It can occur in the absence of cirrhosis[32] and has a low survival 
rate[33]. NAFLD is caused by metabolic syndrome and is strongly associated with type 2 diabetes and obesity. 
In the setting of insulin resistance, increased oxidative stress and altered lipid metabolism lead to chronic 
inflammation and contribute to the development of HCC[34]. The relative risk of diabetes leading to HCC 
ranges from 2-3. Insulin resistance and reactive oxygen species production are thought to play a role in 
hepatocarcinogenesis[5]. Diabetes combined with cirrhosis increases the risk of HCC in patients [35]. There is 
growing evidence that metabolic syndrome increases the risk of HCC[16]. A 2014 cohort study showed an 
overall 81% increased risk of HCC in cases of metabolic syndrome (relative risk: 1.81; 95%CI: 1.37-2.41)[36]. 
Modifiable risk factors for NAFLD include unhealthy lifestyles (over-nutrition, sedentary lifestyle, low 
physical activity) and sulfonylureas and insulin use[36-38]. In a multicenter prospective study of NAFLD 
patients from five regions in Asia, patients had a prevalence of unhealthy lifestyles of smoking (3.8%-22.6%) 
and soft drink consumption (22.6%-62.2%), as well as low levels of physical activity, with a median 
sedentary time of 42 h per week[39]. This suggests that adopting a healthy lifestyle and appropriately 
circumventing the use of specific drugs may have a preventive effect on NAFLD. In addition, statins for 
dyslipidemia reduce the risk by 37%-42%[39-41]. The development of NASH-HCC is linked to genetic 
mutations, immunological alterations, and changes in the microenvironment. Notable features include an 
increased prevalence of TP53 and ACVR2A mutations in hepatocytes, alterations in the innate immune 
response, such as changes in dendritic cells and Kupffer cells[42], decreased cytotoxicity of natural killer (NK) 
cells, and the accumulation of neutrophils. Additionally, dysfunction in immune cell subsets has been 
observed, which includes single nucleotide polymorphisms (SNPs) in genes such as PNPLA3. Although the 
majority of HCC cases in NASH occur after the development of cirrhosis, 30%-40% of tumors develop in 
patients with advanced fibrosis but without cirrhosis, which is instructive for surveillance and early 
detection of HCC[43].

Alcohol
Excessive alcohol consumption has been widely recognized as a risk factor for PLC, although the 
relationship between small amounts of alcohol and PLC remains unclarified[44]. The annual incidence of 
HCC in patients with alcohol-associated cirrhosis ranges from 0.9% to 5.6%. Approximately 1/5 of HCC 
deaths globally in 2019 will be attributable to alcohol consumption. The highest per capita alcohol 
consumption is in Europe (12.3 liters in 2005 and 9.8 liters in 2016) and the Western Pacific (4.6 liters in 
2005 and 7.3 liters in 2016)[45]. This fact is corroborated by the number of alcohol-related liver cancer deaths 
in these two regions [22,215 (18,146-26,413) deaths in Europe in 2019, and 27,623 (21,296-34,686) deaths in 
the Western Pacific][46]. In Europe and the United States, most HCC is associated with alcoholic liver disease 
(ALD)[47]. The factors that promote the progression of ALD to HCC include malnutrition caused by long-
term drinking, hepatic stellate cells (HSCs) activation, damage caused by alcohol and its metabolites, 
oxidative stress in liver tissue, immune reaction, and genetic factors[48]. Heavy alcohol consumption and 
aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism significantly increased the risk of HBV-HCC 
development and mortality[49]. There exists a synergistic effect between HBV, HCV, and alcoholic 
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hepatotoxicity, especially HCV infection with alcohol intake[48,49].

Other factors
Aflatoxin exposure, schistosomiasis, water contamination, nicotine use, and genetic predisposition are 
thought to be other possible risk factors for PLC[14,47,50,51]. Globally, 5%-28% of HCC is associated with 
AFB1[52]. The incidence of HCC in HIV-infected patients has shown an increasing trend, especially in those 
patient groups co-infected with HBV or HCV[53]. The incidence of HCC in HIV-infected patients has shown 
an increasing trend, especially in those patient groups co-infected with HBV or HCV[14,53]. In addition to the 
above causative factors, many causes are still being discovered, and the synergistic mechanisms of 
carcinogenesis among these factors need to be further explored.

EVOLUTIONARY PATTERNS OF HBV IN THE “TRILOGY” OF HEPATOCELLULAR 
CARCINOGENESIS
HBV mutations at the core promoter and enhancer regions
Viral sequences from over 1,000 asymptomatic HBV-infected patients, particularly those seropositive for 
HBeAg, were used to identify “wild sequences”, which served as controls for recognizing disease-associated 
HBV mutations. We characterized the HBV mutations at the core promoter and enhancer region at each 
stage of the HBV oncogenic “trilogy” and revealed 66 previously unreported HCC-associated HBV variants. 
Key mutations in HBV genotype C, including C1673T, A1726C, A1727T, C1730G, C1766T, A1762T/
G1764A, T1768A, C1773T, and C1799G, were found to increase the risk of cirrhosis significantly. 
Multifactorial logistic regression analysis disclosed that age, abnormal aminotransferase (ALT), HBV DNA 
≥ 104 copies/mL, and genotypes C, C1653T, T1674C/G, T1753V, and A1762T/G1764A were independent 
risk factors for HCC development. The haplotype 1653C-1674G/C-1753V-1762T/1764A, a predominant 
HBV variant, was detected in HCC 6.28 times more frequently than in non-HCC-infected individuals, 
demonstrating high specificity and detection frequency, rendering it suitable for HCC prediction[54] 
[Table 1]. These studies contribute to the definition of the high-risk group for HCC.

Characteristics of HBV mutations in the pre-S region
Significant differences in the judgment of the HBV mutations in the preS region were observed, which was 
particularly distinct in different HBV genotypes. Asymptomatic HBV-infected carriers, chronic hepatitis B 
patients, cirrhotic patients, and HBV-HCC patients were used as mutual controls to screen the HBV 
mutations in the preS region and part of the S region. The pre-S1 deletion, pre-S2 deletion, and pre-S2 start 
site mutations were substantially more frequent in HCC than in asymptomatic HBV carriers, chronic 
hepatitis B patients, and cirrhotic patients. HBV preS wild types were predominantly associated with an 
increased risk of cirrhosis, while their mutation types were mostly associated with an increased risk of 
developing HCC. Multifactorial logistic regression analysis confirmed that age, HBeAg conversion, ALT ≥ 
45 U/L, and representative wild-type T3116C and A2964C were independent risk factors for increased risk 
of cirrhosis; age, HBV DNA ≥ 104 copies/mL, HBV genotype C, and HBV mutations including C2964A, 
C3116T, C7A, T53C, pre-S2 start site variants, and pre-S1 deletion were independent risk factors for HCC[55] 
[Table 1], confirming the advantages and feasibility of the HBV mutations in predicting various liver 
diseases in the “trilogy” of HBV-induced carcinogenesis.

Effect of combined HBV variants on the occurrence of HCC
HCC-associated HBV variants are numerous, and age- and sex-matched case-control studies revealed the 
independent effects of HBV core promoter and preS mutations on the risk of HCC. It was found that HBV 
genotype C, preS 2 promoter mutations, C105T, T1753V, A1762T/G1764A, and other HBV variants were 
independent risk factors for HCC[56,57] [Table 1]. A systematic analysis of HBV variants with high specificity 
and detection rates in HCC revealed that the frequency of preS deletion, C1653T, T1753V, and A1762T/
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Table 1. Key mutation sites of HBV/HCV-HCC

Viral 
type Mutation sites Country/Region Reference

HBV C1673T, A1726C, A1727T, C1730G, C1766T, A1762T/G1764A, T1768A, 
C1773T, C1799G,1653C-1674G/C-1753V-1762T/1764A

China Yin et al. 2011[54]

HBV pre-S1 deletion, pre-S2 deletion, pre-S2 start site mutations,C2964A, C3116T, 
C7A, T53C, preS PreS2 start C3116T, C7A, T53C

China Yin et al. 2010[55]

HBV C105T, T1753V, A1762T/G1764A China Liu et al. 2011[56] 
Xie et al. 2010[57]

HBV G40C China Chen et al. 2021[62]

HBV G2950A/G2951A/A2962G/C2964A, C3116T/T31C China Pu et al. 2022[63]

HBV IL-17A rs2275913 (G197A), IL-17F rs763780 (A7488G) Iran Gheshlaghi et al. 2021[213]

HBV rs3077(HLA-DP), rs9277535(HLA-DP) China, Korea, Japan, Saudi 
Arabia, Thailand

Yu et al. 2015[214]

HBV IL10RB-rs2834167, PAPL-rs423058A, DEPDC5-rs1012068 China Ma et al. 2014[215]

HCV A028C, G209A, C219U/A, U264C, A271C/U, C378U/A, G435A/C, G481A, 
U303C/A

Europe, America Hu et al. 2009[205]

HCV CHI3L1 (rs880633), intergenic (rs597533) polymorphisms Egypt Mangoud et al. 2021[216]

HCV HCP5-rs2244546 Switzerland Lange et al. 2013[217]

HBV: Hepatitis B virus; HCV: hepatitis C virus; HCC: hepatocellular carcinoma; HLA-DP: human leukocyte antigen-DP; IL10RB: interleukin 10RB; 
PAPL: iron/zinc purple acid phosphatase-like protein; DEPDC5: DEP domain containing 5; CHI3L1: Chitinase-3-like protein 1; HCP5: 
histocompatibility leukocyte antigen complex P5.

G1764A mutations gradually increased at each node of the HBV oncogenic “trilogy” disease. The HCC-
associated variants in the HBV pre-S region and core promoter/enhancer II accumulate during the
progression of HBV chronic infection to HCC, and these variants and their combination can predict the
development of HCC[58]. The HBV signature disease mutations A1762T/G1764A can be detected 10 years
prior to the onset of HCC, and the combination of mutations increases the specificity of monitoring HCC
development more dramatically than single-point mutations. It was found that A1762T/G1764A appeared
earlier, and preS deletion, C1653T, and T1753V appeared later after the acquisition of HBV infection[59]. A
cohort study found that combined variants predicted HCC development up to 6 years earlier[60]. Therefore, a
combined detection technique for high-risk HBV variants was established, which has been used for the
surveillance of HCC occurrence in HBV-infected patients, for defining high-risk groups, and for the
development of HCC secondary prevention.

Predictive role of HBV variants in HCC recurrence
Analysis of HBV variants in different liver tissues revealed asynchronous degrees of HBV evolution in
cancerous tissues, adjacent liver tissues, and peripheral blood in HCC patients. In cancerous tissues,
evolution was slowest due to the weakest immune pressure; in peripheral blood, immune selection was
strongest, and HBV evolution was the fastest; and in adjacent liver tissues, the degree of HBV evolution was
intermediate. Adjacent liver tissue is the most important site for HBV synthesis, and the evolutionary
trajectory of HBV undergoing different immune pressures in the microenvironment after “leaving the
factory” is completely different, resulting in conflicting roles of serum and tumor tissues in predicting HCC
metastasis. Inflammatory molecules trans-activate APOBEC3s, which promote genomic mutation of HBV
during replication throughout the RNA reverse transcription stage. APOBEC3B-related HBV mutations are
important risk factors for HCC development after evolutionary selections. Among these, cancer-driving
HBV mutations, such as A1762T/G1764A, in serum predict postoperative recurrence and metastasis of
HCC. This effect was absent both in cancerous and adjacent liver tissues[61]. During HBV-HCC recurrence
and metastasis, the direction of immune selection of HBV mutations tends to promote cancer metastasis,
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possibly because of immune selection in the tumor microenvironment (TME). For the first time, it was 
found that the G40C mutation in the pre-S region of HBV was able to independently promote the poor 
prognosis of HCC[62] [Table 1]. In this way, HBV evolution promotes not only HCC occurrence but also 
poor prognosis of HCC, which can play a guiding role in both tertiary prevention of HBV-induced 
carcinogenesis as markers for the prediction of HCC occurrence and prognosis as well as therapeutic 
efficacy.

MOLECULAR MECHANISMS OF HBV MAJOR VARIANT GENES IN PROMOTING 
CARCINOGENESIS
The Sleeping Beauty (SB) transposon animal model was first used to imitate the early stage of HBV 
infection and to integrate it into the host genome. It was found that hepatitis B x (HBx) genes with 
combined mutations upregulated more “yin” inflammatory cytokines and caused a higher rate of HCC and 
more metastasis than did the wild-type counterpart. Combined HBx mutations C1653T-T1674G-A1762T/
G1764A cause the maximal level of proinflammatory cytokine, thus promoting hepatocarcinogenesis. 
Mutant HBx promotes HCC malignant transformation and stemness characteristics mainly by activating 
the expression of plasminogen activator inhibitor 1 (PAI-1) and cell division cyclin 20 (CDC20). These 
findings in the SB animal model were confirmed by subsequent cellular models and their xenograft animal 
models. PAI-1 has been shown to be a prognostic biomarker of HCC and a therapeutic target for HCC[63]. 
Meanwhile, our cohort study has also demonstrated that the frequency of combined C3116T/T31C 
mutations is significantly higher than that of preS 2 deletion (43.61% vs. 7.16%). Using the xenograft 
immunodeficiency animal model, we found that transfection of the large S gene carrying the major 
combined mutations G2950A/G2951A/A2962G/C2964A and C3116T/T31C in the preS region resulted in 
rapid tumor growth[63] [Table 1]. The mutant HBV large S gene was found to have a stronger ability to cause 
HCC and promote HCC metastasis and death than did the wild-type large S gene in the SB animal model. 
Both G2950A/G2951A/A2962G/C2964A and C3116T/T31C combination mutations activate inflammatory 
regulatory networks and metabolism-related signaling, inducing endoplasmic reticulum stress, affecting the 
body’s response to hypoxia, and upregulating the interleukin-6 (IL-6) signal transducer and activator of 
transcription 3 (STAT3) signaling pathway in the SB animal model. Thus, the HBV mutations at the large S 
gene promote HCC occurrence and metastasis by amplifying the IL-6/STAT3 signaling pathway[64]. 
Oncogenic HBV mutations arise due to immune selection and amplify oncogenic and cancer progression-
related inflammatory signaling pathways in vivo. Thus, HBV evolution through the “wild-type HBV - 
immune selection - mutant HBV - local inflammation - carcinogenesis” eventually promotes HCC 
evolution by amplifying the proinflammatory and oncogenic pathways.

Drivers of HBV evolution: genetically determined inflammatory immune mechanisms
Genome-wide association analysis was employed to uncover new susceptibility loci for HBV-HCC; the 
STAT4 gene rs7574865 and the class II human leukocyte antigen (HLA)-DQ rs9275319 were identified to be 
the major susceptible genetic loci. STAT4, a crucial transcription factor and key regulator of the immune 
response, plays a significant role in transmitting signals from interleukin IL-12 and type I interferon (IFN-α 
or IFN-β) to induce IFN-γ, thereby influencing the immune response to HCC. The rs7574865 G allele, 
which affects STAT4 expression, has been shown to significantly increase the risk of HCC. Notably, STAT4 
expression levels were significantly lower in cancerous tissues compared to paracancerous liver tissues, with 
the lowest levels observed in individuals with the rs7574865 GG genotype[65]. Additionally, a PRMT7-
encoded gene intron region on chromosome 16q22.1 was identified to harbor an HCC-risk region, with the 
high-risk allele at rs73613962 exhibiting allele-specific enhancer activity. This “allele-specific enhancer” 
promotes PRMT7 expression through the binding of the transcription factor HNF4A, impacting HCC 
susceptibility via the P53 pathway[66]. We also discovered that rare genotypes of genetic polymorphisms of 
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HLA-II antigen genes (HLA-DR, HLA-DP, and HLA-DQ) were negatively associated with the chronicity of 
HBV infection. Dominant alleles of these genetic polymorphisms promote chronic infection and immune 
selection of viral variants, making HBV more likely to cause HCC in Chinese populations. A significant 
finding was that major and rare genotypes in Chinese and white European populations are interchanged: 
genetic loci promoting the chronicity of HBV infection (HLA-DQ, HLA-DP, HLA-DR, and NFKBIA genetic 
loci) are major genotypes in the Chinese genome and rare in Europeans, and vice versa[67-69]. Furthermore, 
SNPs in the promoters of the NF-κB1 and IκB genes, which are part of the NF-κB pathway - a key 
inflammatory signaling network in the oncogenic process of HBV - were found to be responsible for the 
development of HCC in patients infected with HBV type C2. The polymorphism NFKBIA -881 (rs3138053, 
A>G) at the promoter region of the IκB, a key molecule of the NF-κB pathway, promotes the process of 
chronic inflammation and inflammation-carcinoma transformation[70]. Differences in the frequency of this 
polymorphic allele among different human races provide insights into the reason why the Chinese 
population is more susceptible to chronic HBV infection, which accounts for one-third of the world’s cases, 
and more likely to develop HCC, which accounts for half of the world’s cases. Genetic polymorphisms in 
NF-κB, STAT3, and other major inflammatory pathways in the HBV oncogenic pathway were also found to 
significantly interact with the pro-cancer HBV mutations in the development of HCC and cirrhosis[71,72]. 
Immunogenetic factors modulate the expression of immune/inflammatory molecules, influencing 
inflammatory-immune functions and predisposing individuals to develop chronic active hepatitis following 
HBV infection, thereby promoting the evolutionary development of HCC.

Inflammatory factors affect the balance between APOBEC3B - UNG
Immunogenetic traits, when interacting with environmental factors, foster the formation and maintenance 
of a chronic inflammatory microenvironment. This microenvironment serves as a driving force for the 
generation of HBV mutations and the selection of hepatocytes following somatic mutations. Dysregulation 
of the balance between APOBEC3s and uracil DNA glycosylase (UNG) is a central driver of somatic 
mutations in both the HBV genome and host cell genomes. The functional polymorphic locus of the 
APOBEC3B promoter rs2267401 has been shown to promote the generation of high-risk HBV mutations. 
Alleles that enhance APOBEC3B expression interact with alleles that reduce UNG enhancer function, 
significantly contributing to the development and poor prognosis of HCC. “Yin” inflammatory molecules, 
such as IL-6 and other trans-activators, activate APOBEC3B expression and reduce UNG expression. This 
leads to a dysregulation of the APOBEC3B-UNG balance, promoting somatic mutations and HBV 
mutations. The tumor inflammatory-immune microenvironment effectively selects the mutated cells and 
mutated viruses, promoting the evolutionary process of HCC through a process termed “mutation-
selection-adaptation”[73]. We then depict a figure to show the current understanding of HBV-induced 
hepatocarcinogenesis [Figure 1]. The discovery of this mechanism further supports the theoretical basis of 
cancer evolution and development “Cancer Evo-Dev”. The imbalance of APOBEC3s-UNG plays a 
significant role not only in HBV carcinogenesis but also in other tumors, such as cholangiocarcinoma, 
gallbladder carcinoma, and renal cell carcinoma. The APOBEC3B promoter with rs2267401-G was found to 
be associated with a decreased risk of cholangiocarcinoma but associated with an increased risk of 
gallbladder cancer, possibly due to the high expression of the transcriptional repressor TFAP2A in 
cholangiocarcinoma. Tumor necrosis factor α (TNFα) increases the expression level of APOBEC3B by 
repressing TFAP2A. The genotype rs12157810-C at the APOBEC3A promoter was associated with a 
decreased risk of cholangiocarcinoma and gallbladder cancer, mainly due to the fact that TNFα increases the 
binding of the transcription factor Ets-1p68 to the APOBEC3A promoter carrying the rs12157810-C allele, 
promoting APOBEC3A overexpression. The mutagenicity of APOBEC3A is nearly 1,000-fold higher than 
that of APOBEC3B, and high expression of APOBEC3A leads to widespread breakage of host genomic DNA 
and induces apoptosis, thereby reducing cancer risk[74]. Similar findings have been reported in renal cell 
carcinoma[75]. Therefore, the APOBEC3A/APOBEC3B promoter allelic genotype might take part in 
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Figure 1. The mechanisms of HBV-induced hepatocarcinogenesis: the current understanding. The interplay between HBV infection, age, 
and genetic predisposition leads to chronic inflammation. Inflammatory mediators such as IL-6, STAT3, TNF-α, and NF-κB are activated 
in this process. These factors not only upregulate the expression of APOBEC but also downregulate the expression of the UNG, 
resulting in an APOBEC-UNG imbalance. This imbalance fosters both HBV mutation and somatic cell mutation. While most of the 
mutated HBV are eliminated by the immune system, a minority survives and integrates into the genome of these residual somatic cells. 
This integration triggers the activation of the EMT and oncogenic pathways, potentially leading to the development of HCC. Created 
with Biorender (https://www.biorender.com/) and Bioart (https://bioart.niaid.nih.gov/). HBV: Hepatitis B virus; HCC: hepatocellular 
carcinoma; IL-6: interleukin-6; STAT3: signal transducer and activator of transcription 3; TNF-α: tumor necrosis factor α; NF-κB: nuclear 
factor�kappa B; APOBEC: apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like; UNG: uracil-N-glycosylase; EMT: 
epithelial-mesenchymal transition.

regulating the direction of cancer evolution in inflammatory environments through interactions with 
specific transcription factors inherent to a given tissue type. To identify cancer-promoting pathways after 
somatic mutation, organoid technology was applied to analyze the mechanism by which the 
proinflammatory microenvironment selects the stem-like progenitors of HCC, ICC, and CHC. We found 
that the stemness characteristics of cancer cells in tumor tissues were positively associated with the success 
rate of organoid culture. These stemness characteristics not only determine the primary and sorafenib-
induced resistance of HCC but also play a central role in cancer recurrence and metastasis[76]. Histological 
techniques applied to analyze the expression profiles associated with malignant tumors, such as HCC and 
colorectal cancer, revealed that inflammation promotes the cancer stemness-related signaling pathway and 
tumor-specific protein expression regulation mechanism by modulating the driver mutations of 
APOBECs[77]. The abnormal regulation of these tumor growth genes is a target for cancer treatment.

In The Cancer Genome Atlas classification, HBV infection is significantly associated with Cluster 1, whereas 
HCV infection is significantly associated with Cluster 4[78]. In addition, other authors analyzed 
transcriptomic datasets composed of 99% HBV-related HCCs and showed that the molecular diversity of 
HBV-related HCCs spans from non-proliferative, well-differentiated tumors preserving a periportal or 
perivenous phenotype to poorly differentiated tumors enriched in metastasis signatures and stem cell 
markers[79].

ICC PATHOGENESIS
Many parts of the pathogenesis of ICC remain to be elucidated. Several meta-analyses have shown that HBV 

https://www.biorender.com/
https://bioart.niaid.nih.gov/
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and HCV infections significantly increase the risk of developing ICC[80-84]. For ICC, HBV may produce 
multiple inflammatory mediators through inflammation, including IL-6, TNF-α, cyclooxygenase-2, and 
Wnt. Furthermore, transforming growth factor β (TGF-β), vascular endothelial growth factor, hepatocyte 
growth factor, and several microRNAs were also found to be upregulated, creating an environment 
conducive to the generation of successive oncogene mutations and cell proliferation[85]. In addition to this, 
HBV may act as an oncogene to promote cancer development. Experiments in mice have shown that high 
expression of HBx protein may lead to the amplification of EpCAM(+) or OV6(+) tumor cells[86]. It has also 
been shown that amplification of the RNA editing enzyme ADAR1 induced increased expression and 
caused aberrant editing of the p.M8V locus of the KPC1 gene in ICC. This aberrant editing activates the NF-
κB signaling pathway, which in turn promotes the progression of ICC[87].

SCREENING AND DIAGNOSIS
To find PLC patients at the early stage, screening of PLC is an important public health action in the 
endemic areas. The cost-effective ratio should be considered for this action, even in the high-risk 
population. Specific techniques used for PLC screening can be categorized as invasive and non-invasive. 
Non-invasive means include simple technical scoring, imaging means [computed tomography (CT), 
magnetic resonance imaging (MRI), ultrasound (US), positron emission tomography-computed 
tomography (PET-CT), positron emission tomography - magnetic resonance imaging (PET-MRI)], and 
serum marker testing. US plus serum alpha-fetoprotein (AFP) is the most popular non-invasive protocol for 
HCC screening. The invasive screening means mainly refers to liver biopsy.

Screening
HCC screening is a long-term, cyclical and universal endeavor. Experts generally agree that early diagnosis 
is the key to successful treatment[88]. The selection of screening methods should take into account factors 
such as accuracy, operational difficulty, degree of impairment, and economic cost[89]. The monitoring of 
HCC can be divided into invasive and non-invasive methods. Invasive monitoring includes liver biopsy, 
which may lead to some complications and is also subject to potential bias due to variations in test samples 
and observer interpretation. Non-invasive methods encompass some simple counting methods [Fibrosis 4 
Index (FIB-4)and NAFLD Fibrosis Score (NFS)], US, MRI, serum biomarkers, and shear wave 
elastography[90,91]. Currently, abdominal US and serum AFP testing remain the primary routine screening 
methods because they are well-established, inexpensive, and easy to perform and administer in areas with 
varying medical conditions. US combined with AFP screening is significantly more sensitive than either test 
alone[92]. According to current guidelines[92-96], HCC surveillance using US with or without serum AFP levels 
should be considered every 6 months in patients with NASH-associated cirrhosis in high-risk groups such 
as those with hepatitis viral infections, chronic alcohol consumption, obesity, and diabetes. However, US 
visualization may be less sensitive for HCC[97-99], especially in patients with early tumors[98,100,101], ascites, 
cirrhosis, and obesity[97,102,103]. In 2022, the Korean Liver Cancer Association (KLCA) and NCC guidelines 
also recommend dynamic contrast-enhanced CT or dynamic contrast-enhanced MRI as an alternative 
screening tool if liver ultrasound is limited or not indicated[104]. The use of simple and easy-to-generate 
parameters, such as fibrosis scores, can help screen patients with advanced liver fibrosis or cirrhosis who are 
at increased risk of developing HCC[105]. Due to the low prevalence of ICC in the population as a whole, 
screening is not recommended by medical societies, given the cost-effective ratio[106,107].

Diagnosis
In 2023, experts from the Italian Association for the Study of the Liver (AISF), the Italian Association of 
Medical Oncology (AIOM), and the Italian Association of Hepatobiliary and Pancreatic Surgery (AICEP), 
among others, jointly recommended that the diagnosis and therapeutic evaluation of patients with HCC 
should be carried out by a team of professionals working in a multidisciplinary manner and not 
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independently by a single specialist[108]. Non-invasive imaging findings are the standard for the diagnosis of 
HCC in patients with cirrhosis, and the typical imaging features of arterial versus venous flushing have good 
specificity and acceptable sensitivity and are recommended by national guidelines (AASLD or APASL 
guidelines)[109]. Enhanced CT or MRI should be performed in patients with nodules (especially < 2 cm in 
long diameter) or unexplained elevated serum AFP[110]. For individuals with US nodules or/and elevated 
serum AFP who do not yet meet diagnostic criteria, enhanced screening is recommended every 2-3 months, 
primarily using abdominal CT or MRI and specific contrast agents[111]. For tumors of > 2 cm in diameter, 
there is no significant difference in the sensitivity between MRI and CT[112]. However, early HCC (single 
nodule < 2.0 cm in diameter) is detected more frequently with MRI combined with gadoxetic acid 
disodium, a liver-specific MRI contrast agent, than with enhanced CT[113]. For nodules with a diameter of 1-
2 cm, gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced MRI (EOB-MRI) and 
contrast-enhanced ultrasound (CEUS) have been included in China as screening tests for the diagnosis of 
nodes of undetermined size to improve the sensitivity for the diagnosis[114].

MRI provides more accurate and comprehensive information, which is better suited for early diagnosis. 
Biopsy should be performed to confirm the diagnosis of HCC as soon as atypical features of the liver lesion 
in terms of contrast uptake are observed[115]. Biopsy is the basis for the diagnosis of HCC[116], but biopsy may 
also produce a false-negative rate of about 30%[117].

Serum markers such as vitamin deficiency or antagonist II (PIVKA-II/DCP)-induced proteins can be used 
as complementary screening techniques. AFP-L3 is predominantly present in patients with HCC. The ratio 
of AFP-L3 to AFP eliminates the effects of other factors that contribute to the upregulation of AFP[118]. 
Gender, age, AFP-L3, AFP, and des-gamma-carboxy prothrombin (DCP) (GALAD) improve the sensitivity 
of early HCC detection, but increase false-positive results[119]. In addition, novel molecular markers such as 
the HBV mutations, circulating tumor DNA (ctDNA), tumor-associated methylation, circulating free DNA 
(cfDNA), and non-coding RNAs have been shown to have high accuracy in HCC screening[54,120,121]. ctDNA, 
in combination with TP53 mutation, RASSF1a methylation, and GSTP1, could be used as a potential non-
invasive screening method for HCC in patients with low AFP[122].

ICC is diagnosed primarily through imaging techniques. Multiple modality approaches, including CT, MRI, 
magnetic resonance cholangiopancreatography (MRCP), and PET, are often required to arrive at a final 
diagnosis and to screen patients for potential surgery[123]. US is usually the first test to detect ICC, which 
presents as a solid mass with variable echoes[124]. CT is considered the standard imaging method for 
preoperative evaluation. ICCs are usually of low density, have irregular borders and may be accompanied by 
peritoneal retraction. Contrast-enhanced scan is usually used to show ICC[125]. MRI is the most commonly 
used imaging method for periportal cholangiocarcinoma[123]. In some cases, the imaging features of ICC are 
similar to those of HCC and are, therefore, easily misdiagnosed[126]. Concurrent problems include the low 
diagnostic accuracy of current tumor markers, the difficulty in identifying benign and malignant biliary 
structures with imaging techniques, and confirmatory diagnostic modalities for invasive procedures[127]. 
Notably, the use of portal-phase flushing rather than conventional flushing in gadoxetic acid-enhanced MRI 
imaging may prevent the misdiagnosis of ICC as HCC in cirrhotic liver[128]. Deep migration learning models 
are considered the future direction for the diagnosis of lymph node metastasis, showing good predictive 
performance[129-131]. Lymph node metastasis may result in a significant increase in CD8+ T cell and NK-cell 
infiltration, reflecting an enhanced antitumor immune response, which might provide a direction for the 
prediction of lymph node metastasis of ICC[132].
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TREATMENT
According to the Barcelona Liver Cancer Clinic (BCLC) algorithm, patients with HCC are classified into 
five clinical stages: very early stage (BCLC 0), early stage (BCLC A), intermediate stage (BCLC B), advanced 
stage (BCLC C), and terminal stage (BCLC D)[133]. Currently, locoregional therapy (LRT) is used for early to 
intermediate HCC, while sorafenib is used for advanced HCC. Recognition of the limitations of these 
treatments and the potential to enhance their efficacy has driven the exploration of combinative therapeutic 
options, particularly combining LRT with systemic therapy[134].

Surgical treatment
Surgical resection is the treatment of choice for cirrhosis-free patients with early-stage HCC according to 
Barcelona Clinical Liver Cancer Staging (BCLC 0 or A)[12]. According to the BCLC staging guidelines, 
hepatectomy is indicated in patients with a single tumor diameter of ≤ 2 cm and a Child-Pugh classification 
of A[133]. Differences in patient conditions may lead to different postoperative outcomes, with a 5-year 
overall survival (OS) of ~ 70% and perioperative mortality of < 2% in patients selected by strict criteria[95,135]. 
When HCC is found to be unsuitable for resection during surgical exploration, hepatic artery and portal 
vein catheterization chemotherapy or other intraoperative locoregional treatments may be considered[136]. 
Surgical resection is usually considered curative for HCC, but HCC also recurs from time to time in patients 
with multinodular disease, microvascular infiltrates and/or poorly differentiated tumors (5-year incidence 
of 50%-70%)[137]. Furthermore, patients associated with MASLD may avoid surgical resection due to the 
increased risk of perioperative complications[41,138]. Nevertheless, a meta-analysis based on 7,226 patients has 
shown that OS appeared to be better in patients with MASLD-associated than in those with virus-associated 
HCC (HR: 0.80; 95%CI: 0.67-0.96; P = 0.017)[139]. However, at the time of diagnosis, less than 10% of patients 
are eligible for surgery for liver resection or transplantation. LRT, the precise manipulation of liver tumors 
through minimally invasive image guidance, has become an integral part of HCC treatment[140]. Minimally 
invasive liver resection (MILS) is emerging as an alternative to open hepatectomy, which not only reduces 
intraoperative bleeding and hospital stay, but also has similar prognostic outcomes[141]. Robotic Liver 
Resection (RLR) frees up manpower and promises to be a new surgical modality. However, the high cost 
may be an important reason why RLR has not been performed on a large scale[141]. From November 2018 to 
June 2021, surgeon Broering D and the bedside surgical team completed 356 robotic donor hepatectomies 
with no donor deaths, only two open conversions, and an overall complication rate of just under 6% for all 
donor types (no grade 3 or higher complications). Due to the special capabilities of articulated instruments 
and magnified 3D vision, as well as considerable ergonomic advantages, RLR overcomes the drawbacks of 
inflexible fixation of surgical instruments and large oscillations of the visual field leverage effect of 
conventional laparoscopic surgery (LLR). However, the high cost may be an important reason why RLR has 
not been performed on a large scale[141]. The recognized cure for ICC is still surgical excision, which is only 
possible in 20% of cases at the time of diagnosis[142]. The aim of surgical treatment is complete margin-
negative (R0) resection, and the functional residual capacity of the liver and the radical nature of the tumor, 
as well as the patient’s physical status, are determinants of surgical success[143]. ICC patients who undergo 
staged laparoscopy (SL) have better perioperative outcomes and longer OS than those who do not[144,145]. The 
therapeutic efficacy of lymph node dissection (LND) for ICC is controversial and remains to be proven. The 
impact of LND on ICC and its extent seems to be closely related to the specific location of the tumor. A 
multicenter analysis showed that in hilar lesions, more extensive lymph node removal of level 2 (retro-
pancreatic or common hepatic artery lymph nodes) could be recommended, whereas in peripheral lesions, 
LND might not be removed beyond the entrapment of level 1 (hepatoduodenal ligament lymph nodes)[146]. 
A multicenter cohort study involving 159 patients showed that LND did not significantly improve the 
prognosis of patients with clinically lymph node-negative ICC [median recurrence-free survival (12.0 
months vs. 10.0 months; P = 0.37) and median OS (22.0 months vs. 26.0 months; P = 0.47) in the LND vs. 
non-LND groups][147]. Interestingly, in a meta-analysis involving 4,407 patients, LND did not improve 
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prognosis in patients with ICC (HR: 1.05; 95%CI: 0.83-1.32). Meanwhile, LND was significantly associated 
with superior OS in low-risk group patients (HR: 0.76; 95%CI: 0.59-0.98)[148].

According to the Milan criteria, LT is usually indicated for a single tumor of ≤ 5 cm or 2-3 tumors of ≤ 3 cm 
without vascular infiltration[149]. According to the BCLC staging guidelines, early LT is usually considered 
the best treatment for patients with HCC when a single tumor has a diameter of ≤ 2 cm and a Child-Pugh 
grade of C. In addition, early LT is often considered the best treatment for patients with HCC. LT has a 
median OS of > 10 years and a recurrence rate of ~ 10% in patients selected according to strict criteria[150]. 
LT is considered superior to resection in terms of long-term outcomes (70% recurrence rate and 7%-15% 
survival at 10 years)[151]. Living donor liver transplantation (LDLT) is considered the optimal therapeutic 
option for patients with HBV-HCC due to its shorter waiting period, better quality of donor liver, and 
almost negligible cold ischemia time[152]. However, patients with HCC may have to wait longer for reasons 
such as organ shortages, which can lead to patients being pushed off waiting lists due to tumor progression, 
and the likelihood of cure by resection is similar to LT when the dropout rate reaches 20% and above[153,154]. 
There is not sufficient evidence to use LT as the absolute standard of care for ICC. However, LT has 
demonstrated positive therapeutic effects in carefully screened patient populations, and prospective studies 
combining systemic neoadjuvant chemotherapy (NAC) with localized therapies in conjunction with LT 
have revealed some encouraging long-term efficacy[155]. For unresectable perihilar cholangiocarcinoma 
(pCCA), adjuvant radiotherapy combined with LT offers a new idea of resolution, with the largest 
consecutive series published by the Mayo Clinic showing that 221 patients underwent LT between 1993 and 
2018, and that the 5-year OS of pCCA was 58%[156].

Adjuvant therapy
While waiting for LT, patients receive treatments known as bridging therapies to avoid HCC progression. 
Common bridging modalities include transarterial chemoembolization (TACE), ablation, and 
radiotherapy[14]. Bridging therapies significantly decrease the risk of HCC recurrence after liver 
transplantation[157,158]. Ablation is an adjuvant therapy that directly damages the tumor by chemical, thermal, 
or electrical means[159]. For patients with early-detected HCC (BCLC 0 or A) who are not candidates for 
surgery or transplantation, local ablation with radiofrequency ablation (RFA) or microwave (MWA) 
radiation is the standard of care, with selective transarterial radioembolization (TARE) or stereotactic 
radiotherapy (SBRT) as an alternative[103,121-123]. The AASLD and EASL guidelines have identified RFA as the 
primary first-line treatment for single tumors < 2 cm and as an alternative to surgery for early single tumors 
of 3-4 cm or for 2-3 tumors of < 3 cm[92,160]. For unresectable ICC measuring ≤ 3 cm without evidence of 
extrahepatic disease, the guidelines consider ablation as a palliative treatment option[106]. However, in 
patients with HCC tumors > 3 cm in diameter or serum AFP levels > 200 ng/ml, hepatectomy may perform 
better than RFA in terms of local disease control and long-term survival[161]. RFA results in a median OS of ~ 
60 months and a 5-year recurrence rate of 50%-70% in HCC[162,163]. Currently, RFA and MWA are well-
established thermal techniques, while other ablation techniques such as cryoablation (CRA), laser interstitial 
thermotherapy, and irreversible electroporation (IRE) are less commonly used[159]. TACE is the standard of 
care for intermediate-term HCC at Child-Pugh class B. In a prospective study of 175 patients with HCC, the 
mean time of chemoembolization was 58.1 min, and this duration was significantly correlated with the 
number of nodules[164]. TARE is a treatment technique that kills tumor cells by releasing radiation from 
microspheres with a radioactive substance, usually for intermediate-stage disease[165]. A meta-analysis 
demonstrated a median OS of 26-30 months for TACE, with no difference in OS between the two 
modalities[166]. An increasing number of patients with unresectable ICC are now being treated with TACE 
and TARE[167,168]. Drug-eluting bead transarterial chemoembolization (DEB-TACE) is an endovascular 
therapeutic technique specifically targeting unresectable HCC. This technique achieves effective control of 
drug release kinetics by encapsulating chemotherapeutic drugs within microspheres and releasing them 
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precisely in the lesion area[169]. The 2023 Korean Hepatocellular Carcinoma Association Expert Consensus 
states that DEB-TACE has less severe postembolization syndrome, shorter hospital stay, and similar survival 
compared to conventional TACE. However, DEB-TACE may not be indicated for HCC ≤ 3 cm[170]. In 
patients with locally advanced HCC or those who do not respond to TACE, hepatic arterial infusion 
chemotherapy (HAIC) with the FOLFOX regimen consisting of oxaliplatin, fluorouracil, and folinic acid or 
in combination with systemic therapy is recommended[171,172].

Adoption of adjunctive therapeutic techniques for postoperative ICC patients is thought to be beneficial to 
patient prognosis[147,173,174]. There is a cohort study showing that postoperative adjuvant therapy is associated 
with prolonged survival in patients with ICC, especially in the non-LND group (P = 0.02 for recurrence-free 
survival, P = 0.03 for OS)[147]. A meta-analysis involving 10,181 patients showed that chemotherapy 
significantly improves postoperative prognosis in ICC (HR: 0.57; 95%CI: 0.44-0.70)[173]. A study from the 
National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) involving 3,226 patients 
with lymph node-positive biliary tract cancers showed that the median survival time in the surgery-
combination-chemotherapy group was significantly longer than in the surgery-alone group (median 
survival time of 19 months vs.10 months, P < 0.01)[174].

Systemic therapy
Systemic therapy is divided into targeted therapy and immunotherapy. The approach is suitable for treating 
advanced and intermediate-stage HCC patients who are not eligible for local treatment[14]. Six systemic 
therapies have been approved (atilizumab plus bevacizumab, sorafenib, levatinib, regorafenib, cabozantinib 
and ramorubicin)[14]. In the absence of contraindications (e.g., bleeding risk), multiple authoritative 
guidelines recommend atezolizumab plus bevacizumab as a first-line therapeutic option for HCC[92,175-177]. In 
recent years, the combination of interventional and systemic therapy has become an important tool in the 
treatment of PLC[178,179].

There are two types of multi-targeted kinase inhibitors: one with anti-proliferative and anti-angiogenic 
properties through inhibition of receptors, such as platelet-derived growth factor receptor (PDGFR) and 
vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, and the other, monoclonal 
antibodies that inhibit VEGF/VEGFR pathway[180]. The former drugs include sorafenib, lenvatinib, 
cabozantinib, and regorafenib[181]. Sorafenib was the first adopted first-line treatment for patients with 
advanced HCC. Superior efficacy of sorafenib over placebo has been demonstrated in patients with 
advanced HCC (median OR: 10.7 months vs. 7.9 months; HR: 0.69; 95%CI: 0.55-0.87)[182]. Lenvatinib is an 
inhibitor of VEGF receptors 1-3, FGF receptors 1-4, PDGFRα, RET, and KIT. A randomized, non-
inferiority trial enrolling 1,492 patients has demonstrated that in untreated advanced HCC, lenvatinib is 
proven to be non-inferior to sorafenib in terms of OS (Median OS: 13.6 months vs. 12.3 months; risk ratio: 
0.92; 95%CI: 0.79-1.06). However, Lenvatinib adverse reactions are more frequent, mainly focusing on skin 
reactions, diarrhea, and hypertension[183]. In addition to these two drugs, first-line treatment options include 
the combination of Atezolizumab and Bevacizumab, which has been shown in phase 1b trials to have better 
OS outcomes and progression-free survival compared to sorafenib [OS: 67.2%; (95%CI: 61.3 to 73.1) for the 
former and 54.6%, (95%CI: 45.2 to 64.0) for the latter]. Second-line therapies mainly included regorafenib, 
Cabozantinib, and Ramucirumab[184-186]. Phase 3 clinical trial studies have shown that Regorafenib has the 
best median survival time (10.6 months), followed by Cabozantinib (10.2 months), and Ramucirumab was 
the worst (8.5 months); common adverse events mainly include hypertension and skin reactions. The most 
common immunotherapy is immune checkpoint inhibitors to enhance existing immune responses. The use 
of ICI is becoming increasingly common[187]. There are successful trials showing the ability of ICI to improve 
survival[188]. Drugs include PD-L1 antibodies (durvalumab, atezolizumab, and avelumab), anti-PD-1 
antibodies (nivolumab, pembrolizumab, and camrelizumab), and anti-CTLA-4 antibodies (ipilimumab and 



Page 15 of Feng et al. Hepatoma Res. 2025;11:5 https://dx.doi.org/10.20517/2394-5079.2024.132 26

tremelimumab)[180]. Nivolumab, a PD-1 inhibitor, is currently used as a second-line systemic therapy for 
patients with advanced HCC. Median OS was 16.4 months (95%CI: 13.9-18.4) in the nivolumab group and 
14.7 months (95%CI: 11.9-17.2) in the sorafenib group [risk ratio: 0.85; (95%CI: 0.72-1.02); P = 0.075]. 
Nivolumab is considered to have a better safety profile compared to sorafenib, although OS was not 
significantly improved[189].

The gemcitabine combined with cisplatin (GEMCIS) chemotherapy regimen has been selected for the first-
line treatment of ICC[190]. Mutation-based therapies offer promising prospects for personalized treatment. 
Representative drugs include those targeting fibroblast growth factor receptors (FGFRs), isocitrate 
dehydrogenase-1 (IDH1), human epidermal growth factor receptor-2 (HER2), and the B-Raf proto-
oncogene (BRAF)[191]. These drugs have positive therapeutic effects in ICC by specifically targeting genetic 
alterations[192]. ICC is associated with a rich and diverse TME[193,194]. TME may be associated with the 
generation of immune escape responses in CCA[195] and an important entry point for molecularly targeted 
therapies, immunotherapies, and combination therapies[196]. A growing body of research data support that 
various components of the tumor-responsive stroma (TRS) play a crucial role in the development of 
CCA[197,198]. Other studies have shown that regulation of PD-1 and PD-L1 is the key mechanism of immune 
escape in ICC[199].

PREVENTION
Antiviral therapy
Patients with active chronic hepatitis B, defined as HBV DNA greater than 2,000 IU/mL, alanine 
aminotransferase (ALT) above the upper limit of normal, or at least moderate hepatic necroinflammation or 
fibrosis, are candidates for treatment. In addition, candidates for treatment include patients with detectable 
HBV DNA, compensated or uncompensated cirrhosis, and a family history of HCC. Patients with 
extrahepatic manifestations are also candidates for treatment[200]. Those with serum HBeAg antibodies 
< 2,000 IU/mL, normal HBV DNA, and normal ALT are usually not candidates for treatment. However, 
they require lifelong follow-up due to the risk of reactivation and development of extrahepatic 
manifestations[201]. The cost of antiviral nucleotide analogs (NAs) has been reduced, especially in China, 
providing more HBV-infected individuals with the opportunity to receive anti-HBV treatment. Currently 
approved therapeutic agents include pegylated interferon (PEG-IFN) and NAs[202]. WHO recommends 
vaccination as a preventive measure against HBV infection[21].

HBV plays an important role in promoting hepatocarcinogenesis and unfavorable prognosis. We have 
demonstrated that the key mutations including C1673T, A1726C, A1727T, C1730G, C1766T, A1762T/
G1764A, T1768A, C1773T, and C1799G in HBV genotype C significantly increased the risk of cirrhosis, and 
that the major HBV mutant haplotype 1653C-1674G/C1753V-1762T/1764A was detected 6.28 times more 
frequently in HCC than in non-HCC HBV-infected patients, with high specificity and high frequency of 
detection, making it applicable to HCC prediction[54]. HBV genotype C, PreS2 promoter variants, C105T, 
T1753V, A1762T/G1764A, and other HBV variants were found to be independent risk factors for HCC[55-57]. 
Through a systematic analysis of HBV mutations with high specificity and detection rate in HCC, we have 
found that the frequencies of PreS deletion and the C1653T, T1753V, and A1762T/G1764A mutations 
gradually increase at each stage of “triology” of HBV-induced hepatocarcinogenesis. Upon HBV infection, 
A1762T/G1764A mutation appears earlier, while PreS deletion, C1653T and T1753V mutations appear 
later[59]. HCC-associated mutations in the HBV pre-S region and the core promoter/enhancer II region have 
been found to accumulate progressively during the progression of chronic HBV infection to HCC, and 
these mutations and their combination predict the development of HCC[58]. Our cohort study has 
demonstrated that these combined mutations predict HCC development 6 years earlier[60]. The application 
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of the combined detection technology of high-risk HBV mutations to monitor the occurrence of HCC in 
HBV-infected patients and to identify high-risk populations lays the foundation for the development of 
secondary prevention of HCC. HBV mutations are also predictive of HCC recurrence and poor prognosis. 
The presence of some HBV mutations such as A1762T/G1764A in serum not only predicts 
hepatocarcinogenesis, but also indicates the likelihood of HCC recurrence and metastasis, whereas HBV 
mutations in either cancerous or paracancerous tissues do not have such effects[61]. The G40C mutation in 
the pre-HBV S region also independently predicts a poor prognosis in HCC[62]. In this way, HBV evolution 
not only promotes HCC occurrence but also predicts a poor HCC prognosis, and thus serves as a marker 
for the prediction of HCC occurrence (diagnostic), prognosis (prognostic), and therapeutic efficacy 
(predictive), all of which play a guiding role in tertiary prevention of HBV-induced carcinogenesis.

Antiviral therapy for HCV includes Direct-Acting Antivirals (DAAs), PEG-IFN, NA, and ribavirin. The 
emergence of DAAs has led to an improvement in HCV antiviral therapy, with sustained viral response 
(SVR) rates of more than 90%[203]. Combination therapy is thought to have better efficacy. In a large cohort 
study of more than 3,000 first-treatment patients, IFN-ribavirin combined therapy was effective in reducing 
fibrosis and halting the progression of fibrosis in 92% of patients[204]. HCV mutations in the core genes 
including A028C, G209A, C219U/A, U264C, A271C/U, C378U/A, G435A/C, and G481A were significantly 
associated with an increased risk of HCC, whereas HCV U303C/A mutation was associated with a decreased 
risk of HCC[205]. There is a lack of studies on the association between characteristic HCV mutations and 
HCC. It remains to be explored whether the mechanism of HCV-HCC is similar to that described for HBV-
HCC by Cancer Evo-Dev theory. This could be a potential breakthrough for future HCV surveillance and 
prevention.

Lifestyle interventions
Physical activity has a clear protective effect against HCC. Exercise not only significantly prevents the 
development of cancer, but also has a clear protective effect on all types of cancer-related deaths[206]. Physical 
activity is effective in improving insulin tolerance, promoting hepatic fatty acid metabolism, and 
modulating inflammatory molecules, which in turn has significant benefits for liver health. A large body of 
evidence has suggested that physical activity has a clear inhibitory effect on the development of PLC, 
particularly HCC, reducing the overall incidence of PLC by more than 20%. Non-professional sports of 7.5-
15 h per week reduce the risk of PLC by 18%-27%, and moderate-intensity exercise reduces the risk of HCC 
by 23% and the risk of death from HCC by 19%[207]. Aggressive and effective clinical treatment combined 
with public health measures including aerobic exercise such as running and swimming is important for the 
tertiary prevention of HCC.

SPECIFIC PREVENTION AND TREATMENT FOR THE OCCURRENCE AND RECURRENCE 
OF HBV-HCC METASTASIS
Intrinsic factors resisting HCC recurrence and metastasis
From a study cohort of HBV-HCC patients with recurrence, tumor tissue samples were selected and 
subjected to high-throughput RNA sequencing, miRNA sequencing, and circRNA sequencing, resulting in 
the identification of 59,711 circRNA sequences, 55,752 of which were annotated in the CircAtlas database. 
The 3,959 novel circRNA sequences were analyzed using bioinformatics lineage enrichment analysis, 
identifying circRNAs significantly associated with recurrence and prognosis. Two of the most significant 
circRNAs, circKCNN2 and circGLS2, were experimentally validated. High expression of circKCNN2 in 
tumor tissues indicated a reduced risk of recurrence in patients. Ectopic expression of circKCNN2 in HCC 
cell lines significantly inhibited proliferation, migration, invasion, clonal formation, and in vivo tumorigenic 
capacity of HCC cells. The upstream transcriptional regulatory repressor nuclear factor Y α subunit (NFYA) 
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and downstream effector molecules miR-520c-3p, MBD2, and FGFR4 of circKCNN2 were identified, 
demonstrating that circKCNN2 upregulated MBD2 expression through the adsorption of miR-520c-3p to 
inhibit the malignant phenotype of HCC. Studies utilizing HCC cell lines and organoids revealed that short-
term overexpression of circKCNN2 produced a synergistic antitumor effect with Lenvatinib by inhibiting 
FGFR4[208,209]. This research offers a novel intervention for tertiary prevention, such as the recurrence of 
HBV-HCC.

Establishment of innovative technologies for tumor-specific gene therapy for HCC and other tumors
By leveraging the gene transcriptional regulatory sequences - promoters and enhancers - of HCC and liver 
tissue-specific molecules such as AFP and albumin, we have developed a cancer-specific gene therapy for 
the treatment of HCC. This approach has enabled recombinant retroviral vectors to express exogenous 
genes within HCC tissues, not in extrahepatic tissues. Notably, the expression of immune-regulatory factors 
in tumor tissues has significantly improved the tumor immune microenvironment, while avoiding damage 
to normal tissues, such as bone marrow. This strategy exerts potent antitumor effects[210,211]. This study 
introduces an effective and specific new measure for HCC-based cancer-specific prevention and treatment, 
representing a valuable attempt at targeted therapy for the microenvironment of HCC.

Establishment of a predictive index system and specific preventive measures for postoperative 
recurrence of HBV-HCC
In our established postoperative follow-up cohort study of post-HBV HCC, we identified independent risk 
factors for HCC postoperative recurrence and death. These include tumor diameter greater than 3 cm, 
incomplete tumor envelope, numerous satellite foci, microvascular infiltration, low tumor differentiation, 
advanced Barcelona staging, elevated gamma-glutamyl transpeptidase levels, and viral concentrations 
exceeding 104 copies/mL. Anti-HBV treatment emerged as the sole independent protective factor against 
HCC recurrence and death. A subsequent standard randomized controlled clinical trial, coupled with a 
multifactorial Cox proportional hazards model analysis, confirmed that standard antiviral therapy with NAs 
significantly reduced HBV-HCC postoperative recurrence [HR, 95%CI; 0.41, 0.32-0.70] and prolonged 
HCC-related death (0.26, 0.14-0.50). Importantly, antiviral therapy significantly reduced deaths within two 
years after HCC (0.41, 0.27-0.62) and significantly improved liver function in HBV-HCC patients at six 
months postoperatively (P < 0.0001), facilitating rapid recovery of postoperative residual liver size and 
function. Overall, specific antiviral therapy improved four-year postoperative survival by 82.3%. However, 
antiviral therapy did not exhibit these effects in patients with the integration of the X gene of 3’ truncated 
HBV (Ct-HBx) in the genome of the residual liver[212]. This finding has propelled postoperative antiviral 
therapy for HBV-HCC into clinical guidelines and raised a new question: the integration of Ct-HBx in the 
genome of the residual liver promotes recurrent metastasis, which can only be addressed by specifically 
splicing Ct-HBx in the genome of the residual liver in patients with Ct-HBx integration or by conducting 
specific gene therapy.

SUMMARY AND CONCLUSION
PLC as a global disease will likely continue to increase in number in the future, and although infectious 
factors are still the major risk factors, metabolic factors seem to be on the rise as the quality of life improves. 
China has the largest number of PLC cases, and HBV infection remains the major risk factor for HCC in the 
Chinese population. Cancer Evo-Dev has discovered the regulation of tumor suppressor genes, which 
provides new ideas for antitumor therapy. There is still a lack of studies on the relevance of HCV-
characteristic mutated genes for HCC, and whether Cancer Evo-Dev can be applied to HCV-HCC remains 
to be clarified. Since the prognosis of PLC is extremely poor, its early monitoring and primary prevention 
are especially important. Abdominal ultrasound and serum marker tests are usually used as early screening 
tools for PLC because of their maturity and cheapness. However, its sensitivity remains suboptimal, and 
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monitoring of relevant virus-specific genotypes in patients on combination antiviral therapy for infectious 
hepatitis may be an important preventive measure to achieve precise prevention and control of HBV/HCV-
HCC. Surgical resection and liver transplantation are often applied for early-stage PLC, while systemic 
drugs are often used for intermediate and late-stage PLC, and the combination of multiple methods is 
considered to be the main strategy to improve the survival rate and time of patients. Vaccination, adopting a 
good lifestyle (abstaining from smoking and alcohol, avoiding a sedentary lifestyle, and eating more fruits 
and vegetables), and increasing physical activity are effective in preventing PLC.
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