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Abstract
With the explosive growth of research focused on building units and types of crystalline materials, disruptive 
changes in the physical and/or chemical properties of crystals have been discovered. As the most studied subclass 
of metal-organic frameworks, zeolitic imidazolate frameworks (ZIFs) have shown huge potential in a wide range of 
applications, such as gas separation, adsorption catalysis, and so on. Specifically, when formed with multivariate 
(MTV) linkers or multi-metallic ions, named MTV-ZIFs, they exhibit significant differences in their 
thermodynamics, kinetics and properties in applications. Unraveling MTV-ZIFs, ranging from their unique 
structures and sequences to performance and reaction mechanisms, is crucial to further advance and expand the 
ZIFs. In this review, we discuss the construction methodology and properties of MTV-ZIFs, classified by MTV 
organic linkers and nodes, and identify challenges and opportunities, particularly linked to the chemical synthesis 
corresponding to their new physical chemistry. Ultimately, we outline the future direction in designing and 
synthesizing MTV-ZIFs to further our understanding of these promising materials.
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INTRODUCTION
The field of reticular chemistry and materials has been of key interest for the past 30 years. Benefiting from 
the flexibility of their sub-nano pore structure and specific molecular engineering, these materials showed 
great promise in a wide range of applications in environmental protection[1-3], energy storage and 
conversion[4-6], catalysis and cells[7-9], sensing[10-12], biomedicine[13-15], chemical synthesis[16,17], and so on[18]. 
Moreover, the regulation of their topological design with the aid of chemical engineering has expanded 
physical chemistry and materials science into functional customization at molecular and atomic scales[19-21]. 
Recently, there has been a rapid development in reticular chemistry, especially for metal-organic 
frameworks (MOFs) and covalent organic frameworks. For example, complex chemical entanglements 
(molecular wearing) have achieved breakthroughs in the design principles of traditional molecular 
cages[22,23]. In addition, the emergence of glassy MOFs provided a new perspective for understanding the 
formation mechanism of vitrification, and a new platform for functional glasses[24]. Meanwhile, several 
scalable synthetic methods and practical applications have been implemented at pilot and even on a larger 
scale. In Oct 2023, BASF announced a 100 tons per year level mass production of MOFs for CO2 capture[25]. 
Additionally, since using MOFs for water harvesting in 2020[26], Yaghi et al. have now applied them in 
labs[27], deserts[28-31], and even when teaching in classrooms[32]. Reticular materials have begun to penetrate 
into every corner of our lives. They are gaining attention due to their tailor-made multifunctional properties 
and potential for widespread applications.

Among the various approaches to advancing reticular materials, diversifying their building units is one of 
the most inspiring, resulting in a new field, multivariate MOFs (MTV-MOFs). Recently, an Editorial article 
from Chemistry of Materials also identified this direction of MOFs[33], suggesting that future research will 
release more intrinsic or even produce new chemical properties of MOFs through MTV components. For 
carboxylate-based MOFs, there has been a lot of research on developing MTV-MOFs [Figure 1][34-37]. As a 
typical example, 1,4-benzenedicarboxylate can be modified by -NH2, -Br, -Cl, -NO2, or other functional 
groups at positions 2, 3, 5, and 6 on the benzene ring. Through the combination of these linkers, an 
optimized host-guest interaction, such as a 400% better selectivity for carbon dioxide compared to carbon 
monoxide, can be obtained [Figure 1A][35]. By utilizing MTV linkers, various structures, such as hierarchical 
pores[38], layered pores[39], mixed pores[40,41], and even innovative cage structures[42-44], have therefore been 
provided. Multi-metallic (secondary building unit) MTV-MOFs have been concerned as well 
[Figure 1B][45,46]. They can be obtained through the in-situ synthesis[47] or post-modification[48] method. The 
sequence of these metal ions can then be identified through energy-dispersive X-ray spectroscopy[49], 
integrated differential phase contrast-scanning transmission electron microscopy[50] or atom probe 
topography[51]. Finally, the differences in multi-metallic MTV-MOFs lead to the multifunctional properties 
inherent to their specific metal sequence[52-55].

Unsurprisingly, the above studies are mostly based on several classic carboxylate-based MOFs, such as 
MOF-5, MOF-808 and PCN-600. The linkers with terephthalic acid (MOF-5)[34] or tricarboxylic acid (MOF-
808)[56] as their backbone have abundant, scalable architecture to form MTV-MOFs, while porphyrin 
structures (PCN-600)[49] provide suitable anchors for metals. However, the linkers used in carboxylic MOFs 
have large steric hindrances in the chemical synthesis, making it difficult to obtain well-mix MTV-MOFs. 
The presence of functional groups will affect the steric configuration of linkers, i.e., the dihedral angle of 
non-coplanar binding groups and the angle of binding groups bent toward each other[57], which could lead 
to disordered structure. As a subclass of MOFs, zeolitic imidazolate frameworks (ZIFs, including zeolitic 
triazole framework, zeolitic tetrazole framework, and so on) have unique characteristics compared to other 
MOFs. On the one hand, due to the zeolite-like structure, they can form various topological cages with 
smaller chemical linkers [Figure 2]. On the other hand, its node is a single metal ion; thus, the consideration 
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Figure 1. MTV-MOFs with different (A) functional linkers and (B) secondary building units. MTV: Multivariate; MOFs: Metal-organic 
frameworks.

Figure 2. Diagram of MTV-ZIF. MTV: Multivariate; ZIF: zeolitic imidazolate framework.

of the variable of secondary building units becomes redundant [Figure 2][49]. Additionally, their chemical 
functions and pore size are strictly interdependent, which is different from carboxylate-based MOFs[58]. 
Therefore, ZIFs are the optimal choice for exploring the intrinsic properties of MTV-MOFs. As a typical 
example, the combination of boron and other metal nodes in ZIFs leads to a higher volumetric CO2 storage 
capacity of 81 L/L compared to their single metal counterparts. Other MTV-ZIFs were found to improve 
electrocatalysis, photocatalysis, photoluminescent and mechanxochromic properties[59]. Specifically, a 
Zeolite Lynde Type A (LTA) framework BIF-20 [Zn2(BH(mim)3)2(obb), obb = 4,4’-oxybis(benzoate)] 
exhibits a remarkable initial hydrogen uptake of 1.43 wt% at 77 K and 1 atm, which is higher than ZIF-20 
[Zn(Pur)2] with the same topology[60]. Many other reports have also confirmed that diversified ZIFs have 
optimized or even displayed completely new performance[61-66].

Herein, we present a timely review article to give a deep understanding of MTV reticular chemistry and 
previously yet probably ignored findings in the MTV-ZIFs. We approach its most recent advancement from 
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two main routes: MTV linkers and metal nodes. In addition to the structural design and synthesis strategy 
of MTV-ZIFs, physicochemical structure-activity relationships, and some research methods will also be 
proposed. Ultimately, future development directions for MTV-ZIFs or MTV-MOFs will be provided.

MTV LINKERS: UNIFICATION OF SIZE AND PROPERTIES
The organic linkers in MTV-ZIFs
Before introducing the construction from MTV linkers into ZIFs, we first recommend imidazolate (IM)/
imidazolate-type chemical linkers because they are the basic building units that have significant impacts on 
the structure of ZIFs[58]. So far, the most common linkers are IM, benzimidazolate (BIM) and their 
analogous derivatives, which contain possible chemical substituents on the position 2, 4, or 5 sites of IM (2, 
5, or 6 of BIM). They are also more controllable in synthesis due to the two active nitrogen atoms with 
adjacent chemical steric hindrance than other carboxylate linkers. Several studies have also used triazole or 
tetrazole to construct zeolite-like frameworks[67-69]. These linkers can serve as linkers for regulating host-
guest interaction in MTV-ZIFs[70]. Nonetheless, it faces complex challenges to avoid the reactions at each 
nitrogen position. Therefore, several non-zeolitic frameworks have been constructed using triazole, tetrazole 
and pentazole[67,71,72]. Undoubtedly, although they have innovatively expressed a new type of skeleton, indeed 
makes no sense to MTV-ZIFs due to the violation of the basic topological structure of zeolite (the bridging 
angle of linkers and nodes)[73]. These non-zeolitic frameworks and some zeolitic non-imidazolate 
frameworks, such as zeolite organic frameworks[74], will, therefore, not be considered herein. Based on such 
considerations, we summarized all linkers that have the potential to construct MTV-ZIFs in Table 1, 
excluding some complex linkers.

Control opening in cages
Using the above linkers, different MTV-ZIFs are built under the guidance of molecule engineering 
methodology. In 2008, Banerjee et al. first presented ten MTV-ZIFs among 25 new ZIFs prepared by high-
throughput synthesis under multi-component chemical conditions, including ZIF-60 [Zn(IM)1.5(2-mIM)0.5], 
ZIF-61 [Zn(IM)(2-mIM)], ZIF-62 [Zn(IM)1.75(BIM)0.25], ZIF-68 [Zn(BIM)(2-nIM)], ZIF-69 [Zn(5-cBIM)(2-
nIM)], ZIF-70 [Zn(IM)1.13(2-nIM)0.87], ZIF-73 [Zn(2-nIM)1.74(5,6-mBIM)0.26], ZIF-74 [Zn(2-nIM)(4,5-
mBIM)], ZIF-75 [Co(2-nIM)(4,5-mBIM)] and ZIF-76 [Zn(IM)(5-cBIM)][79]. Subsequently, the binary 
combination of the above linkers controls the topological structure of ZIFs, which has also been confirmed 
in two studies[86,105]. At the same time, some works reported that the different openings in cages could be 
controlled by the introduction of another linker, typically, i.e., replacing 2-mIM with BIM 
[Figure 3A][62,106,107]. However, constructing MTV-ZIFs remains unpredictable until a novel and rational 
principle is established to give design criteria for extra-large cages. In 2017, Yang et al. reported a direct 
synthesis of a large-sized ZIF with 46 Å {ZIF-412, [Zn(BIM)1.13(2-nIM)0.62(IM)0.25]}[58], demonstrating the 
functionality of MTV-ZIFs in synthesizing large cage or pore size in ZIFs. In brief, through the combination 
of the large ring formed by the large (steric index) linkers and the small ring by the small linkers, the much 
larger cages would be achieved in ZIFs[108]. Large linkers can provide a large steric index in chemical 
synthesis, while it is essential for constructing large cages with large rings [Figure 3B]. This also conforms to 
the principle of the relationship between vertices and cages[109]. However, to overcome the kinetics of the 
reaction, small linkers must be introduced based on the linkers with large steric index due to the rules of 
Euclidean space, as unprecedented ZIF-412 mixed IM, 2-nIM and BIM [Figure 3C]. MTV linkers are the 
key to exceeding the size of ZIFs. It will be more conducive to storing adsorbed gases or liquids, while 
breaking the adsorption restrictions on certain organic vapors[58,105,110]. As a demonstration of absorbing 
volatile organic compounds, the mesoporous ZIF-412 can uptake 3.4 mmol/cm3 p-xylene vapors at a partial 
pressure of 298 K and a low relative pressure (P/P0 = 0.1), which is higher than the commercial adsorbents 
and other ZIFs[58].
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Table 1. A summary of proper linkers for building MTV-ZIFs

Name Abbreviation Formula Ref.

Imidazolate IM [75]

2-methylimidazolate 2-mIM [75]

2-ethylimidazolate 2-eIM [76]

2-propylimidazolate 2-pIM [77]

2-chloroimidazolate 2-cIM [78]

2-bromoimidazolate 2-bIM [78]

2-nitroimidazolate 2-nIM [79]

2-mercaptoimidazolate 2-S=IM [80]

2-trifluoromethylimidazolate 2-CF3-IM [81]

2-phenylimidazolate 2-phIM [82]

4-bromoimidazolate 4-bIM [83]

4-nitroimidazolate 4-nIM [58]

4,5-dichloroimidazolate 4,5-cIM [79]

4-hydroxymethyl-5-methylimidazolate 4-hm-5-mIM [84]

Imidazolate-2-carboxaldehyde IM-2-OH [85]

Imidazolate-2-carboxyaldehyde IM-2-CHO [85]

4-methylimidazolate-5-carboxaldehyde 4-mIM-5-CHO [84]
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Imidazolate-4-carbonitrile IM-4-CN [86]

5-aminoimidazolate-4-carbonitrile 5-aIM-4-CN [84]

Benzimidazolate BIM [75]

2-methylbenzimidazolate 2-mBIM [87]

2-aminobenzimidazolate 2-aBIM [88]

2-thiolbenzimidazolate 2-SH-BIM [89]

2-mercaptobenzimidazolate 2-S=BIM [90]

2-phenylbenzimidazole 2-phBIM [91]

5-methylbenzimidazolate 5-mBIM [86]

5-chlorobenzimidazolate 5-cBIM [79]

5-bromobenzimidazolate 5-bBIM [58]

5-nitrobenzimidazolate 5-nBIM [86]

5-trifluorobenzimidazolate 5-CF3-BIM [92]

5,6-dimethylbenzimidazolate 5,6-mBIM [79]

1H-1,2,3-triazolate 1,2,3-TZ [67]

1,2,4-triazolate 1,2,4-TZ [93]

3-methyl-1,2,4-triazolate 3-m-1,2,4-TZ [94]

3-amino-1,2,4-triazolate 3-a-1,2,4-TZ [95]

3,5-dimethyl-1,2,4-triazolate 3,5-m-1,2,4-TZ [96]

3-amino-5-methyl-1,2,4-triazolate 3-a-5-m-1,2,4-TZ [97]
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Tetrazolate TZ [87]

5-methyltetrazolate 5-mTZ [77]

5-ethyltetrazolate 5-eTZ [98]

5-vinyltetrazolate 5-vTZ [98]

5-aminotetrazolate 5-aTZ [99]

5-phenyl-tetrazolate 5-phTZ [100]

5-(4-pyridyl)-1H-tetrazolate 5-(4-pd)TZ [101]

Pentazolate PZ [71]

Benzotriazolate BTZ [102]

5-methylbenzotriazole 5-mBTZ [103]

4-azabenzimidazolate 4-ABIM [104]

5-azabenzimidazolate 5-ABIM [104]

1H-Purine Pur [104]

MTV: Multivariate; ZIFs: zeolitic imidazolate frameworks.

Intensifying multifunctionality by MTV
Building MTV-ZIFs is also the best practice for constructing multifunctional ZIFs. For example, 
introducing 2-nIM or 2-pIM in ZIF-8 [Zn(2-mIM)2] can alter the physical and chemical properties on the 
surface and inside the pores. Many studies have demonstrated the role of functional groups in host-guest 
interaction[80,88,111-113]. Moreover, there are further reports on inspiring physical and chemical properties, 
inc luding  hydrostability[114,115], sur face  wettability[116], in ter fac ia l  compatibility[117] and  ca ta ly t ic  
performance[118]. Li et al. regulated the surface adhesion ranging from 3.62 to 15.15 nN by controlling the 
second linker in ZIF-L [Zn(2-mIM)2·(2-mIM)0.5·(H2O)1.5], including IM, 2-eIM, 2-bIM and BIM, achieving 
modulating superlubricity[119]. Another interesting example is about ZIF glass where many works have 
confirmed that MTV-ZIFs have unique amorphous properties owing to the disordered structure and multi-
components, compared to their crystalline partners[120-122]. We systematically studied influences of MTV 
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Figure 3. The principle to design and synthesize large cages in MTV-ZIFs. (A) Schematic diagram of linkers induced pore changes; (B) 
Linker-depended opening ring; (C) MTV towards extra-large cages. Take ZIF-412 as an example. N, blue; C, dark; O, red; and ZnN4 units, 
light blue tetrahedra. H atoms are omitted for clarity. MTV: Multivariate; ZIFs: zeolitic imidazolate frameworks.

linkers on the properties including porosity, glass transition temperature and mechanics of ZIF glasses by 
comparing ZIF-62 [Zn(IM)1.75(BIM)0.25] to ZIF-4 [Zn(IM)2][24]. Therefore, by combining the linkers in 
Table 1, it is possible to modulate the functions of ZIFs and apply them in various environments[123]. 
However, it should be noted that imidazolate-2-carboxylic acid with powerful host-guest interaction is hard 
to control as a linker due to the competitive reaction between carboxylic acids and IM[124]. Therefore, there 
are currently no substantial advancements in this powerful linker intensifying the function of ZIF. 
Therefore, we can conclude that designing and building MTV-ZIFs are able to customize more functional 
reticular materials.

The introduction of IM-type linkers in the latter half of Table 1 greatly alters the properties of the original 
ZIFs. The introduction of triazolates and tetrazolates supplies uncoordinated N sites in the frameworks, 
which enhance host-guest interactions[69] and mechanical properties[125]. Therefore, we can regulate the host-
guest interactions of ZIFs by adjusting the appropriate ratio of triazolates and tetrazolates salt. Li et al. 
reported the optimal activity by encapsulating Burkholderia cepacia lipase (BCL) within ZIFs built by 2-
mIM, 3-m-1,2,4-TZ and 5-mTZ. The optimizing results of asymmetric catalysis indicated that the best 
MTV-ZIF (with 23.5% 2-mIM and 76.5% 3-m-1,2,4-TZ) have a remarkable enantioselectivity of 4-phenyl-3-
buten-2-ol (99% enantiomeric excess). Interestingly, a component-adjustment-ternary plot has been drawn 
to explore the best performance of MTV-ZIFs[70]. However, the chemical synthesis of such MTV-ZIFs is 
facing certain challenges; typically, i.e., the nitrogen sites in MTV linkers arbitrarily react with the metal 
ions to form non-ZIF frameworks[71,126]. Although they (or the so-called metal azolate framework, MAF) 
have interesting structures with impressive performance, it is not conducive to the formation of MTV-ZIFs. 
Therefore, beyond reports providing examples of controllable synthesis of such MTV-ZIFs[94], we still need 
to ensure that the designed and synthesized MTV-ZIFs have accuracy, especially in controlling the 
thermodynamics and kinetics of chemical synthesis at these excess nitrogen sites.

Challenges and potential solutions in chemical synthesis
MTV-ZIFs offer unconventional apertures and customized functionality. However, achieving a harmonious 
equilibrium between the two linkers becomes arduous because the nature of the linkers dictates both 
functionality and the apertures. Another consideration is that most ZIFs have allotropes[127-129]. Therefore, 
customizing MTV-ZIFs is suffering from significant difficulties in chemical synthesis, such as in controlling 
the function and concurrently maintaining the cage structure, which remains a daunting chemical 
challenge. To address the above challenges, the first strategy is to utilize organic reactions to functionalize 
existing linkers (named linker functionalization strategy in Figure 4A)[85,130]. It is just suitable for several 
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Figure 4. Diagram of (A) linker function strategy, (B) opening the lock strategy, and (C) SALE strategy; (D) Topological structure 
changes with linker exchange. (A) Adapted with permission[85]. Copyright 2008, American Chemical Society; (B) Adapted with 
permission[135]. Copyright 2019, American Chemical Society; (C) Adapted with permission[138]. Copyright 2012, American Chemical 
Society; (D) Adapted with permission[139]. Copyright 2020, The Royal Society of Chemistry. SALE: Solvent-assisted linker exchange.

linkers such as IM-2-CHO, while the functionalized groups have a limit of steric hindrance in an original 
cage[85,131-134]. Another one is opening the lock strategy based on chemical confinement by controlling the size 
of the cage and considering the functional part [Figure 4B][135]. Specifically, it first used carbon chains to lock 
in two IM linkers without affecting the coordination of N, and then removed the carbon chain after forming 
MTV-ZIFs. This strategy can endow MTV-ZIFs with multiple channels and functional groups, while only a 
few linkers can be used to form carbon chains and unlock them.

Benefiting from the small ligands of ZIFs, the linker exchange strategy, especially the solvent-assisted linker 
exchange (SALE) strategy[136], is currently a worthwhile and potential approach to unified functionalities and 
aperture [Figure 4C]. Mixing the prepared ZIFs, typically, i.e., ZIF-8 and ZIF-67 [Co(2-mIM)2], with excess 
other linkers can achieve linker exchange under a certain condition[112,137]. The 2-mIM can be substituted 
with almost all IM-type linkers, including IM[138], 2-cIM[112], 2-bIM[112], 2-nIM[89], 2-pIM[89], 4-bIM[83], 4,5-
cIM[139], 4-mIM-5-CHO[140], 2-S=IM[80], BIM[141], 2-aBIM[89], 2-SH-BIM[89], 2-CF3-BIM[112], 5-cBIM[139], 5,6-
mBIM[114], 1,2,3-TZ[142], 3-a-1,2,4-TZ[130], BTZ[103], 5-mBTZ[103] and some special linkers[143,144]. Similar to 2-
mIM, 2-nIM can also be exchanged with some linkers[145]. However, a few of them can not ensure the 
formation of topological structure, causing changes in the aperture [Figure 4D]. This would make the 
chemical synthesis and structure uncontrollable towards MTV-ZIFs. It is relatively easy to maintain the 
topology of linkers with the same steric hindrance and chemical activity[138], as can be seen in several 
examples of substituted BIM[92,102]. Nevertheless, the SALE is encountering several problems, i.e., the 
difficulties in controlling the ratio of these MTV linkers and the lack of quantitative study describing the 
substitution kinetics in these SALEs. Only IM to 2-mIM[138], BIM to 2-mIM[141], and BTZ to BIM[102] are free 
to replace with the topology keeping. Moreover, it should be noted that the linker exchange in the center of 
the powder is hard to conduct. Marreiros et al. and Jiang et al. tried to use the vapor phase[146] and 
mechanochemistry[147] instead of the only solvent environment to solve this, respectively. However, the 
results still showed that characterizing and controlling the proportion of linkers in the core and shell of ZIF 
powder remained challenging. In brief, although there have been many attempts to replace various linkers 
in ZIFs, more explorations are still required in chemical synthesis and crystallography mechanisms. The 
above three methods are all post-synthetic modifications, while in-situ methods could be more effective 
although they suffer from a complex ionic solution environment. As artificial intelligence advances, it may 
help us develop a suitable in-situ synthesis scheme to prepare MTV-ZIFs.
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Figure 5. Diagram of the potential multifunctional catalysis through the binding energies of single phase, doped phase, multi-component 
phase and MTV-compound. MTV: Multivariate.

As a new frontier in MOFs, the control of multiple linkers poses a challenge to chemical synthesis. Although 
MTV-ZIFs are defined in material, their design, synthesis, and application are all based on reticular, 
coordination, and organic chemistry. With strong chemical guidance, we believe that we can obtain MTV-
ZIFs with any function and pore size in theory.

MTV METAL NODES: ORDER IN DISORDER
What would be brought by MTV metals
In many MTV materials, polymetallic structures represent multiple functionalities. As a typical example, 
high-entropy alloy nanoparticles exhibit continuous binding energies for the on-top binding of a reactant, 
which was never seen in single-phase materials [Figure 5][148]. As the simplest MTV material, high-entropy 
alloys made us re-examine the role of entropy brought by the MTV metals in affecting the thermodynamics 
and kinetics of materials, while bringing some unprecedented peculiar properties, including the 
compromise between strength and toughness that has been broken by high entropy alloys, as evidenced by 
many pieces of literature[149-151]. This forces us to re-emphasize the significance of MTV metal nodes in ZIFs. 
In an electrocatalytic reactant, whether the binding energies of these catalytic sites may be separated by the 
linkers, or may be consistent with those exhibited by high-entropy alloys. Moreover, as mentioned by 
Gagliardi and Yaghi, “What spatial arrangement is underlying this heterogeneity and could it be used to 
create new chemistry”[33]. We can expect the MTV reticular chemistry to be a new frontier in MOFs, 
especially in a mix-well MTV nodes system.

Substantial reports have asserted the importance of the MTV metal ions in ZIFs. Metals play a decisive role 
in the adsorption, storage, catalysis, and detection of the guests[45,46,152]. So far, both zinc(II) and Co(II) are 
the most frequent metal ions among all the nodes. These two elements can be mixed and formed into 
bimetallic ZIFs through various synthesis methods, such as room temperature stirring, which is different 
from other polymetallic ZIFs [Figure 6A][153]. In terms of other metals, however, there are thermodynamic 
limitations and kinetic hindrances inside the ZIFs. The atoms with strong coordination activity can be well 
mixed in ZIFs, while weak ones have a tolerant ratio in ZIFs and may even lead to the formation of other 
topologies [Figure 6B and C]. Our functional hybrid material lab (FHML) has previously analyzed the 
characteristics of CoZn-ZIF systematically[153]. It follows that the CoZn-ZIF shows a higher activity (57%) 
than the single metal ZIFs (40% for Zn and 50% for Co) in the cycloaddition of CO2 to epichlorohydrin at 
353 K and 1 atm for 24 h. Whether applied in adsorption or catalysis, bimetallics have superior performance 
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Figure 6. The schematic diagram of (A) well-mixed metals, including Zn(II), Co(II), Cd(II)[156], and Fe(II)[212] [Fe(II) is added with 
solvent-free method]; (B) secondary metals, including Mn(II)[213], Fe(II)[164], Fe(III)[214], Ni(II)[215], Cu(II)[215], B(III)[216] and so on [Fe(II) is 
added with room temperature stirring method]; (C) weak metals, including Ag(I)[165], Pt(II)/(IV)[217], Ce(III)/(IV)[166], and so on; (D) 
integrate compositional exchange of specific metals such as Mo[196], W[196], Pd[201] and Fe[66].

over unary metals as verified by many studies[154]. As a mechanism, the synergistic effect is often used to 
explain the superiority of bimetallics over single metals. Therefore, it comes to two questions: what is the 
highest point of synergy in MTV metal nodes, and what is the physical chemistry behind this effect?

Find “sweet spot” in MTV nodes
The ternary diagram has demonstrated the feasibility of searching for the sweet point of the ratio of azole-
linkers on the adsorption enzyme, which is probably extended to MTV nodes [Figure 7]. Hou et al. found 
that a good balance of the ratio of different nodes in CoZn-ZIFs leads to the optimized crystal structure and 
membrane separation performance[155]. Specifically, the trade-off at 18% of Co(II) enables MTV-ZIFs to 
separate C3H6 from C3H8 with a separation factor of 200. In addition to the relationship between crystalline 
structure and the ratio of metal nodes, there is also a balance between proportion and performance, or 
mixing degree[156-158]. In a nutshell, constructing this type of graph can quickly help researchers identify the 
sweet point toward the desired application.

New physical chemistry behind the MTV nodes
The different sizes and intrinsic properties in metal ions are the main factors affecting MTV ZIFs, and they 
will result in the entire framework not being a strictly ideal and defined structure. In topologically similar 
ZIFs, the second metal would contribute to the enthalpy of topological formation[159]. Specifically, a larger 
ionic radius leads to a tendency of the sodalite (SOD) rather than the diamondoid (dia) topology 
[Figure 8A]. Moreover, incorporation of metal nodes with higher electronegativity would increase the 
possibility of forming the dia-framework, as well as SOD. However, the effect of metal nodes on entropy 
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Figure 7. The ternary diagram assists in predicting the sweet points. The dark colors (red, yellow) indicate the better points, while light 
colors (green, blue) indicate the worse points. Adapted with permission[70]. Copyright 2021, American Chemical Society.

Figure 8. The schematic diagram of (A) the structural tendency of larger metal ions combined with 2-mIM and (B) a potential strategy 
for modulating pore structure by MTV-ZIFs. (A) Adapted with permission[159]. Copyright 2023, American Chemical Society. 2-mIM: 2-
methylimidazolate; MTV: Multivariate; ZIFs: zeolitic imidazolate frameworks.

was not considered here. It is obvious that the cooperation of larger ions will make the framework more 
stable due to the high-entropy effect, and at the same time, high entropy will cause the enthalpy difference 
between the two structures mentioned above to be ignored. Therefore, the structure disorder of ZIFs[160] will 
be optimized through MTV nodes, which would be completely inconsistent with other high-entropy 
materials[161]. For example, it is difficult to prepare large cage ZIFs with the MTV linkers, such as ZIF-412. 
By comparison, in order to get the complex reticular structure, it may be more favorable to introduce more 
metal ions especially the ones with larger radius. Merely, it should be noted that metals have an influence on 
the aperture. They will fine-tune the pore size within a very small range, which will be beneficial for our 
precise molecular separation or ion sieving [Figure 8B][162]. Back in terms of enthalpy, the synthesis of MTV 
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nodes brings about high mixing-enthalpy and mixing-entropy for largely improving kinetics. Therefore, it is 
difficult for scholars to generate MTV-ZIFs by simply multiplying the metal ions, which we would discuss 
in the next section.

Meanwhile, the chemical bonding character of metal and linkers can affect the properties of MTV-ZIFs, 
such as host-guest interaction. A previous theory calculation has proved that there is a stronger interaction 
between metal nodes of CdZn-ZIF and CO2 molecules[163]. Moreover, multiple metal ions in MTV-ZIFs may 
also bring stronger adsorption effects as confirmed by many works[154,164-169]. It seems that they get the same 
results as the experimental verification. Furthermore, certain unique properties of specific metal ions will 
significantly alter the overall ZIF properties. For example, introducing the redox-active Co, Cu or Fe could 
enhance the electrochemical and photochemical performance at varying degrees[170,171]. Merely, most of the 
research focused on these MTV-ZIFs tends to use them as an excellent template for generating powerful 
catalysts through high-temperature carbonization[172-175]. Although these works provided good ideas for the 
atomic design of catalysts, we should focus more on ZIFs themselves.

Challenges and strategies in chemical synthesis
In addition to overcoming the thermodynamic barriers of chemical reactions in traditional ZIFs, it is also 
necessary to overcome the mixed Gibbs energy in MTV-ZIFs. Therefore, only a few articles focus on the 
trimetallic ZIFs and beyond[176-178]. Xu et al. pioneered a mixture of the Ni(II), Cd(II), Co(II), Cu(II), and 
Zn(II) in high-entropy ZIFs by the mechanochemical synthesis[154]. In a mechanochemical synthesis, they 
used extremely low energy input to enable multiple metals to only form MTV-ZIFs without excess energy to 
assist in the diffusion and substitution of active-less metals by highly active metals. For those extreme MTV-
ZIFs, some limited approaches should be considered. We can learn, however, from high entropy alloys how 
to control atomic heat and mass transfer in environments where linkers are added. In addition to extremely 
low energy, fast-energy flashing (joule-heating[179] or laser-synthesis[180]) may also help form MTV-ZIFs. The 
high-temperature breakthrough in the thermodynamics of reactions, combined with limited reaction time, 
prevents atoms from aggregation, forming the metastable ZIFs[181]. These in-situ preparation strategies have 
extremely high requirements for the synthetic conditions. In comparison, there are some promising post-
synthetic modifications leading to more adjustable metallic ratios, such as cation exchange[182].

Though cation exchange is successful in many works, we must carefully consider the thermodynamic and 
dynamic activity of the reactions involved. For example, in terms of that Zn(II) was exchanged by Ag(I), 
some reports only show that surface Zn(II) has been exchanged[183] [Figure 9A], while there are also claims 
that controllable total exchange has been achieved[184] [Figure 9B], even that the replacement of Ag(I) could 
damage the structure of ZIFs[185] [Figure 9C]. On the other hand, as mentioned above, some metal 
complexes can cause structural changes in MTV-ZIFs[186] [Figure 9D]. Therefore, these are what we should 
examine and control strictly in post-synthetic modifications. In a nutshell, there were reports about ZIF-8/
ZIF-67 via cation exchange with Ti(IV)[187], Fe(II)[188], Ni(II)[189], Cu(II)[190], Mn(II)[83,191], Cd(II)[192], Sn(II)[193], 
Li(I)[194], Na(I)[194], or Ag(I)[184]. It is interesting to note that we seem to be able to achieve hyper MTV-ZIFs, 
which have specific metal sequences, through gradual permutation of cation exchange. We can draw 
conclusions from the calculation of ion reaction activity sequences and design some experiments[195]. 
However, it cannot be denied that the real environment differs greatly from the molecular reactions in the 
calculation. There is a lot of reaction competition among them, including metal ion–metal ion vs. metal ion–
linker, and molecule–metal vs. cage–metal.

The concept of exchange is not limited to cations; some works incorporate ion groups into ZIFs to achieve 
permutation [Figure 6D][196]. [MoO4]2- and [WO4]2- are currently the most reported and suitable molecules 
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Figure 9. The schematic diagram of (A) the surface cation exchange, (B) free cation exchange, and (C) destructive cation exchange with 
an example of Ag+ replacing Zn2+; The schematic diagram of (D) shows a new structure in MTV-ZIFs. (A) Adapted with permission[183]. 
Copyright 2020, The Royal Society of Chemistry; (B) Adapted with permission[184]. Copyright 2022, Elsevier; (C) Adapted with 
permission[185]. Copyright 2020, American Chemical Society; (D) Adapted with permission[186]. Copyright 2022, American Chemical 
Society. MTV: Multivariate; ZIFs: zeolitic imidazolate frameworks.

for substitution in ZIF-8[197,198]. However, these reports suggest that the addition of such molecules has 
brought greater uncontrollable topology disorder[199,200]. Moreover, it is difficult to find suitable molecules for 
doping in ZIFs. In addition to the two mentioned above, only [PdCl4]2- was previously considered[201] and an 
embedding of [Fe(CN)6]3- has also been reported[66]. This integration-doped idea can significantly regulate 
the pore structure of ZIFs. Furthermore, it can allow us to reconsider incorporating some low-activity 
cations as high-activity molecules into ZIFs. In short, regarding the synthesis of ZIFs with MTV nodes, the 
key lies in balancing the inherent differences between ions, that is, controlling the mass transfer and 
coordination of metal ions.

CONCLUSION AND OUTLOOK
Overall, the functions of MTV-ZIFs, including the challenges and strategies in chemical synthesis, as well as 
how to interpret these effects, have been exhibited above. We believe that both materials and chemistry are 
moving towards diversification. MTV-ZIFs will bring reform to MOFs even in the field of materials science. 
Clearly, we can customize the capabilities of ZIFs through MTV linkers and nodes. Finally, some matters 
based on and extending beyond the MTV building units are listed.

Based on the reported and mentioned works, MTV-ZIFs can break through their own structural and 
thermodynamic limits theoretically in two aspects: (1) For the invisible matter, there is “new chemistry” 
hidden behind MTV-ZIFs which is worth exploring[33]. The key here is to regulate the entropy and degrees 
of freedom in reticular materials. The series works by Andrew L. Goodwin, which focus on designing order 
in disorder, are inspiring and enlightening for the MTV-ZIFs[202-204]. By utilizing the unconventional degrees 
of freedom rather than the sequence of building units, we may detect unexcepted MTV-ZIFs. However, the 
invisible effects caused by the unique sequences and their corresponding interactions need advanced 
characterization methods to clarify the subtle molecular, atomic, and even electronic configuration 
differences[51,205]. Even the relationship between the structures and properties relative to their applications is 
achievable through detailed analysis; (2) For visible effects, we can construct MTV phase diagrams (such as 
Figure 5) to help understand their potential in applications and the trade-off between MTV components[155]. 
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Many related studies on MTV-ZIFs lack above-mentioned systematic work.

In addition, beyond the materials itself, the chemical synthesis in MTV-ZIFs should be focused on when we 
persistently pursue the performance. (1) How to precisely control the crystallization and internal structure 
of them is the primary focus of attention. As we mentioned before, a MTV-ZIF has been obtained through 
mechanochemical synthesis, resulting in a powder rather than a single crystal[154]. Although powder X-ray 
diffraction can also analyze the structure, it is impossible to have a clear and precise examination of the 
specific order and coordination structure. The hydrothermal method, however, is more suitable for growing 
MTV-ZIFs single crystal, despite being time-consuming[58]; (2) The green chemical synthesis is equally 
crucial. Using green solvents such as water or in solvent-free conditions is a precondition for future 
applications instead of using N,N-dimethylformamide or similar solvents[206]. For example, our FHML team 
has reported an in-situ thermal solvent-free synthesis to increase the yield of ZIFs to 95% and achieve linker 
recovery with one step of heating[207,208]; (3) Recently, MOF assistants based on artificial intelligence 
(ChatGPT) have been reported to guide not only the discovery and prediction of the synthesis of new 
MOF[209,210], but also the details of experiments such as the crystallization[211]. Undoubtedly, the artificial-
intelligent model trained by vast existing experiments will provide us with innovative ideas and solutions for 
the accurate, efficient, and green synthesis of MTV-ZIF.

As a new concept, although MTV-ZIF is full of unknowns and challenges, there are also opportunities and 
potential for new materials and chemistry. We hope that the theoretical discussions on the reticular 
chemistry of MTV-ZIF could provide inspiration for the future innovation of MOFs. We believe that a 
bright future for MTV-ZIFs and MTV materials will certainly be achieved by the continued exploration of 
the above challenge.
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