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Abstract
Autonomous navigation of unmanned aerial vehicles (UAVs) is widely used in building rescue systems. As the com-
plexity of the task increases, traditional methods based on environment models are hard to apply. In this paper, a
reinforcement learning (RL) algorithm is proposed to solve the UAV navigation problem. The UAV navigation task is
modeled as a Markov Decision Process (MDP) with parameterized actions. In addition, the sparse reward problem
is also taken into account. To address these issues, we develop the HER-MPDQN by combining Multi-Pass Deep
Q-Network (MP-DQN) and Hindsight Experience Replay (HER). Two UAV navigation simulation environments with
progressive difficulty are constructed to evaluate ourmethod. The results show that HER-MPDQNoutperforms other
baselines in relatively simple tasks. Especially for complex tasks involving relay operations, only our method can
achieve satisfactory performance.

Keywords: Deep reinforcement learning, parameterized action space, sparse reward

1. INTRODUCTION
In recent years, unmanned aerial vehicles (UAVs) have been widely used in emergency rescue fields within
the framework of Industry 4.0 [1–3]. The key technology behind these applications is UAV attitude control [4,5]

and autonomous navigation [6]. Traditional approaches to address navigation challenges using modeling tech-
niques [7–9] and simultaneously localization-and-mapping techniques [10–12]. While thesemethods have demon-
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strated satisfactory performance, they heavily rely on prior knowledge of the environment, limiting their ap-
plicability in complex and dynamic navigation scenarios.

Deep reinforcement learning (DRL) has developed rapidly and achieved remarkable success in recent years.
DRL aims at deriving a policy by maximizing a long-term cumulated reward of a Markov decision process
(MDP). MDP characterizes a process in which an agent at some state takes action, transits to another state,
and obtains rewards. For continuous decision problems, Silver 𝑒𝑡 𝑎𝑙. [13] develop a hybrid DRL system that
defeated a human world champion in Go. In robotics, DRL successfully solves optimal control problems [14,15].
For this reason, researchers turn their attention to reinforcement learning (RL)-based methods. For instance,
Yan 𝑒𝑡 𝑎𝑙. [16] propose an improved Q-learning algorithm to handle the path planning problem without prior
knowledge. However, it is difficult to deal with tasks in the real world because only discrete action sets are
considered. In contrast, Bouhamed 𝑒𝑡 𝑎𝑙. [17] propose a path planning framework for handling continuous
actions based on DRL.

Recent work on UAV navigation based on DRL has been successful, but there are still some potential issues
that have been overlooked. On the one hand, the behavior of UAVs is usually defined as single-type actions
in existing studies. However, UAVs often need both discrete decision-making and continuous control when
performing tasks. In [18], Masson 𝑒𝑡 𝑎𝑙. call the action space consisting of two control signals as parameterized
action space. Hausknecht and Stone [19] deal with this problem by relaxing the parameterized action space
into a continuous one. However, they do not exploit the structural information of this action space. For that
matter, Xiong 𝑒𝑡 𝑎𝑙. [20] propose Parametrized Deep Q-Networks (P-DQN), which can directly learn from
parameterized actions. Since P-DQN couples all continuous parameters to each discrete action, the prediction
of the Q network is influenced by unrelated parameters. In [21], Bester 𝑒𝑡 𝑎𝑙. develop the Multi-Pass Deep
Q-Network (MP-DQN) algorithm by changing the Q network architecture of P-DQN to eliminate this effect.

On the other hand, the studies above train agents with custom reward functions to speed up network con-
vergence [22,23]. However, overly complex reward signals may cause the agent to get stuck in local optima.
Moreover, it is hard to give correct rewards according to whether the UAV is moving away from the target due
to the presence of obstacles. This problem can be avoided by adopting more general sparse reward schemes.
While defining sparse reward is simple, the potential learning problem is much harder to solve (i.e., lack of in-
termediate rewards hinders the learning of agents). Numerous studies propose curiosity-based approaches to
encourage agents to explore previously rare states [24,25]. These methods introduce additional fitting models of
environmental dynamics to measure curiosity. However, the model will reduce efficiency when the dynamics
are unpredictable. Andrychowicz 𝑒𝑡 𝑎𝑙. [26] develop the Hindsight Experience Replay (HER) algorithm by in-
troducing the goal mechanism. The effectiveness of HER has been demonstrated inmany robotics applications
with sparse reward [27,28].

Parameterized action space and sparse reward inspire us to rethink new forms of RL problems. In this paper,
our contributions can be summarized as follows:

1) Wemodel UAV navigation as a parameterized actionMDP to better suit the task requirements. At the same
time, sparse rewards are considered to improve the generality of the algorithm in various tasks. To handle
these challenges, an off-policy algorithm called HER-MPDQN is developed by incorporating HER with
MP-DQN.

2) To address the issue of extended invalid experiences encountered in traditional methods, we propose a
goal-switching mechanism. This mechanism effectively reduces the invalid expansion for experience and
improves the rationality of the expansion experience.

3) We compare our algorithm with baselines in experiments with high randomness and varying difficulty.
Experimental results show that our method is capable of learning better policies in solving navigation tasks
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with sparse rewards. It can be successfully generalized to any position in space and significantly outperforms
existing RL algorithms.

The rest of this article is outlined below. PAMDP and the sparse reward problem are described in Section 2. In
Section 3, the navigation problem is modeled as a PAMDP and uses a sparse reward scheme. Our proposal to
address the problem is elaborated in Section 4. In Section 5, we compare HER-MPDQN with other baselines
in two UAV navigation simulation environments, followed by our discussion in Section 6 and conclusions in
Section 7.

2. BACKGROUND
In this section, we briefly introduce MDP and PAMDP, followed by the issue of sparse reward.

2.1. MDP and PAMDP
MDP is built based on a set of interactive objects, namely agents and environments. MDP consists of a state
space 𝑆, an action space 𝐴, a state transition probability distribution 𝑃(𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡), and a reward function
𝑅 : 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡). Where 𝑃 satisfies the Markov property, and 𝑅 represents the immediate reward 𝑟𝑡 obtained
by executing an action 𝑎𝑡 in a given state 𝑠𝑡 . RL, which learns the optimal policy based on trial and error,
provides a way to solve the MDP problem. The policies learned based on RL are divided into deterministic
policy and stochastic policy. For discrete action spaces, the deterministic policy is expressed as 𝑎𝑡 = 𝜋(𝑠𝑡),
which means that a certain action 𝑎𝑡 can be obtained for a given state 𝑠𝑡 . The stochastic policy is denoted
as 𝑎𝑡 ∼ 𝜇(·|𝑠𝑡), which means to select an action 𝑎𝑡 from the probability distribution after a given state 𝑠𝑡 .
If the action space is continuous, the corresponding policies above will be parameterized as functions 𝑎𝑡 =
𝜋(𝑠𝑡 , 𝜃) and 𝑎𝑡 ∼ 𝜇(·|𝑠𝑡 , 𝜃) , where 𝜃 refers to the parameters of the function. To uniform representation,
we all implicitly mean that policy 𝜋 (or 𝜇) is a function of 𝜃, and all the gradients are with respect to 𝜃 in
the following contexts. RL involves estimating state-value functions 𝑉 (𝑠) and action-value functions 𝑄(𝑠, 𝑎).
Taking deterministic policy as an example, the state-value function is defined as

𝑉𝜋 (𝑠𝑡) = E𝜋

[
𝑇∑
𝑚=0

𝛾𝑚𝑟 (𝑠𝑡+𝑚 , 𝑎𝑡+𝑚) |𝑠𝑡)
]
, (1)

where 𝛾 ∈ [0, 1] is a discount factor, and the action-value function is defined as

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) = E𝜋

[
𝑇∑
𝑚=0

𝛾𝑚𝑟 (𝑠𝑡+𝑚 , 𝑎𝑡+𝑚) |𝑠𝑡 , 𝑎𝑡)
]
. (2)

The agent learns an optimal policy by maximizing the expected discounted reward (target function) as follows

𝐽 (𝜋) = E𝜋

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡)
]
. (3)

If 𝜋 is a stochastic policy, the corresponding state-value function, action-value function, and target function
can be obtained by replacing 𝑎𝑡 = 𝜋(𝑠𝑡) by 𝑎𝑡 ∼ 𝜇(·|𝑠𝑡) in (1), (2), and (3).

PAMDP is an extension of MDP on the action space, allowing decision-making using parameterized actions.
Parameterized actions flexibly integrate discrete actions and continuous actions and provide richer expressive-
ness. In tasks such as UAV navigation, which demand precise parameter control, using parameterized actions
enables finer-grained control. Moreover, from an interpretability standpoint, the structural characteristics of
parameterized actions make the decision-making process of agents more understandable and explainable. The
action space of PAMDP can be expressed asH = {(𝑘, 𝑥𝑘 ) |𝑥𝑘 ∈ X𝑘 } 𝑓 𝑜𝑟 𝑎𝑙𝑙 𝑘 ∈ 𝐾 , where 𝑘 = {1, ..., 𝐾}. 𝐾
denotes the number of discrete actions. 𝑘 refers to a specific discrete action (e.g., 𝑘 = 1 means movement and
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Figure 1. The direct navigation task. The UAV only needs to fly
from the initial point to the target area.

Figure 2. The relay navigation task. The UAV needs to operate
on “catching supply” during the navigation process.

𝑘 = 2 means turning). 𝑥𝑘 represents the continuous parameter (e.g., acceleration or angle) associated with the
discrete action 𝑘 . X𝑘 is the set of all continuous parameters. In the PAMDP, the agent first selects a discrete
action 𝑘 , then obtains the corresponding 𝑥𝑘 from X according to 𝑘 , and finally executes the action (𝑘, 𝑥𝑘 ).
Therefore, PAMDP has subtle differences in the interaction process compared to standard MDP. Assuming
that at step 𝑡, PAMDP is in state 𝑠𝑡 , the agent executes an action by policy 𝜋: 𝑠𝑡 →

(
𝑘 𝑡 , 𝑥𝑘𝑡

)
and receives an

immediate reward 𝑟
(
𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡

)
and the next state 𝑠𝑡+1 ∼ 𝑃

(
𝑠𝑡+1 |𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡

)
. The target function of the agent

becomes as follows

𝐽 (𝜋) = E𝜋

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡 )
]
. (4)

2.2. Sparse reward problems
The sparse reward scheme is a reward mechanism that uses only binary values to indicate whether a task is
eventually completed. Specifically, the agent can get a positive reward when completing the task and a negative
reward during exploration. Although this mechanism reduces the effort required for human design, it brings
potential learning problems. The lack of effective rewards prevents the agent from judging the pros and cons of
its behavior and thus cannot optimize the policy 𝜋 correctly. Under the influence of the sparse reward problem,
the agent learns slowly or even fails to learn. Solving the harmful interference brought by the sparse reward
scheme is one of the focuses of this paper.

3. PROBLEM FORMULATION
In this section, a UAV navigation task from an initial to a target position is first formulated. The UAV will
learn a policy by mapping internal state information to action sequences. Then the PAMDPmodeling process
with sparse reward is described in detail.

3.1. UAV navigation tasks
In this paper, UAV navigation tasks are divided into the direct navigation task [Figure 1] and the relay navigation
task [Figure 2]. The distinction between these tasks lies in the presence of intermediate operations that the UAV
needs to perform. As a result, the flight requirements for UAVs in relay navigation tasks are more demanding.
Nevertheless, the simple task is also considered to verify the effectiveness and generality of the algorithm.

Typically, the position, direction, and motion of the UAV are determined by both the earth and the body coor-
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dinate frame. The earth coordinate frame is used to describe the position and direction of the UAV, denoted as
𝜙 = [𝑥, 𝑦, 𝑧, 𝜃𝑥 , 𝜃𝑦 , 𝜃𝑧]. The linear and angular velocities of the UAV are denoted as 𝜓 = [𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧, 𝜔𝑥 , 𝜔𝑦 , 𝜔𝑧]
in the body coordinate frame.

For simplicity, the UAV is assumed to fly at a fixed altitude, i.e., the motion of the UAV is constrained within
the x-y plane. Moreover, the steering action of the UAV takes effect immediately because the momentum is
ignored. As a result, the vector describing the motion information of the UAV is simplified to 𝜉 = [𝑥, 𝑦, 𝑣, 𝜃],
and the motion formula is expressed as follows

𝜃𝑡+1 = 𝜃𝑡 + Δ𝜃
𝑣𝑡+1 = 𝑣𝑡 + Δ𝑎

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 cos(𝜃𝑡+1)
𝑦𝑡+1 = 𝑦𝑡 + 𝑣𝑡+1 sin(𝜃𝑡+1)

(5)

where Δ𝜃 is the steering signal, Δ𝑎 is the acceleration signal, 𝑣 is the speed of the UAV, and 𝜃 is the direction
angle between the UAV and the target.

3.2. State representation specification
State representation is essential for the agent to perceive the surrounding environment and reach the target
position. In our setting, the state vector is reduced as much as possible to avoid interference from irrelevant
information and speed up training. Specifically, the observable information of the UAV has three sources. The
first is the internal state of UAVs, which is represented in terms of position [𝑥, 𝑦], velocity 𝑣, and direction 𝜃.
The second is the relationship between UAVs and the environment. Since obstacles are not considered, the
number of actions theUAVperforms is used to be the unique representation, which is recorded as 𝑛𝑠𝑡𝑒𝑝 . Taking
𝑛𝑠𝑡𝑒𝑝 as the state can encourage the UAV to complete the task with fewer steps. The last is the relationship
information between the UAV and the target. Also, to simplify the representation, the distance between the
UAV and the target is only used to describe this relationship, denoted as 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 . By combining the three kinds
of information, the final form of the state vector becomes: 𝑠 = [𝑥, 𝑦, 𝑣, 𝜃, 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑛𝑠𝑡𝑒𝑝]. For relay navigation
tasks, UAVs need additional information about supplies. The location information of the supply can be directly
obtained from the simulation environment. In this paper, the distance 𝑑𝑠𝑢𝑝𝑝𝑙𝑦 between the UAV and the supply
is included as one of the state representations to fulfill this requirement. As a result, the state vector in the relay
task is modified as follows: 𝑠 = [𝑥, 𝑦, 𝑣, 𝜃, 𝑑𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑑𝑠𝑢𝑝𝑝𝑙𝑦 , 𝑛𝑠𝑡𝑒𝑝].

3.3. Parameterized action design
Considering that the flight altitude of the UAV has been set as a constant above, its movement in the vertical
direction can be ignored. For the direct navigation task, the optional discrete actions of the UAV are defined
in the discrete set D = {𝑘1, 𝑘2}. Where 𝑘1 represents the “MOVE” behavior and 𝑘2 represents the “TURN”
behavior. In addition, the parameter set C = {(𝑐1), (𝑐2)} defines the continuous parameters corresponding to
each action in D, where 𝑐1 represents the acceleration value and 𝑐2 represents the rotation angle. When the
UAV acts, it not only needs to select the discrete action but also needs to determine the corresponding param-
eter values. To sum up, the parameterized action space of UAV is represented as H = {(𝑘1, (𝑐2)), (𝑘2, (𝑐2)}.
The value range of 𝑐1 and 𝑐2 are scaled to [−1 ∼ 1]. Since the UAV needs to perform intermediate operations
for the relay navigation task, a new discrete action 𝑘3 will be added to D to represent the “CATCH” behavior.
It should be pointed out that action 𝑘3 does not set continuous parameters. This is because we focus more on
learning the navigation policy rather than the specific control process. When the UAV gets close enough to
the supply, it performs the “CATCH” action, allowing the supply to move with itself. However, when the UAV
is far away from the supply, it will not affect the supply when it performs the “CATCH” action. In this case,
the UAV advances one step based on the current speed and angle. The primary goal of the UAV is to transport
the supply to the target area.
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3.4. Sparse reward function
Although sparse reward setting is simple and universal, different tasks need to set corresponding reward func-
tions, which will bring different degrees of sparsity. The direct navigation task aims to get the UAV to reach
the target area, which is a single-stage task with a relatively small reward sparsity. In the relay navigation task
that contains supplies, an effective reward can be obtained only when the UAV finds supplies and carries them
to the target area. This task includes relay operations which significantly increase the reward sparsity. Existing
baselines are not effective at handling the relay task. This phenomenon and the solution are described in detail
in Section 4.2. According to the above task requirements, the reward function of the direct navigation task is
defined as

𝑅 =

{
0, 𝑖 𝑓 𝑈𝐴𝑉 𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑟𝑒𝑎

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(6)

and the reward function of the relay navigation task is defined as

𝑅 =

{
0, 𝑖 𝑓 𝑠𝑢𝑝𝑝𝑙𝑦 𝑖𝑛 𝑡𝑎𝑟𝑔𝑒𝑡 𝑎𝑟𝑒𝑎

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .
(7)

4. DEEP REINFORCEMENT LEARNING AGENT
To solve the navigation task presented in Section 3, the MPDQN algorithm is considered first, which has been
proven effective in PAMDP. Besides, we introduce how to extend HER to solve the sparse reward problem in
the relay task, followed by the implementation and training process of HER-MPDQN.

4.1. Multi-Pass Deep Q-Network (MP-DQN)
MP-DQN is an off-policy RL algorithm that deals with parameterized action space. In MP-DQN, the goal of
the agent is to optimize the policy 𝜋 : 𝑆 → 𝐴, which maximizes the long-term cumulative discounted rewards:

𝑅𝑡 =
𝑇∑
𝑖=𝑡

𝛾𝑡−𝑖𝑟 (𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡 ). (8)

Due to the integration of DQN [29] and DDPG [30] algorithms, MP-DQN has a network architecture similar to
the Actor-Critic architecture. In specific, the MPDQN agent has an actor-parameter network 𝜋𝜃𝑥 (similar to
Actor) and a Q-value network 𝑄𝜃𝑄 (similar to Critic). Where 𝜃𝑥 and 𝜃𝑄 are parameters of the network. The
discrete action policy is implicitly learned when approximating the Q-value function.

For the actor-parameter network, the MP-DQN agent learns a deterministic mapping policy 𝜋𝜃𝑥 (𝑠) from state
to continuous parameters vector as follows

X𝑡𝑘 = 𝜋𝜃𝑥 (𝑠𝑡) (9)

where X𝑡𝑘 = [𝑥𝑡1, 𝑥
𝑡
2, ..., 𝑥

𝑡
𝐾 ] contains all continuous parameters corresponding to the discrete actions 𝑘 . In

order to decouple discrete actions and irrelevant continuous parameters, the X𝑡𝑘 becomes

X𝑡𝑘 =


𝑥𝑡1 0 · · · 0
0 𝑥𝑡2 0 0

0 0
. . . 0

0 · · · 0 𝑥𝑡𝐾


=


𝑥𝑡𝑒1

𝑥𝑡𝑒2
...

𝑥𝑡𝑒𝐾


Each rowof thematrix is fed into theQ-value network separately, thereby eliminating the influence of irrelevant
parameters on the estimation of the Q-value function.
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For the Q-value network, MP-DQN evaluates actions using an action-value function similar to DDPG. Since
MPDQN needs to optimize both discrete actions and continuous parameters, the Bellman equation becomes

𝑄𝜃𝑄 (𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡 ) = E
𝑟𝑡 ,𝑠𝑡+1

[
𝑟𝑡 + 𝛾 𝑚𝑎𝑥

𝑘∈[𝐾]
𝑠𝑢𝑝
𝑥𝑘∈X𝑘

𝑄𝜃𝑄 (𝑠𝑡+1, 𝑘, 𝑥𝑘 ) |𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡
]
, (10)

where 𝑘 𝑡 is the discrete action selected at time 𝑡, and 𝑥𝑘𝑡 is the associated continuous parameter. To avoid
taking supremum over continuous space X𝑘 , equation (10) is rewritten as:

𝑄𝜃𝑄 (𝑠𝑡 , 𝑘 𝑡 , 𝑥𝑘𝑡 ) = E
𝑟𝑡 ,𝑠𝑡+1

[
𝑟𝑡 + 𝛾 𝑚𝑎𝑥

𝑘∈[𝐾]
𝑄𝜃𝑄 (𝑠𝑡+1, 𝑘, 𝜋𝜃𝑥 (𝑠𝑡+1)) |𝑠𝑡

]
, (11)

where 𝜋𝜃𝑥 : 𝑆 → X𝑘 represents the mapping relationship in equation (9). This means that approximating the
Q-value function needs to fix 𝜃𝑄 first and find 𝜃𝑥 such that

𝑄𝜃𝑄 (𝑠, 𝑘, 𝜋𝜃𝑥 (𝑠)) ≈ 𝑠𝑢𝑝
𝑥𝑘∈X𝑘

𝑄𝜃𝑄 (𝑠, 𝑘, 𝑥𝑘 ) 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑘 ∈ [𝐾] (12)

Then, similar to DQN, 𝜃𝑄 is estimated by minimizing the mean-squared Bellman error. The loss function of
the Q-value network is:

L(𝜃𝑄) =
1
2
[
𝑦𝑡 −𝑄𝜃𝑄 (𝑠𝑡 , 𝑘 𝑡 , 𝜋𝜃𝑥 (𝑠𝑡))

]2
, (13)

where

𝑦𝑡 = 𝑟𝑡 + 𝛾 𝑚𝑎𝑥
𝑘∈[𝐾]

𝑄𝜃
′
𝑄
(𝑠𝑡+1, 𝑘, 𝜋𝜃′𝑥 (𝑠𝑡+1)). (14)

The loss of the actor-parameter network is given by the negative sum of Q-values as

J (𝜃𝑥) = −
𝐾∑
𝑘=1

𝑄𝜃𝑄 (𝑠𝑡 , 𝑘, 𝜋𝜃𝑥 (𝑠𝑡)). (15)

4.2. Hindsight experience replay
HER is another important baseline algorithm that we consider in our method. The core idea is to expand the
experience by constructing the goal variable as shown in Figure3 (a). There are two ways to construct the goal
variable:

1) Direct construction: The agent uses the target information feedback by the environment as the goal variable
at step 𝑡, which is recorded as 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 . Additionally, the location of itself at step 𝑡 is recorded as
𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 . In the relay navigation task, the traditional algorithm will always record the location of
the supply as 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 . In our method, the information represented by 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 changes
with the state of the agent; see the end of this section for the specific process.

2) Replacement construction: Through direct construction, an experience can be obtained at step 𝑡, simplified
as (𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙𝑡 , 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙𝑡). The HER algorithm will randomly sample 4 items from the experi-
ence obtained from step 𝑡 + 1 to step 𝑇 and then uses the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙 as the goal variable to replace the
𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙 in the experience at step 𝑡. 𝑇 is the maximum step that allows the agent to act in a single task.

The new goals constructed in the above way have the potential to be generalized to unseen real goals. Although
the agent fails to achieve a given goal in the current episode, it still learns action sequences that may achieve
different given goals in a future episode. Therefore, the original failure transition can be transformed into the
virtual success transition by selecting a new goal from the state experienced to replace the initial goal.

However, HER tends to be less efficient in some relay tasks. As shown in Figure 3 (b), the goal of the agent is to
deliver the block to the target area. It should be noted that the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙 (i.e., the location of the block)
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Figure 3. Illustration of positive reward sparsity for HER. (a) In the task that does not contain the manipulated object, achieved goal is
directly affected by the behavior of the agent and constantly changes in each rollout. In this case, HER can generate valuable learning
experiences. (b) For the task containing the manipulated object, achieved goal remains unchanged until the agent comes into contact with
the object. In this case, all the experience generated by HER includes positive rewards but has no substantial help to the learning of the
agent.

defined inHER has not changed when the agent is not in contact with the block. Any hindsight goal selected by
HER is labeled as a “success episode”. However, such a “successful episode” cannot bring meaningful guidance
to the agent. This, in part, leads to another kind of sparsity, positive reward sparsity.

To solve this problem, we propose the goal-switch mechanism (GSM). The principle of the GSM aims to
generate meaningful goal variables by dynamically assigning goals during experience expansion. In the relay
navigation task, the conventional HER approach always designates the target area as the 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙 and
the supply point as the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙. GSM assists the UAV in determining the goal based on the current
state: (1) Prior to acquiring the supply, the supply point is marked as the 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙, and the own posi-
tion of the UAV is labeled as the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙. (2) After acquiring the supply, the target area is marked as
the 𝑑𝑒𝑠𝑖𝑟𝑒𝑑_𝑔𝑜𝑎𝑙, while the supply point remains as the 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑_𝑔𝑜𝑎𝑙. By assigning different goals, GSM
enables the UAV to construct more effective goal variables and hindsight experiences, which helps mitigate
reward sparsity. This simple idea provides an effective solution and is proved in Section 5.

4.3. HER-MPDQN
MP-DQN samples a fixed batch from an offline experience reply buffer to update the network. HER expands
the original experience by goal replacement. On this basis, we further eliminate the hindsight experience
without guidance significance. This means that our proposal can be effectively integrated with MP-DQN. As
shown in Figure 4, the input vector of the neural network is extended inMP-DQN. In specific, the input vector
of the actor-parameter network becomes

𝑉𝜃𝑥 = (𝑠𝑡 , 𝑔𝑡). (16)

Correspondingly, the input vector of the Q-value network becomes

𝑉𝜃𝑄 = (𝑠𝑡 , 𝑔𝑡 , 𝑥𝑒𝑘𝑡 ). (17)
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Figure 4. The network architecture of HER-MPDQN. For the symbols in the figure, 𝑠 denotes the observed state, 𝑔 represents the goal of
the agent, 𝜃𝑥 and 𝜃𝑄 refer to network parameters, and (256, 128, 64) indicates the number of neurons in the network. 𝑥𝑘 is the continuous
parameter corresponding to the 𝑘th discrete action, where 𝑘 = 1, 2, ..., 𝐾 . 𝐾 is the total number of discrete actions. 𝑥𝑒𝑘 represents the
expanded continuous parameter vector derived from 𝑥𝑘 . 𝑄𝑘𝑘 denotes the Q value associated with the 𝑘th discrete action. The selection of
the discrete action 𝑘 is determined based on the largest Q value.

In our method, the original experience is stored together with the hindsight experience in the replay buffer. A
fixed batch of data is sampled from this buffer when the neural network needs to update. The training process
in Algorithm 1 is generally divided into three steps: (1)The agent interacts with the environment to accumulate
real experience; (2) Capture the original experience and hindsight experience of each time step and store all of
them in the replay buffer; (3) Update the parameters of the network according to the length of each episode.

5. RESULTS
To evaluate the effectiveness of HER-MPDQN, a UAV is fully trained and tested in two environments. A
relatively simple direct navigation environment and experimental results are first presented in 5.1. After that,
a more complex relay navigation task is considered. The related experiments and result analysis are in 5.2.

5.1. The direct navigation task
To our knowledge, open-source benchmark environments for UAVnavigation tasks with parameterized action
spaces and sparse rewards are currently lacking. Therefore, we simulate a large-scale environment inspired by
the existing simulation1. Figure 1 shows a top view of the navigation environment. The UAV can fly within
four square kilometers (2𝑘𝑚×2𝑘𝑚). The same settings for the environment randomness are used to have a fair
comparison. In each episode, the coordinate of the UAV and the target area are sampled from the uniform
distribution of the entire environment. The default initial velocity of the UAV is 0. The goal of the UAV is to
reach the target area in a limited number of steps. The optional actions are MOVE (acceleration) and TURN
(angle). MOVE indicates that the UAV moves along the current direction with the given acceleration. TURN
means that the UAV rotates at the given angle. The episode ends if the UAV reaches the target area (winning
state) or the time limit exceeds.

1https://github.com/thomashirtz/gym-hybrid.
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Algorithm 1: HER-MPDQN
Input: Minibatch size 𝐵, exploration parameter 𝜖 , soft update parameter 𝜏, learning rate 𝛼𝜃𝑄 and 𝛼𝜃𝑥 .
Initialize the weight of Q-value network and actor-parameter network.
Initialize target networks by hard update.
for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 0, ..., 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do

Select an initial state 𝑠0 and an initial goal 𝑔0
for 𝑡 = 0, ..., 𝑚𝑎𝑥_𝑠𝑡𝑒𝑝 do

Compute action parameters 𝑥𝑘𝑡 by 𝜋𝜃𝑥 :
𝑥𝑘𝑡 = 𝜋𝜃𝑥 (𝑠𝑡 | |𝑔𝑡)
Select action 𝑎𝑡 = (𝑘 𝑡 , 𝑥𝑘𝑡 ) by 𝜖-greedy policy
Recieve 𝑟𝑡 , 𝑠𝑡+1 and 𝑔𝑡+1 by excute action 𝑎𝑡

end
for 𝑡 = 0, ..., 𝑒𝑝𝑖𝑠𝑜𝑑𝑒_𝑙𝑒𝑛𝑔𝑡ℎ do

Store the transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑔𝑡) in 𝑅
Sample additional goals 𝐺 for current transition
for 𝑔′ ∈ 𝐺 do

𝑟′ := 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑔′)
Store the transition (𝑠𝑡 , 𝑎𝑡 , 𝑟′, 𝑠𝑡+1, 𝑔′) in 𝑅

end
end
for 𝑡 = 0, ..., 𝑒𝑝𝑖𝑠𝑜𝑑𝑒_𝑙𝑒𝑛𝑔𝑡ℎ ∗𝑈 do

Sample a minibatch from 𝑅

Compute the target 𝑦𝑖 according to (5)
Optimize parameters 𝜋𝜃𝑄 and 𝜋𝜃𝑥
Update the weights of target networks by:

𝜃
′
𝑄 ← 𝜏 ∗ 𝜃𝑄 + (1 − 𝜏) ∗ 𝜃

′
𝑄

𝜃
′
𝑥 ← 𝜏 ∗ 𝜃𝑥 + (1 − 𝜏) ∗ 𝜃

′
𝑥end

end

We chose Python 3.7 as our development language due to its simplicity, flexibility, and efficient development
capabilities. For algorithm development and testing, we utilize the OpenAI Gym library, which is an open-
source RL library that offers convenient tools for creating custom environments. In terms of hardware, we
employ anAMDRyzen 7 5800Hprocessor and 16GB of RAM.This configuration is relatively new and provides
sufficient computing resources to support the training and testing of the algorithms developed in this study.

In the context of sparse rewards, the agent ends the current episode either when the task completion or the
agent goes out of bounds which results in higher rewards. Therefore, relying solely on “episode rewards” is
inadequate to assess the learning effectiveness. To evaluate algorithm performance, we utilize the “success
rate” as a metric, which directly reflects the number of times the agent completes the task. Also, a higher
“success rate” implies a higher “reward”. The “success rate” is defined as follows:

SR =
𝐶𝑇

𝑇𝑇
(18)

where SR means “success rate”, 𝐶𝑇 is the number of times the agent completes the task, and 𝑇𝑇 is the number
of times the agent performs the task.

We evaluated the performance of HER-MPDQN in the above environment. Besides, we also implement and
test the following three baselines: HER-PDQN [31], MP-DQN, [21] and P-DQN [20]. Each algorithm uses the
same network with hidden layer sizes (128,64). The step size of each environment is limited to 100, the size of
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Figure 5. Comparisons of the results using HER-MPDQN and other baselines. The left figure shows the periodic calculation of the task
completion rate of the last 10 episodes, and the right figure shows the total success rate during the entire training process. The shaded area
is the variance in multiple experiments. Smaller shading indicates that the algorithm is less sensitive to random seeds.

Table 1. The average performance over 1000 episode evaluations

The direct navigation task
Success rate Mean reward

HER-MPDQN(our) 0.810 ± 0.030 -40.095 ± 4.861
HER-PDQN 0.725 ± 0.082 -43.141 ± 11.917
MP-DQN 0.412 ± 0.165 -70.504 ± 15.897
P-DQN 0.305 ± 0.102 -84.504 ± 13.125

the replay buffer 𝑅 is 50, 000, themini-batch size 𝐵 is 128, and the update frequency𝑈 of the network is 40. The
learning rate of theQ-value network 𝛼𝜃𝑄 and actor-parameter network 𝛼𝜃𝑥 is 10−2 and 10−3 respectively. Adam
optimizer with an exponential decay rate of (𝛽1 = 0.9, 𝛽2 = 0.999) is used for optimization. All algorithms
run seven independent experiments and train 2,000 episodes in each experiment.

Figure 5 provides the training process of the UAV in the direct navigation task. Table 1 shows the evaluation
performance for each algorithm in 1000 episodes. The results show that HER-MPDQN has a faster conver-
gence speed and higher average success rate. Compared to HER-PDQN, our method evaluates the Q-value
more accurately and updates the actor-parameter network without bias. At the same time, the agent learns
effective experience early by introducing HER, which brings stronger learning ability than the original MP-
DQN. Since P-DQN has no additional mechanism to eliminate the influence of irrelevant parameters and deal
with sparse rewards, its performance is not satisfactory. In addition, it can be seen that the learning curve
of HER-MPDQN has a smaller shaded area. This means that HER-MPDQN has better robustness in various
experiments.

5.2. The relay navigation task
Considering the need for UAVs to deliver supplies, a relay navigation environment is further simulated. Com-
pared with the previous environment setting, the following changes are made: (1) Add a supply point that
requires the UAV to perform relay operations. (2) Introduce a new discrete action CATCH to represent grab-
bing operations. As shown in Figure 2, the UAV must deliver supply to the target area in a limited number of
steps. CATCH is valid only when the UAV is in contact with the supply. Each episode ends when the supply
has been transported to the target area (winning state) or the time limit exceeds.

Due to the increased complexity, the hyperparameters for this task are tuned as follows. The hidden layer size
of all networks is set to (256, 128, 64). The size of the replay buffer 𝑅 is 150, 000. The update frequency 𝑈
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Figure 6. Comparisons of the results using HER-MPDQN and other baselines. The left figure shows the periodic calculation of the task
completion rate of the last 100 episodes; other descriptions for evaluating algorithm performance are the same as Figure 5.

Table 2. The average performance over 1000 episodes evaluations

The relay navigation task
Success rate Mean reward

HER-MPDQN(our) 0.885 ± 0.059 -57.758 ± 6.294
HER-PDQN 0.000 ± 0.000 -00.000 ± 0.000
MP-DQN 0.000 ± 0.000 -00.000 ± 0.000
P-DQN 0.000 ± 0.000 -00.000 ± 0.000

changes according to the episode length and is limited to [1∼10]. The learning rate of the Q-value network
𝛼𝜃𝑄 and actor-parameter network 𝛼𝜃𝑥 is 10−3 and 10−5, respectively. Each algorithm is trained with 30,000
episodes in each experiment.

Figure 6 shows the learning curve in the relay task. The evaluation results are given in Table2. It is obvious
that HER-MPDQN is far superior to the other algorithms. On the one hand, more sparse rewards make it
impossible for the UAV to complete tasks through random actions. Therefore, the MP-DQN and P-DQN
without HER are challenging to learn. On the other hand, although many positive experiences are generated
by introducing HER, they do not have guide significance. For this reason, HER-PDQN cannot learn policy
effectively. By treating the relay task as a continuous multi-stage task, the goal is automatically allocated by
HER-MPDQN according to the current state. Thus, the hindsight experience of different stages has the correct
guiding significance. Figure 7 shows the flight trajectories of the trained UAV when performing specific relay
navigation tasks. It can be seen that the UAV has learned the correct action policy. Not only that, HER-
MPDQN exhibits good scalability in our experiments. The multi-goal relay navigation task can be completed
by expanding the goal space. We leave this research for future work.

6. DISCUSSION
Existing baselines can learn effective policies in the direct navigation task but fail to handle the relay navigation
task. In contrast, HER-MPDQN achieves satisfactory results in both simple and complex tasks. This means
that HER-MPDQN is versatile in solving different types of navigation tasks. General-purpose agents are one
of the critical directions of DRL research, which can avoid repeated algorithm design. HER-MPDQN has ex-
cellent advantages in tasks that are difficult to design reward functions and require flexible rescue strategies.
However, the algorithm in environments with obstacles has yet to test, and the flying altitude of the UAV is
fixed. These limitations make the transfer of simulation to reality more difficult. Future research can con-
sider addressing the sparse reward problem in more realistic simulation conditions, which can narrow the gap
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Figure 7. Illustration of flight trajectory map of the trained UAV in the relay navigation task. The red arrow represents the current direction
of the UAV, and the red dotted line is the flight path.

between “sim-to-real”.

7. CONCLUSIONS
In this paper, the HER-MPDQN algorithm is developed to address UAV navigation tasks with parametrized
action space and sparse reward. In addition, a goal-switching method is proposed to correct meaningless
hindsight experiences in the relay navigation task. The experiments show that HER-MPDQN outperforms
baselines regarding training speed and converged value. Especially in the relay task, only the agent trained
by HER-MPDQN learns effectively due to reasonable experience expansion. Further research could consider
the energy consumption model of UAVs and test real UAVs in high-dimensional environments containing
obstacles.
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