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Cellular senescence, a hallmark of aging, is defined as a state of stress-induced proliferative arrest while 
maintaining viability and metabolic activity[1,2]. Senescence was first characterized in vitro by Leonard 
Hayflick in WI-38 lung fibroblasts after replicative exhaustion and critical telomere shortening[3]. 
Eventually, senescence was observed in multiple cell types including those of cardiovascular origin 
(cardiomyocytes, cardiac fibroblasts, endothelial cells, etc.), and in multiple contexts[4]. For example, acute 
senescence was found to be critical for embryogenesis, injury response, and wound healing[2], whereas 
chronic senescence, while initially tumor suppressive, appeared to be associated with a decline in tissue 
function and even tumor promotion in aging[5].

Acute cellular senescence plays an important physiological role in cardiac development and regeneration, 
while senescent cells accumulate in the heart with age, leading to an age-related decline in cardiac 
function[1,4]. Accordingly, recent studies have linked cellular senescence and the associated release of 
inflammatory components to cardiac pathologies. However, the exact role of senescent cells in these 
diseases is unclear, and in some cases, both adverse and beneficial effects have been reported. Therefore, a 
more complete understanding of cellular senescence promises new insights into disease pathophysiology 
and will provide new avenues for disease prevention and treatment.
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Regardless of the duration of senescence, its distinguishing molecular hallmarks are persistent DNA damage 
and profound remodeling of the epigenome and 3D genome that culminates in a distinct transcriptomic 
and proteomic profile[6]. For example, senescent cells express lysosomal beta-galactosidase activity 
(senescence-associated beta-gal activity or SA-βgal)[7], the cell cycle inhibitor CDKN2A/p16INK4A (hereon 
p16)[8], and secrete a cocktail of cytokines, chemokines, and matrix remodeling proteins (senescence-
associated secretory phenotype or SASP)[9]. SASP in the acute senescence context promotes immune 
clearance of damaged cells, but drives secondary senescence and loss of tissue homeostasis, repair, and 
regeneration when chronically present. Surprisingly, chronic SASP can also induce cancer stemness[10]. All-
in-all, SASP is the main culprit in aging and age-related disease, around which several therapeutic strategies 
called “senotherapies” have been designed.

Elimination of p16-positive senescent cells by a drug-inducible “suicide” gene was shown to improve health 
and lifespan in both progeroid and naturally aged mice[11,12]. Motivated by the mice studies, small molecule 
drugs called senolytics were designed and became the first class of drugs to target apoptotic elimination of 
senescent cells in humans[13]. Senescent cells heavily depend on anti-apoptotic, pro-survival defenses (called 
Senescent Cell Anti-Apoptotic Pathway or SCAP). siRNA-mediated knockdown of ~39 SCAP transcripts 
identified ephrins as key players in the pro-survival pathway. Based on these mechanistic studies, Dasatinib 
(D, a tyrosine kinase inhibitor) and Quercetin (Q, a natural flavonol) were identified as potent senolytics in 
part by the ability of Dasatinib to inhibit Ephrin B (EFNB)-dependent signaling and Quercetin’s ability to 
target phosphatidylinositol 3-kinase (PI3K) and other kinases, and serpines. Interestingly, D+Q showed 
strong synergistic effects and this combination, to date, remains a popular senolytic agent. In natural or 
premature aging mouse models, D+Q reduced senescent cell burden and improved cardiac function, carotid 
vascular reactivity, exercise capacity, and delayed osteoporosis, and loss of intervertebral disk proteoglycans 
after a single dose[14]. In contrast to senolytics, senomorphics (or senostats) do not ablate senescent cells but 
rather attenuate SASP and its deleterious effects. The first reported senomorphics were rapamycin, 
metformin, resveratrol, and aspirin[13].

The application of senotherapeutics in cardiovascular aging and disease depends on whether specific cell 
types display the classic senescence markers. Unlike fibroblasts, cardiomyocyte senescence is somewhat less 
well characterized, although several markers such as DNA damage, telomere damage/shortening, 
endoplasmic reticulum stress, mitochondria dysfunction and reactive oxygen species (ROS), contractile 
dysfunction, hypertrophic growth, and SASP depict senescence features[4]. What role cellular senescence of 
post-mitotic cardiomyocytes has in the pathogenesis of cardiac disease remains to be fully elucidated. 
Furthermore, cellular senescence in other cardiac cell types, including cardiac progenitor cells (CPCs), 
epithelial cells, and endothelial cells, and their role in heart disease are poorly defined. Likewise, the cell-
type-specific effect of senescence and the intercellular communication required to induce the deleterious 
effect are of considerable interest. In the case of vascular endothelial cells, for instance, senescent cells have 
been shown to inhibit angiogenesis, tissue repair and resilience[1,15,16].

In this issue of JCA, Sunderland et al. set forth to define the cell-type-specific roles of senescent cells by 
developing an in vitro trans-well assay[17]. The authors utilized senescent cardiac progenitor cells (CPCs) or 
HUVEC cells and evaluated the effect of senescent cells on normal iPSC-derived cardiomyocytes (iPSC-
CM) and or HUVEC endothelial cells. Several key findings were noted by the authors.

First, treatment of iPSC-CM with the senescent CPC cells resulted in decreased iPSC-CM survival and cell 
cycle markers. Additionally, elimination of senescent CPC by D+Q resulted in increased iPSC-CM survival 
and cell cycle activity, although treatment did not normalize them to wild-type levels. These findings are 
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intriguing in themselves and point to a paracrine signaling mechanism emanating from senescent cells. 
Indeed, using limited cytokine analysis, the authors identified half a dozen key SASPs induced in senescent 
CPC and reduced by D+Q treatment. While the exact mechanism of how these cytokines affect iPSC-CM 
survival or cell cycle activity remains unknown, the result nevertheless validates the detrimental effect of 
senescent cells on immature cardiomyocytes, such as iPSC-CM.

Second, the authors analyzed the effect of senescent HUVEC and CPC cells on proliferating endothelial cells 
(HUVEC cells). Endothelial cells are important mediators of tissue homeostasis and repair and involve 
proliferation, survival, and migration. Using the trans-well assay, the authors demonstrate that senescent 
cells, regardless of their origin, can reduce HUVEC cell migration and tube formation ability. However, the 
senescent CPCs have a more profound effect than senescent HUVEC cells on the cell migration and tube 
formation ability of proliferating HUVEC cells. Additionally, pre-treatment of the senescent cells with 
senolytic agent D+Q led to a reduction in cytokine levels and an increase in cell survival and migration on 
the trans-acting cells. It is interesting to note that treatment with senolytics has no effect on the proliferation 
of HUVEC cells; as a result, the true effect of this treatment on angiogenesis is yet unknown. Nevertheless, 
these in vitro findings suggest a salutary effect of senolytics on endothelial cell migration and thereby imply 
the ability of these cells to restore cell mobility essential for repair. Overall, the results of this study confirm 
previous observations and add to the growing literature suggesting the beneficial effect of senolytics on 
cardiovascular biology[4,18].

While the authors noted several limitations that are self-evident from the in vitro studies performed in this 
manuscript, the results also raise some interesting points that need to be addressed. The authors have 
developed an in vitro system to study the effect of senescent cells and thereby decipher cell-type-specific 
mechanisms. A comprehensive analysis and characterization of transcriptome and/or proteome of 
senescent cells and their normal receptive endothelial or cardiac myocytes is warranted to truly define the 
paracrine and cell-type specific effects. A more detailed analysis of the secretome will be required to identify 
novel cell-type specific factors that mediate the phenotypic effects. Furthermore, as demonstrated and stated 
by the authors, the senescent cells were unable to induce the senescence phenotype in the treated normal 
iPSC-CM or HUVEC cells. The lack of this phenotypic effect, as the authors point out, may be the 
limitation of the in vitro system or the choice of cell type. However, it will be interesting to see if this is also 
a unique feature of CM, which are inherently non-proliferative and therefore resist induction of senescence 
without endogenous insult. Finally, the role of DNA damage, a hallmark and sometimes the initiator of the 
senescent phenotype, was not addressed in this study, nor was the effect of D+Q on DNA damage response.

While the role and function of CPCs in cardiac homeostasis remain unclear, it will be interesting to identify 
immature cells within the myocardium, which are more amenable to induction of senescence. This will be 
of great importance in genetic cardiomyopathy, where the primary damage arises from a gene mutation 
early in life and continues through adulthood. For example, recent studies have shown that the deletion of 
Lmna gene in cardiac fibroblasts leading to dilated cardiomyopathy is associated with induction of cell 
death and cell senescence marked by induction of DNA damage, senescence-associated beta-galactosidase 
expression, and induction of SASPs[19]. The trans-well assay presented in this manuscript provides an 
opportunity to study the effect on fibroblast and other cells in these forms of Heart Failure.

While the role and existence of senescent cells are gradually being recognized, the cell-type-specific 
mechanisms have yet to be elucidated. Finally, to rule out the senescence-independent effect of D+Q, 
genetic studies with cell-type-specific gene knockout models are needed to consolidate these findings. We 
surmise that future research will be required to elucidate mechanistic details and develop a "one cell-type at 
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a time" targeting strategy in order to achieve the overall objective of rejuvenation.
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