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INTRODUCTION

The success of repair after peripheral nerve injury 
depends on the type and the extension of the trauma. 
In the event of nerve compression or sheath loss, the 
structural elements in the nerve tissue are preserved, 

and injury recovery can occur without surgery. However, 
severe trauma can cause the complete disruption of the 
nerve (neurotmesis), resulting in the complete loss of 
continuity and function.[1]

The two segments generated after nerve transection 
retract, and edema occurs at the distal stump. The latter 
starts to swell and degenerates within hours in a process 
known as “Wallerian degeneration”.[2] The regeneration 
process takes place at the proximal stump, where the 
axon soma is still included, forming the growth cone that 
expands toward the distal stump to bridge the gap.

When nerves are severed, and denervation occurs, the 
longer the lag time reinnervation, the worse the functional 
recovery.[3] Long denervation time, as clinically seen in 
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brachial plexus injuries, causes complete atrophy of target 
tissues, followed by fibrosis and fragmentation of motor 
fibers.

The current “gold standard” in peripheral nerve surgeries 
is an autograft, which is defined as the interposition of 
autologous nerve segments (typically from the leg or the 
forearm). Despite the ideal core structure provided by 
the autologous tissue transferred, autografts allow only 
partial functional recovery, involve double surgery and 
cause donor tissue morbidity, calling for tissue engineered 
solutions to overcome these inconveniences.

A nerve guidance conduit (NGC) is a valid alternative to 
autograft, providing a confined environment for the entire 
regenerative process. NGC can be made of both natural 
and artificial materials. Its chemical and physical properties 
can be optimized to achieve the best performance in 
terms of tissue regeneration and inflammatory response, 
as illustrated by several reviews.[4‑6] However, despite the 
number of proposed engineered materials, the functional 
recovery after conduit repair of peripheral nerve injuries 
still fails where long (> 3 cm) gaps are created.

In the last decade, researchers have focused on different 
approaches to control and guide the regeneration of 
the injured tissue. The most promising options will be 
discussed below, including modification of the inner lumen 
architecture, transplantation of glial/stem cells (SCs), 
inclusion of extracellular matrix (ECM) components and 
neurotrophic factors [Figure 1].

INTRALUMINAL ARCHITECTURE

The importance of designing new NGC has been raised 
in the last decade. Topography of the inner lumen 
can dramatically affect the ability of both the nerve to 
regenerate across the gap and the endogenous cells to 
migrate and proliferate along the structure to modulate 
production and release of neurotrophic factors. Using 

features from micro‑ to nanoscale, several surface 
modifications have been performed in order to simulate 
the organized native structure of the neuronal tissue, 
including micro‑ or nanogrooves to direct SC and neurite 
alignments in a mechanism also known as “conduct 
guidance”, micro‑pits and pillars.[7,8] Microgrooves 
triggered SC alignment and migration along the pattern 
direction,[9‑11] simulating the organized structure of the 
glial cells when forming the bands of Büngner. Another 
technique commonly used to recreate longitudinal 
patterns in the conduit lumen is electrospinning, which 
allows the fabrication of micro‑ or nanofibrous conduits. 
Nerve conduits fabricated with electrospun aligned 
fibers influence cell migration and nerve fiber alignment 
after regeneration.[7] Aligned micro‑[12] and submicro‑[13] 
electrospun fibers were compared to a random fiber 
configuration in an in vivo study, with the oriented 
topography stimulating axon outgrowth and glial cell 
migration along the direction of the fibers. Moreover, 
variations in fiber diameter and distribution have been 
shown to affect both the permeability and the porosity of 
the neural tube, finally influencing cell response.[4]

A different approach to alter the architecture of nerve 
conduit guidance is to fill the empty tube with oriented 
intraluminal frameworks or filaments, characterized by 
a larger total surface area compared to a bare conduit. 
However, these fillers may hinder the regenerative process, 
and it is necessary to accurately control their “packing 
density” and distribution, which may have a large impact 
on the final ability of the nerve to regenerate.

Thin films of polyacrylonitrile‑co‑methyl acrylate composed 
of aligned fibers were inserted into the lumen of 
polysulfone conduits and compared to randomly aligned 
fibers and smooth films in a short‑term in vivo study using 
a rat model.[14] Nerve regeneration was accelerated in 
conduits containing the aligned fibrous film, resulting in 
higher levels of myelination and muscle reinnervation when 
compared to the other groups. This could be due to a 
high directionality and alignment of endogenous SC, which 
are involved in the formation of the new tissue and the 
myelination of the regenerated axons.

Microchannel elongating across the length of the tube 
is an alternative lumen modification to guide axonal 
growth in a confined environment. Agarose multi‑channel 
conduits were shown to allow axonal growth after injury, 
and vascularization occurred after 10 weeks in vivo.[15] 
In a recent study, a silicon‑based conduit containing 24 
micro‑fabricated parallel channels with a diameter of 
130 μm allowed the regeneration of the nerve across 
the injury gap in a rat model, resulting in 85% axon 
myelination.[16] It was demonstrated that innervation 
was unsuccessful at the external ring of the concentric 
microchannels while all the remaining channels were filled 
with neuronal tissue and blood vessels. When cells were 
preloaded in microchannel conduits, the internal guides 
also helped the seeding and increased the availability of 
the cells, with enhanced outcomes.[17] Interestingly, when 
similar multichannel structures were created with fibrin, 

Figure 1: Different tissue engineering approaches to improve nerve 
conduits for peripheral nerve regeneration. MSC: Mesenchymal 
adult stem cells, ASC: Adipose‑derived adult stem cells, LM: Laminin, 
FN: Fibronectin, ECM: Extra cellular matrix, NGF: Nerve growth 
factor, BDNF: Brain‑derived neurotrophic factor, NTs: Neurotrophins, 
GDNF: Glial‑derived neurotrophic factor, FGF: Fibroblast growth factor, 
NRG‑1: Neuregulin 1
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no differences in terms of regeneration between numbers 
and diameters of the channels were observed.[18]

In addition to providing a physical path for the regenerative 
process, microchannels also act as “axonal signal amplifiers” 
when applied in nerve stimulating‑recording devices. The 
electrical resistance of the intracellular medium is increased 
by the constricted environment, and the recorded signal 
of the extracellular potential is therefore amplified 
when specific electrodes are embedded in the structure, 
according to Fitzgerald et al.,[19] Microelectrodes arrays are 
in fact commonly used to record neural activity during the 
regeneration process at the injury site. New technological 
frontiers have allowed researchers to fabricate stretchable 
electrodes to better conform and deform along the tubular 
nerve conduit, responding more anatomically to the 
physical stress which conduits undergo in vivo and reducing 
the inflammatory response.[16,20]

INFLUENCE OF EXTRACELLULAR 
MATRIX MOLECULES AND FILLERS

Peripheral nerves have the potential to regenerate after 
injury, as opposed to the central nervous system. This 
is mainly attributed to the presence of SC basement 
membranes rich in ECM components, such as laminin (LM) 
and fibronectin (FN), which promote axonal regeneration 
in the peripheral nervous system. The ECM milieu of the 
regenerating nerve is not simply a passive scaffold for 
regrowth, as its molecules can synergistically signal with 
growth factors and growth cone molecules to influence 
regrowth.[21] LM, fibrin, FN and collagen are the main ECM 
proteins used as coatings for peripheral nerve repair. ECM 
molecules such as LM,[22] FN[23,24] and collagen[25] have been 
shown to enhance axonal regeneration when incorporated 
into nerve guidance channels.[26]

Alternatively, FN‑ and LM‑derived peptide moieties, such 
as RGD (Arg‑Gly‑Asp),[27,28] IKVAV (Ile‑Lys‑Val‑Ala‑Val),[29,30] 
and YIGSR (Tyr‑Ile‑Gly‑Ser‑Arg),[31] have been recognized to 
trigger specific interactions between neural cells and the 
accordingly modified substrate.

Different from coatings, ECM proteins have been used for 
the formation of gels or matrices as intraluminal fillers of 
NGCs, such as fibrin gels, shown interesting results in terms 
of regeneration.[32] However, this ECM protein maintains SC 
in a nonmyelinating state[33] and therefore, the degradation 
time of the gel should be optimized in order to trigger 
axon myelination in due time during regeneration.

Another composite hydrogel containing collagen and 
hyaluronan, with or without growth factors, was used in 
combination with poly(L‑lactide‑co‑caprolactone).[34] Both 
the compound muscle action potential and the muscle 
recovery were improved when compared to the empty 
control, while no differences were observed in presence 
or absence of nerve growth factor (NGF).

For a detailed review on the effect of ECM components 
on peripheral nerve regeneration, readers are advised to 
consult a recent publication.[35]

CELL TRANSPLANTATION

Cell‑based therapy is considered a valid approach to 
stimulate and enhance the regeneration of the injured 
nerve, overcoming the delayed recruitment and response 
of endogenous SC at the injury site, and therefore 
reducing their progressive atrophy in vivo. SC have 
been either injected at the injury site or preseeded in 
the nerve conduit,[36,37] with high rates of successful 
axon regeneration and myelination. In addition, various 
growth factors expression in SC can be induced as 
needed for the specific purpose. Prior studies have 
presented successful transfections of SC with either 
fibroblast growth factor (FGF)[38] or NGF,[39] both 
stimulating nerve repair in an injury rat model. Recently, 
SCs were transplanted ex vivo before implantation in 
order to investigate the impact of brain‑derived nerve 
factor (BDNF), ciliary neurotrophic factor (CNTF), and 
neurotrophin 3 (NT‑3) on nerve regeneration and 
recovery. The result was a significant improvement of 
axon outgrowth and myelination,[40] with cells remaining 
viable for up to 8 weeks in vivo. However, the harvest 
of autologous SC involves a significantly debilitating 
biopsy from the patient. In addition, SC adhesion and 
proliferation are considerably slower when compared 
to cells cultured in vitro (requiring for instance the 
precoating of each culture substrate), resulting in long 
culture time in order to achieve a suitable number for 
therapeutic uses.

Stem cells have become very attractive in tissue 
engineering and regenerative medicine due to their 
ability to self‑renew and differentiate into most cell 
phenotypes.[41] Mesenchymal SCs (MSCs) are derived 
from bone marrow stromal progenitors and have been 
demonstrated to be able to trans‑differentiate into 
several cell lineages, including osteoblasts, chondrocytes, 
endothelial cells, myocytes, neurons, and glial cells. 
In particular, when MSC are differentiated into SC‑like 
cells, they are able to express the characteristic glial 
markers and enhance peripheral nerve regeneration 
in vivo by improving myelination of axons and increasing 
regeneration distances.[42]

Undifferentiated MSC was preseeded in a chitosan 
conduit in an in vivo study for 6 weeks using a rat model, 
with successful regeneration similar to autografting.[17] 
In addition, these cells were used in a monkey model 
to repair a 50‑mm median nerve defect in a long‑term 
in vivo experiment.[43] Cells were injected directly after 
implantation at the proximal stump to overcome the 
deficit of local SC, resulting in enhanced regenerative 
properties compared to the nonseeded conduits. 
Similar outcomes comparable to autografts were then 
assessed in a dog model, bridging a 50‑mm sciatic 
nerve gap with successful muscle reinnervation.[44] Signs 
of local transdifferentiation into an SC‑like phenotype 
were observed after 8 weeks postimplantation by 
Oliveira et al.,[45] resulting in higher formation of 
myelinated and unmyelinated axons, as well as blood 
vessels, when compared to empty conduits.
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Alternatively, SCs can be isolated from white adipose tissue 
using liposuction to avoid invasive procedures.[46,47] Like 
MSC, adipose‑derived SCs (ASCs) are able to differentiate 
into a SC phenotype, and their characteristic elongated 
spindle‑shaped morphology has been confirmed 
through microscopy.[47‑49] Their ability to express specific 
glial‑markers, that is, S‑100, p75 and glial fibrillary acidic 
protein,[50,51] as well as the protein P0 responsible for 
the myelin formation,[51] has also been demonstrated. 
Finally, differentiated ASC (dASC) are able to express the 
neuronal‑associated protein nestin,[48,50,51] as well as the 
neuron‑specific enolase and the neuron‑specific protein.[48]

When undifferentiated ASC were preloaded in 
polycaprolactone conduits to investigate their effect 
on axonal outgrowth, it was observed that they were 
able to prevent neuron apoptosis by up‑regulating the 
expression of anti‑apoptotic BCL‑2 and down‑regulating 
the expression of caspase and BAX.[52] These results 
were comparable to N‑acetylcysteine treatments, which 
guarantee the preservation of cell signaling and survival 
as previously demonstrated.[53‑55] Both ASC and dASC 
have been frequently used for transplantation in NGC 
to repair injury gaps, although different and sometimes 
conflicting results have been observed due to the 
various experimental conditions.[56‑59] Signs of in vivo 
transdifferentiation of undifferentiated SCs into an SC‑like 
phenotype have been also observed, further stimulating 
interest in using ASC for peripheral nerve repair.[59] 
However, depending on the scaffold used, the viability of 
the preloaded cells can be strongly affected, reducing the 
initial beneficial effect of the cell therapy.[56] All of these 
results suggest the potential use of ASC (or dASC) in 
peripheral nerve repair, substituting SC.

The ultimate strategy in cell therapy is the formation of 
tissue engineered nerve grafts with the application of a 
intraluminal “cellular coating” composed of co‑cultured 
SC and dorsal root ganglia, which are able to release and 
up‑regulate the production of neurotrophic factors in the 
lumen over time. Long‑term results of up to 12 weeks 
have shown a significant ability to regenerate the nerve 
comparable to nerve grafts.[60] An even more advanced 
development would be the fabrication of scaffoldless 
neural conduits providing a confined environment without 
using polymeric structures, as proposed by Adams et al.,[61] 
In their study, their group attempted to construct a 
nerve guide using a monolayer of ASC differentiated into 
fibroblasts co‑cultured with neurospheres. This system 
supported the in vivo expression of growth factors, 
such as FGF, ascorbic acid, epidermal growth factor, and 
transforming growth factor (TGF)‑β1, which induced the 
transdifferentiation of the SCs into SC‑like cells.[61]

GROWTH FACTORS AND THEIR RELEASE 
IN NERVE GUIDANCE CONDUIT

Neurotrophic factors belong to the family of growth 
factors, and they are produced by SCs during Wallerian 
degeneration after injury.[62] Acting through their 
receptors, neurotrophic factors are involved in the 

neuronal activity, promoting nerve regeneration.[63,64] In 
addition, their expression is strictly dependent on time 
after axotomy, which biases the regenerative capacity of 
axons, as well as the supporting activity of SCs.[3]

Neurotrophins constitute one of the most important 
family of factors, including NGF, BDNF, NT‑3, and 
NT‑4/5.[65] After release, a density gradient of factors is 
formed around regenerating axons.[62] NGF is the one of 
the most important NTs involved in nerve regeneration 
and is up‑regulated rapidly in the distal stump after 
injury.[66] It is able to promote the survival and outgrowth 
of sensory neurons, although NGFs are not involved in 
the motor neuron response.[65] BDNF is up‑regulated in 
denervated SCs in order to allow myelination and nerve 
regeneration.[66] It is involved in the outgrowth of both 
sensory and motor neurons.[62,65] Finally, NT‑3 and NT‑4/5 
promote survival of both motor and sensory neurons.

Besides NTs, other neurotrophic factors are involved in 
the regenerative process of nerves. CNTF is a neurokine 
protein down‑regulated after injury,[65] implicated in motor 
neuron survival,[63] outgrowth and sprouting.[65] Moreover, 
glial cell line‑derived neurotrophic factor (GDNF),[64,66] 
FGF,[62,65] neuregulin‑1,[64,66] and leukemia inhibitory 
factor[63,64] also play an important role in peripheral 
nerve regeneration. Finally, TGF‑β is necessary for the 
nonmyelinating status of SCs during the proliferation 
process.[64] Nevertheless, all neurotrophic factors described 
above co‑operate in order to enable neuron survival and 
axonal outgrowth.[63]

Following injury, axotomy conditions and chronic 
denervation cause a reduced availability of neurotrophic 
factors and their supplement at the injury site is needed 
to stimulate and support regeneration.[3,67] As reviewed 
by Pfister et al.,[68] growth factors can be released 
into the lumen through different mechanisms of drug 
delivery from an empty conduit (i.e. dissolution in a 
solution, encapsulation in the conduit wall, diffusion 
through microspheres) or by use of an intraluminal filler 
(i.e. microfiber impregnation, binding and release in 
a matrix). However, results reported in the literature 
are sometimes contradictory, and optimization of their 
concentration and the release mechanism is, therefore, 
necessary. In addition, due to their low stability in 
solution, growth factors need to be protected when 
encapsulated or bond to a substrate in order to prevent 
their degradation and prolong their activity in situ. In fact, 
some ECM molecules can form specific bonds with growth 
factors, preserving their functionality. For example, it 
was found that binding to heparin or heparin sulfate can 
specifically stabilize FGF, GDNF, and NGF, which are then 
gradually released in the delivery system.[68] Furthermore, 
polymer coatings of the surface of the loaded biomaterial 
or microsphere with polylactide‑co‑glycolide[12,69‑71] can 
protect and gradually control the neurotrophic factor 
delivery over time.

Gordon’s group has extensively investigated the role of 
neurotrophic factors in nerve regeneration, particularly 
focusing on the effect of BDNF and GDNF in the system. 
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Neurotrophic factors were supplemented at the injury site 
using a mini‑osmotic pump and no effect was observed 
at low doses.[3] Conversely, very high concentrations 
of BDNF inhibited the axonal regeneration, with a 
mechanism that seemed to be dose‑dependent. In 
addition, a combination of BDNF and GDNF resulted in 
better nerve repair.[3] Madduri et al.[70,71] tested instead the 
efficiency of cross‑linked NGF and GDNF as single growth 
factors or in combination to repair peripheral nerve 
injuries, resulting in enhanced early regeneration after 
two weeks postimplantation and higher SC migration. 
Since neurotrophic factors are gradually released in the 
regenerative environment by cells as a response to the 
natural events occurring during Wallerian degeneration and 
axon regeneration and myelination, it may be beneficial 
to recreate a molecular gradient along the inner surface 
of the NGC, guaranteeing the necessary supply of factors 
to support the regeneration process. An in vitro study 
demonstrated that a patterned gradient of immobilized 
NGF on chitosan substrates would increase axon 
sprouting and branching in the direction of the gradient 
itself.[13] Tang et al.[72] were also able to control the gradient 
distribution of NGF along a poly(ε‑caprolactone)‑block‑p
oly(L‑lactic acid‑co‑ε‑caprolactone) conduit and observed 
a higher sciatic function index (SFI) when compared to 
uniform distribution of the neurotrophic factor.

The ECM‑matrix inclusion of growth factors that are 
gradually released in the inner lumen of the NGCs 
have also been considered to be a valuable alternative 
for the optimization of the bioengineered construct. 
A successful study was presented by Cao et al.,[73] during 
which collagen scaffolds were loaded with an LM filler 
containing CNTF, promoting high levels of myelination 
after twelve weeks postimplantation and enhancing both 
SFI and nerve conduction velocity.

Cell transduction can also be thought of as an alternative 
approach to release specific growth factors at the site 
of regeneration. Godinho et al.[40] implanted peripheral 
nerve grafts containing SC expressing BDNF, CTNF, and 
NT‑3, respectively, resulting in different outcomes as 
a function of the growth factor. Following accurate 
locomotor investigation by using the gait analysis system 
Catwalk®,[74‑76] they showed a significant improvement of 
functional recovery under CTNF and NT‑3 conditions while 
NT‑3 stimulated a higher degree of myelination.[40]

CONCLUSION AND FUTURE 
DIRECTIONS

Despite advancements in microsurgical techniques, 
nerve repair clinically provides suboptimal results, and 
autologous nerve grafts are the primary choice for nerve 
reconstruction, especially over long gaps. This opens 
the field for research and the development of tissue 
engineered nerve guides [Figure 1]. The transplant of 
regenerative cells into biodegradable conduits could be 
a clinical tool translating into improved regeneration. 
In our experience,[47,49,58] ASCs contribute to axonal 
regeneration and myelination with the improvement of 

functional outcomes in long‑term experiments. Given their 
abundance and plasticity, we personally consider these 
cells to be one of the main options in future nerve repair 
studies. In this review, we have attempted to present a 
complete tableau of the different components which 
we believe are relevant for successful regeneration. To 
perform at their best, transplanted cells need a favorable 
environment, with proper attachment to biomaterials and 
directionality driven through conduits. If present, the 
external delivery of growth factors should be controlled 
to avoid inhibitory effects on regeneration. This would 
support both transplanted and native Schwann cell 
performance, improving nerve regeneration. The stronger 
mechanical stability shown by cells seeded on an ECM 
such as FN and LM may be essential for cell migration and 
control of local signaling environment.[36] The influence 
of cell behavior on material coatings is an interesting 
question, as this effect is not dependent upon an 
external delivery source (as in the case of growth factors). 
Similarly, interactions between cells and biomaterials may 
influence cell performance and directionality, making it an 
interesting field for future research.
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