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Abstract
The occurrence of severe adverse events (SAEs) in patients with Duchenne muscular dystrophy (DMD), X-linked 
myotubular myopathy (XLMTM), and other neuromuscular diseases treated with adeno-associated virus (AAV) 
constructs has prompted studies to improve the safety and efficacy of gene therapy. Physicians have weighed the 
medical tenet of “first, do no harm” against the perspective of patients with progressive life-threatening conditions 
who may accept greater risk. Regarding SAE pathogenesis, discussion has focused on total AAV exposure and 
patient mutations more likely to induce immunity, while stressing the limitations of animal models in predicting 
adverse events. Therapeutic strategies for reducing side effects have employed more myotropic AAV serotypes 
and efficient transgenes. Other recommendations include excluding certain DMD gene mutations associated with 
SAEs and substituting less immunogenic transgenes such as utrophin (DMD) and myotubularin-related protein 
(XLMTM). For the sake of preclinical studies, emphasis has been placed on outbred rodents and larger animals that 
better predict immunity. Here, the absence of side effects in canine DMD and XLMTM models might be explained 
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partly by phenotypic differences between affected humans and dogs. Specifically, dystrophin- and myotubularin-
deficient dogs exhibit milder lesions, including less muscle fat deposition and the absence of hepatopathy, 
respectively, which could lead to reduced immune responses to AAV constructs. To better predict future problems, 
thought should be given to tracking early subclinical markers of the innate immune response, especially 
complement activation. Regardless of steps taken to improve the predictive value of animal models for SAEs, some 
questions will only be answered through human clinical trials after carefully considering the risk-benefit ratio.

Keywords: Duchenne muscular dystrophy, X-linked myotubular myopathy, animal models, severe adverse events 
(SAEs)

INTRODUCTION
The long-held promise of gene therapy to improve the lives of individuals with devastating diseases is finally 
being realized, with over 2,700 studies currently listed on the ClinicalTrials.gov website. This includes a 
variety of gene therapy products, like plasmid DNA, gene editing technology, viral vectors, and stem cells. 
Among viral vectors, adeno-associated viruses (AAVs), adenoviruses, and lentiviruses are used most, with 
AAVs predominating[1]. The original appeal of AAVs was based on their ability to achieve widespread gene 
transfer at clinically relevant doses in mice, dogs, and nonhuman primates (NHPs)[2]. However, severe 
adverse events (SAEs), not predicted by preclinical studies, have recently been seen in Duchenne muscular 
dystrophy (DMD) and X-linked myotubular myopathy (XLMTM) patients after AAV-transgene 
therapy[2-8]. Similar SAEs have been reported with AAV therapy in spinal muscular atrophy[5-9], as well as 
Pompe[5-9] and Danon[5] glycogen storage diseases. Taken together, this has raised questions about the ability 
of canine and other animal models to predict SAEs and suggests that alternative strategies may be needed.

HIPPOCRATIC OATH AND ETHICAL CONSIDERATIONS
The ethical standard “first (above all), do no harm,” from the Latin primum non nocere, has guided 
physicians in treating patients since antiquity[10,11]. Usually attributed to the Greek physician Hippocrates 
and associated with the Oath bearing his name, the phrase’s exact origins and meaning are controversial due 
to nuances of translation, shortcomings of historical accounts, and the changing moral values of 
society[12,13]. While the precise wording, “first, do no harm,” is not included in the original Hippocratic Oath, 
the phrase can be inferred from other wording and additional writings by Hippocrates and his students 
during this period[11].

Regardless of the exact phrase used and to whom the expression is attributed, a distinction must be made 
between the potential for side effects of any treatment and those caused by negligence (so-called injustice or 
non-maleficence)[11]. This is especially relevant with devastating diseases for which a higher risk-benefit ratio 
could logically be tolerated. In this context, the Oath is seen by some as paternalistic without sufficient 
regard given to the perspective and autonomy of patients and their parents[10,14]. Indeed, surveys show that 
Duchenne patients may be more willing to accept a higher risk of SAEs than their treating clinicians[6]. This 
is an example of “shared decision making” employed in cancer treatment[15], wherein patients accept greater 
risks while physicians focus more on the possibility of adverse events[16].

Finally, from an ethical standpoint, there are concerns regarding the limited access of older, non-
ambulatory DMD patients to any impactful treatment, especially gene therapy, despite potential benefits for 
upper limb and cardiopulmonary function[17,18]. This situation is troubling because both the relative risks 
and benefits of genetic treatments are typically worsened by advancing age. To ensure that the needs of 
these boys and young men with DMD are adequately addressed, it is essential to continuously update 
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outcome information for patients, families, and physicians. One approach could involve creating a database 
of anonymized patient ages, interventions, and outcomes, initially available to physicians at specialty centers 
of excellence, where the highest-risk, oldest patients are most likely to seek evaluation for treatment. Only 
with access to this granular information can physicians maintain the standard of primun non nocere in the 
era of extended indications for complex biologics to treat lethal diseases (see the FDA’s recent approval of 
Sarepta’s microdystrophin Elevidys for non-ambulatory patients below).

The experiences of all five authors have shaped this review. Stedman and Byrne addressed the ethical 
principles surrounding gene therapy in 2012, coinciding with the initial clinical trials of AAV-
microdystrophin constructs for DMD[19]. These ethical considerations are arguably even more relevant 
today. Back in 2012, the potential for destructive immune-mediated myositis induced by locally or 
regionally administered compounds was projected as an important ethical dilemma. To justify safely 
moving forward with further human trials, the article referenced the ability of dogs to predict immunity in 
other diseases, such as hemophilia, a field to which Dr. Stedman has made significant contributions[20]. 
Reflecting his own support for using dogs to test efficacy and predict immunogenicity in gene therapy, Dr. 
Byrne has worked to develop a canine model of Pompe disease[21]. In their 2012 article, they concluded, “A 
convincing demonstration of durable efficacy following vascular delivery in a canine model would be 
reassuring.

Ultimately, the Kornegay laboratory[22] and others[23,24] have achieved sustained microdystrophin expression 
without toxicity in dystrophic dogs treated systemically with AAV vectors carrying a canine transgene. 
However, DMD patients treated with the same construct containing a human transgene at comparable 
doses experienced SAEs (as discussed below). A similar scenario occurred in XLMTM preclinical studies 
conducted by Childers and his colleagues, where myotubularin (MTM1)-deficient dogs treated with an 
AAV construct expressing the canine MTM1 gene had remarkable improvement without toxicity[25], 
whereas some XLMTM patients developed fatal SAEs when the human transgene was used[26].

Dr. Michael Lawlor has assessed humans with DMD and XLMTM as well as genetically homologous animal 
models treated with AAV-transgenes[22,25-30]. He brings an essentially unique perspective on the phenotypic 
differences across these conditions, including the relative degrees of acute necrosis vs. chronic fibrosis and 
fatty deposition in DMD, as well as liver involvement in XLMTM. These microscopic changes, along with 
the variable underlying mutations, offer the most useful clues to explain SAEs seen in humans but not 
animal models[28,31].

SEVERE ADVERSE EVENTS (SAES) AND AAV-BASED CLINICAL TRIALS
Several recent reviews have described SAEs, including hepatotoxicity, thrombocytopenia, thrombotic 
microangiopathy (TMA), atypical hemolytic uremia syndrome (aHUS), myocarditis, and myositis,[2-7,26,31] 
linked to innate and adaptive immune responses as well as complement activation[32,33] in AAV-transgene 
clinical trials [Table 1]. The DMD trials used a miniaturized microdystrophin version of the DMD gene with 
portions of the rod domain removed to fit the limited AAV carrying capacity[3,5]. A full-length version of the 
MTM1 gene was used in the XLMTM trial[26]. Similar adverse effects have been characterized in patients 
receiving AAV-transgene products for other neuromuscular diseases such as spinal muscular atrophy[5-9] 
and Pompe[5-9] and Danon[5] glycogen storage diseases. Less frequent systemic or ocular SAEs have been 
observed in hemophilia[7,34], lysosomal storage diseases (LSDs)[3], and degenerative retinal disorders[35], for 
which canine models have been used to demonstrate treatment efficacy and side effects[20,36-44].
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Table 1. Adverse events in AAV-based neuromuscular disease clinical trials*

Disease Company 
(product/transgene)

AAV 
serotype

Highest 
AAV dose 
(vg/kg)

Adverse events *Additional 
references

DMD Sarepta (elandistrogene 
moxeparvovec) 

AAVrh74 1.33E14 Vomiting, liver injury with increased 
transaminases, rhabdomyolysis, myositis, 
myocarditis

Mendell et al., 
2023[176]

DMD Solid Biosciences (SGT-101) AAV9 2E14 Thrombocytopenia, renal damage, 
cardiopulmonary insufficiency, myocarditis

Dreghici et al., 
2024[177]

DMD Pfizer (fordadistrogene 
movaparvovec)

AAV9 2E14 Thrombocytopenia, aHUS/thrombotic 
microangiopathy, myocarditis

Pfizer press release, 
2024[178]

XLMTM Astellas (resamirigene 
bilparvovec)

AAV8 3.5E14 Hepatic toxicity with hyperbilirubinemia, sepsis Shieh et al., 2023[26]

SMA Novartis (onasemnogene 
abeparvovec)

AAV9 1.1E14 Fever, malaise, vomiting, acute liver failure, 
thrombocytopenia

Chand et al., 2021[9]

*Data from Lek et al. (2022)[4] and Servais et al. (2023)[6]. DMD: Duchenne muscular dystrophy; XLMTM: X-linked myotubular myopathy; SMA: 
spinal muscular atrophy; aHUS: atypical hemolytic uremic syndrome; AAV: adeno-associated virus.

Cellular and humoral immunity to either the AAV vector or transgene product act together to induce these 
side effects[45] [Figure 1]. A range of risk factors could be involved, including the antigenicity of AAV capsid 
proteins and other construct components, the patient’s genetic mutation, prior exposure to AAV and 
overall immune status, and product impurities resulting from the AAV manufacturing process[46]. Perhaps 
most importantly, the incidence of side effects has tended to correlate directly with AAV vector genome 
(vg) dose. Treatment effect has generally required dosing at 1-3E14[47], while toxicities in DMD and 
XLMTM have mostly occurred at or above a dosage of 1.1E14 vg/kg[4,33]. Obviously, there is a small 
therapeutic window that likely varies among patients.

Adaptive immunity against the transgene protein products also plays a role in DMD immunity. A 
collaborative study of patients with T cell-mediated reactions identified overlapping mutations in the 
dystrophin amino terminus region[4,31]. Exons 8 to 11 were deleted in all patient DMD genes, presumably 
causing the protein epitopes translated from the construct to be recognized as non-self-neoantigens [Figure 
2] (see discussion of specific microdystrophin constructs below). This harkens back to immunity against 
dystrophin identified by Mendell et al. in their early AAV-microdystrophin DMD clinical trial[48].

Considering the role of complement in SAEs, markers should be monitored to track activation and response 
to treatment. In a study of TMA patients with SAEs after systemic AAV administration, immunoglobulin M 
(IgM) and IgG increased rapidly with an associated rise in D-dimer and a decline in the platelet count[33]. 
Activation of both classical and alternative complement pathways, as indicated by depleted C4 and elevated 
soluble C5b-9, Ba, and Bb antigens, occurred.

USING ANIMAL MODELS TO PREDICT TREATMENT SAFETY
The requirement that animals be used to demonstrate the safety (or toxicity) of new drugs dates to the 
Federal Food, Drug, and Cosmetic Act of 1938. Various regulations were ultimately developed by the US 
Food and Drug Administration (FDA), with guidelines by and large dictating that safety be demonstrated in 
two species, a rodent and non-rodent (often the dog), in both short- and long-term studies[49,50]. Recent 
reviews have suggested that only approximately 50% of animal studies, extending across species including 
dogs, predict drug toxicity[51]. Related to this observation and broader animal welfare concerns, the FDA 
Modernization Act 2.0 passed by the US Congress in 2022 removed the requirement for animal use in drug 
approval and stipulated that alternatives would be allowed[52,53]. This is in keeping with the 3Rs (replacement, 
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Figure 1. Schematic of four quadrants in which cellular and humoral immunity interact with AAV capsid and transgene proteins to cause 
SAEs. From Hamilton et al., 2021[45]. Republished under Creative Commons Attribution License (CC-BY 3.0). AAV: Adeno-associated 
virus; SAEs: severe adverse events.

reduction, and refinement) approach toward the use of animals in research and could lead to greater 
reliance on alternatives like computational models, the use of recombinant antibodies produced in cell 
culture vs. live animals, and tissue engineering (organ on chip) technologies[54]. With that being said, 
pharmaceutical companies can still use animals to establish safety, and change is expected to occur 
gradually.

As shown by the SAEs in recent human trials, side effects associated with cell and gene therapy are generally 
more severe than those caused by traditional drugs. In their 2015 paper, Gopinath et al. emphasized the 
value of animal models in assessing variables of safety, efficacy, dosage, and localization of gene expression 
with viral vectors[55]. They stressed that choosing a suitable disease-specific model is of paramount 
importance for successful clinical translation. Consistent with this approach, the FDA has developed 
preclinical industry guidelines for cell and gene therapies, recommending 1) in vitro testing (e.g., functional 
assays, immunophenotyping, and morphologic evaluation) and in vivo pilot studies to establish the 
biological relevance of a specific animal species to the investigational product(s) before conducting 
definitive preclinical trials and 2) detailed assessment of the relevancy of each animal species used to 
support a potential clinical trial, with a summary of this assessment submitted as part of the preclinical 
section of the Investigational New Drug (IND) application[56-58]. Importantly, general adherence to these 
guidelines has not prevented recent SAEs in AAV clinical trials.

THE ROLE OF ANIMAL MODELS IN ASSESSING IMMUNITY TO AAV CONSTRUCTS
General considerations
The FDA guidelines mentioned above emphasize the importance of considering species-related 
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Figure 2. Diagram depicting DMD gene mutations associated with SAEs. Panels A, B, and C show the dystrophin structure, 
microdystrophin exon content of therapeutic transgenes, and patient mutations, respectively. From Bönnemann et al., 2023[31]. 
Republished under the Rights Link for Scientific Communications through the Copyright Clearance Center. SAEs: Severe adverse events; 
DMD: Duchenne muscular dystrophy.

immunogenicity in gene therapy trials. Mice used for testing are often inbred with essentially identical 
genetic makeup. This contrasts with the genetic diversity among humans[59] and likely contributes to the 
limited ability of inbred mice to predict adverse effects of foreign and/or self-antigens[60]. On the other hand, 
large animals are reasonably outbred and mostly share physiological functions such as the immune system 
with humans[61]. In addition, they live comparatively longer, allowing for extended studies, and are similar in 
size to a neonate or small child so that scaling issues can be addressed. Important limitations include the 
relatively few well-defined genetic conditions in most large animal species, the high costs of housing and 
maintenance, difficulties in achieving adequate sample sizes due to longer gestation periods and smaller 
litter sizes, and concerns about animal welfare[62,63].

Dogs have been used to model a range of human diseases, from cancer[64] to genetic disorders[65]. Beyond the 
advantages offered by other large animal models, mutations have been identified in an increasing number of 
inherited diseases, allowing genetic therapies to be assessed[66]. Because pet dogs are treated as family 
members, sophisticated tests such as magnetic resonance imaging (MRI) and electrodiagnostic procedures 
routinely used in a veterinary specialty setting can be extrapolated to research models[67,68]. As an added 
bonus discussed further below, treatments developed in canine models are now benefitting companion 
dogs[69,70].
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Regarding pre-existing immunity to AAV in dogs, one study noted particularly high neutralizing antibody 
titers to AAV6 in puppies, with levels then tapering[71]. Titers to AAV8 and 9 were less pronounced. 
Dystrophic dogs mounted a more robust antibody response to AAV, potentially because weaker suckling 
may have reduced immunoglobulin-induced immunity. Because AAV is a parvovirus, there has been 
interest in the effect of vaccination routinely employed against this virus in young dogs. Parvovirus 
vaccination status did not affect the AAV response. Another paper confirmed the selective increase in 
neutralizing antibodies to AAV6 and AAV1 in dogs[72]. Horses showed a particular increase in antibodies to 
AAV5, whereas pigs exhibited elevated levels of antibodies to several serotypes. Confirming the clinical 
significance of these antibodies, AAV transduction was much reduced in mice injected with serum from 
animals with high AAV titers.

In certain disease settings, dogs have predicted immunotoxicity better than mice and, in some cases, even 
more effectively than NHPs. The best example is hemophilia, for which naturally occurring models of factor 
VIII (hemophilia A) and IX (hemophilia B) have been studied for over 70 years[20,36-38]. Studies in canine 
hemophilia foresaw immunity to adenoviral vectors[37] and increases in transaminase enzymes subsequent to 
the administration of liver-directed AAV constructs[7]. Hepatocyte clonal expansion associated with AAV 
genomic DNA integration events after intravenous liver-directed therapy in hemophiliac dogs has raised 
concerns about long-term supraphysiologic factor levels and hypercoagulability[38]. Further supporting 
canine hemophilia as a model, companion hemophiliac dogs managed clinically with AAV-factor 
constructs have had occasional complications analogous to those in humans[69].

Several human clinical trials have utilized AAV-transgene constructs to correct inborn errors of metabolism 
that cause storage products to accumulate either systemically or predominantly in the central nervous 
system (CNS)[3]. As briefly mentioned earlier, viral vectors have also been used to treat humans with 
degenerative retinal diseases, wherein more limited ocular SAEs, often related to surgery instead of an 
immunologic reaction, have been reported[35]. Adverse events in LSD studies have not been well 
characterized, making it difficult to define the role animal models could play in their identification. 
Nevertheless, dogs with spontaneous LSDs[39-41] and degenerative retinal conditions[42-44] have been used to 
establish the therapeutic value of AAV-transgene constructs in advance of human trials. The construct has 
typically been given by intrathecal/intracerebral or intraocular administration, respectively, so inflammatory 
reactions would logically be localized. Adverse events related to the construct have not been reported in the 
LSD studies. Uveitis occurred after subretinal injection of an AAV-RPE65 construct in a canine Leber 
congenital amaurosis model[42].

Providing further support for the value of canine models to characterize post-treatment immunity, 
complement activation has been seen in hemophiliac dogs[73] and in canine models of hypersensitivity 
reactions[74]. A C5b-9 ELISA assay was used to test hemophiliac dogs. We saw hypersensitivity reactions in 
golden retriever muscular dystrophy (GRMD) dogs given Nemo Binding Domain (NBD) peptide to inhibit 
NF-κB but did not assess complement[75].

Preclinical studies for DMD and XLMTM
AAV-transgene constructs
Preclinical studies of AAV-microdystrophin constructs have followed a logical course from both a species 
and site of delivery perspective. As discussed in our 2012 review of the role of canine models in DMD[67], 
experiments were done initially in mdx mice[76,77], followed by dystrophic dogs[78-84]. Although there was a 
minimal immune response in mice, immunotoxicity was evident in dogs. Pioneering research at the 
University of Washington and Fred Hutchinson Cancer Center in Seattle, led by Jeff Chamberlain, Stephen 
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Tapscott, and Rainer Storb, determined that intramuscular injection of AAV2 and AAV6-microdystrophin 
constructs elicited a marked cytotoxic T cell response to capsid proteins[78,79]. Studies by the Takeda 
laboratory in Japan involving beagle dogs carrying the GRMD mutation, injected with an AAV2-CMVLacZ 
construct, showed an immune response against the β-galactosidase protein, suggesting that dystrophin 
could act as a neoantigen[80]. Indeed, non-immunosuppressed GRMD dogs treated with an AAV construct 
containing a codon-optimized human microdystrophin by the Kornegay laboratory developed marked 
myositis [Figure 3][81] that was not seen in subsequent studies using the same canine gene[82]. This suggested 
divergent amino acid sequences between species could lead to immunity. Other studies revealed that the 
immune response to AAV-microdystrophin constructs in dystrophic dogs was lessened by 
immunosuppression[80,83] and largely absent even without immunosuppression when a canine AAV-
microdystrophin and muscle-specific promoter were used[84]. Results from contemporaneous phase 1 
human trials of AAV-microdystrophin constructs injected intramuscularly were mixed, with one having no 
evidence of immunity[85], whereas another had a dystrophin-specific T cell response[48].

Based on generally encouraging results of intramuscular delivery of AAV-microdystrophin constructs in 
dogs, work was extended to high-pressure transvenular regional limb delivery using the Bier block approach 
applied clinically for local anesthesia and pain relief in the distal limbs[86,87]. Hansell Stedman and his 
colleagues at the University of Pennsylvania had previously utilized this technique to deliver AAV-factor IX 
transgene constructs to hemophiliac dogs based on the premise that the factor produced in muscle would 
move systemically to correct the clotting defect[88]. Striking dystrophin expression was found in dogs using 
this regional limb delivery technique without immunosuppression, showing more broadly the feasibility of 
vascular delivery[24,67,89]. The relative absence of an immune response suggested venous injection might 
actually be less immunogenic, presumably because muscle injury was avoided and antigen was less 
concentrated. This regional limb technique was then used to safely deliver saline to adult muscular 
dystrophy patients by colleagues at the University of North Carolina-Chapel Hill[90]. The next logical step 
would have been to apply the approach in DMD. However, with encouraging results already being 
established for generalized intravenous delivery of AAV-microdystrophin constructs in dystrophic mice[91,92] 
and dogs[22-24], research moved towards systemic administration. Canine studies have provided guidance for 
dosing human AAV constructs. For instance, our GRMD AAV9-microdystrophin study included 1E13, 
1E14, and 2E14 vg/kg dosage groups[22], while DMD patients in the Solid Biosciences SGT-001 trial were 
treated at 5E13 and 2E14 vg/kg.

There is not a naturally occurring dystrophin-deficient NHP model, but CRISPR/Cas9 has been used to 
disrupt the DMD gene in rhesus monkeys[93] and other species including pigs, rabbits, and rats[94]. 
Mechanistic studies at the cellular level were done in monkeys, potentially providing a platform for 
treatment development[95]. Importantly, given that mosaic mutations are generated with CRISPR, care must 
be taken in interpreting findings[94]. A systematic histopathologic natural history study of dystrophic 
monkeys would be necessary to determine whether this model is phenotypically analogous to DMD, and 
the associated likelihood preclinical studies will translate to patients.

Work has also been done in normal NHPs to establish proof-of-concept. As an example, encouraging 
results were obtained using regional limb delivery of AAV-microdystrophin constructs in cynomolgus 
macaques[96]. In addition, plasmapheresis lowered anti-AAV antibodies in NHPs with pre-existing AAV 
immunity[97]. Moreover, there has been natural interest in using monkeys to predict immunity. Dr. Wilson’s 
lab at the University of Pennsylvania identified sensory neuron/dorsal root ganglia toxicity in pigs and 
hepatotoxicity in NHPs receiving a dose of 2E14 AAV9-human survival of motor neuron (SMN) protein[98]. 
A more recent NHP study from his lab detected hepatic microvasculature toxicity after systemic 
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Figure 3. T2-weighted magnetic resonance images of pelvic limb muscles 8 weeks after AAV9-CMV-mini-dystrophin vector 
intravenous injection of two GRMD dogs (A-D, E-H) at 4 days of age. Images were segmented and color-coded to outline individual 
muscles. Signal-intense lesions are particularly pronounced in the vastus heads of the quadriceps and adductor muscles. These changes 
persisted with fat saturation, suggesting that they most likely represent fluid due to inflammation or edema. From Kornegay et al., 
2010[81]. Republished under Creative Commons Attribution License (CC-BY 3.0).

administration of AAV-enhanced green fluorescent protein constructs at doses ≥ 1E14 vg/kg[99].

Regarding preclinical XLMTM studies, MTM1 knockout mice had robust clinicopathologic improvement
over a 6-month period after a single tail vein dose of 1E13 AAV8-MTM1[100]. Comparable improvement was
seen in a subsequent canine XLMTM study, in which AAV8cMTM1 was dosed in three groups (n = 3/each;
0.3E14, 2E14, and 5E14 vg/kg). Results were compared to those from six untreated controls. Dogs were
followed for 17 weeks post-infusion, at which time all untreated controls had died.

Cell-based therapies
As emphasized recently by Graves and Storb[101], “It is difficult to imagine the successful development of
hematopoietic cell transplantation (HCT) without the significant contributions made by the canine
preclinical animal model.” Studies in normal outbred dogs featured prominently in several advancements,
including the importance of histocompatibility matching, establishing long-term donor hematopoietic cell
engraftment, prevention of graft-versus-host disease, advancing effective conditioning and post-grafting
immunosuppression protocols, and applying HCT to induce tolerance for solid organ and composite tissue
transplantation[101,102]. Encouragingly, similar HCT protocols are now being used to manage companion dogs
with hematological disorders and lymphoproliferative malignancies[101-103].
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Based on promising results in the late ‘90s of HCT in mdx mice[104] and a single DMD patient treated for 
concomitant severe combined immune deficiency[105], there was keen interest in using HCT in DMD. Given 
that much of the pioneering canine work on HCT was done at the Fred Hutchinson Cancer Research 
Center, GRMD/CXMD carriers from the University of Missouri and Cornell were used to establish a colony 
in Seattle. However, in a subsequent study, dystrophic dogs with allogenic bone marrow engraftment did 
not have increased dystrophin-positive fibers, wild-type dystrophin RNA, or donor-derived myonuclei[106].

This scenario whereby canine studies did not ultimately confirm findings from mdx mice had precedent 
from myoblast transplantation studies done in the 1980s and ‘90s. Based on proof-of-principle studies in 
mdx mice[107], human trials were instituted with disappointing results[108,109]. We had characterized canine 
myoblasts[110] and conducted analogous transplantation studies in GRMD dogs with little success, turning 
instead to an autologous cell model preceded by muscle injury[67,111]. Failed translation from mice to humans 
(and dogs) probably related to variables influenced by scale, such as cell migration[112] and the combined 
effects of poor blood supply and immune rejection[113,114].

Why were SAEs absent in canine DMD and XLMTM models?
Considering dogs have predicted the outcome of gene and cellular therapy in other settings, why did 
genomically homologous canine models not identify SAEs seen in DMD and XLMTM clinical trials using 
comparable AAV doses? Immunity to either the transgene product (dystrophin or myotubularin) or AAV 
vector could be involved.

The GRMD model has a single base change in the 3’ consensus splice site of intron 6, causing exon 7 to be 
skipped and termination of the dystrophin reading frame in exon 8[115]. Alternative splicing can restore the 
reading frame, leading to revertant fibers that could protect against anti-dystrophin immunity[116]. Thus, 
GRMD dogs may not be prone to the immune reaction to dystrophin evident in DMD boys with mutations 
in the N-terminal region[31]. Interestingly, the null mutation in the dystrophic German shorthaired pointer 
model does not allow for alternative spicing and might better predict an immune response against 
dystrophin (see discussion of the immune response to dystrophin and utrophin in the pointer model 
below)[117,118].

An analogous situation could exist in XLMTM. Truncating mutations in the human MTM1 gene are 
associated with a more severe form of the disease compared to non-truncating inframe deletions/insertions 
and missense mutations[119-121]. Affected dogs have a missense mutation[27], allowing protein production that 
could establish tolerance. Moreover, as with utrophin in DMD (see below), AAV constructs carrying MTM-
related protein (MTMR) transgenes have therapeutic benefits in XLMTM[122,123]. However, mutation type did 
not appear to contribute to the incidence of SAEs in the XLMTM ASPIRO trial, with no disproportionate 
increase in myotubularin antibodies seen in patients with null mutations[26].

To ensure that findings from a genomically homologous animal model are optimally translatable to humans, 
the model must be phenotypically analogous[124]. While both GRMD and canine XLMTM express disease 
phenotypes similar to those of their human disease counterparts, they are not completely analogous[125] 
[Figure 4]. One key difference relates to the chronology of disease embodied within the relative longevity of 
dogs and humans. Based on an epidemiological study of dogs admitted to veterinary medical teaching 
hospitals, year one of a golden retriever’s life is roughly equivalent to the first 20 years for a human[126]. For 
the sake of clinical extrapolation, we have divided these periods into four age groups, with 3, 6, 9, and 12 
months in GRMD corresponding to 5, 10, 15, and 20 years in DMD[127]. The GRMD and DMD disease 
phenotypes generally parallel one another for the first 6 months and 10 years, respectively, with each having 
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Figure 4. Comparative XLMTM histopathologic lesions in a MTM1 knockout mouse (43 days, mid-stage), dog (18 weeks, end-stage), 
and boy (2 months, terminal-stage). Increased numbers of central nuclei (inset in human sample) and fiber size variation due to 
numerous hypotrophic and atrophic (human) fibers are seen on H&E and PAS stains. Organelle (NADH) and glycogen (PAS) 
mislocalization is evident as either peripheral halos (human) or dark peripheral staining (dog and mouse). “Necklace fibers” (arrows) 
are seen in canine, some human patient biopsies (NADH inset), and rare mouse fibers. Scale bar = 40 µm. From Lawlor et al., 2016[28]. 
Republished under Creative Commons Attribution License (CC-BY 3.0). XLMTM: X-linked myotubular myopathy.

marked clinicopathologic progression. After 6 months, clinical signs and histopathologic lesions [Figure 5] 
in GRMD tend to stabilize. Affected dogs often live well into adulthood, whereas DMD patients continue to 
deteriorate[67,125,127]. Progressive histopathologic disease and associated inflammation in DMD patients[128,129] 
receiving AAV constructs could predispose them to complement activation and associated SAEs[6]. One 
particular distinguishing histopathologic feature between DMD and GRMD is the degree of fatty 
deposition, with affected dogs having markedly less intramuscular fat than humans based on both 
histopathologic[130,131] [Figures 5 and 6] and MRI assessment[132,133]. Given the role that cytokines secreted by 
adipocytes (adipokines) play in inflammation[134,135], greater fatty infiltration in DMD boys might predispose 
them to a more marked immune response.

The clinical course of XLMTM in Labrador retrievers is more rapid than in GRMD, consistently causing 
progressive weakness and muscle atrophy, necessitating euthanasia by 4-6 months of age[125,136]. Nonetheless, 
considering XLMTM in dogs is caused by a missense mutation[27], the phenotype is likely comparatively 
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Figure 5. Photomicrographs of H&E (A, B, E, and F) and acidic ATPase (pH 4.3) (C, D, G, and H) stains of the vastus lateralis muscle of 
GRMD vs. normal dogs at 3 and 12 months, roughly equivalent to 5 and 20 human years based on comparative longevity studies[126], 
showing relative stabilization of histopathologic lesions, with minimal fatty deposition in GRMD. Note also the increase in type I (darker 
stained) fibers with some grouping in GRMD. Although there is minimal open space suggestive of fat in GRMD at 12 months, the 
endomysial connective tissue separating individual myofibers is increased (see Fan et al., 2014[132] for GRMD images at 6 months and 
Figure 6 for comparison to DMD). Courtesy of Drs. Jane Fan and Yael Shiloh-Malawsky, UNC-Chapel Hill.

Figure 6. Photomicrographs of (A) H&E, (B) GT staining for collagen and connective tissue, (C) Dys2 dystrophin, and (D) utrophin 
histochemical stains of the vastus lateralis muscle from a 13-year-old boy roughly equivalent to an 8-month-old dog based on 
comparative longevity studies[126]. In the H&E (A) and GT (B) stains, the endomysial connective tissue separating individual myofibers 
and open spaces typical of adipose tissue (fat; top right) are increased (see Figure 5 for GRMD comparison). Note also the small cluster 
of dystrophin-positive (“revertant”) fibers in C (arrow) and prominent utrophin staining consistent with upregulation. Otherwise, there 
is variation of myofiber size with occasional internal nuclei, both nonspecific features of myopathy, with little to no necrosis or 
inflammation. Scale bar = 50 µm. GT: Gomori trichrome.
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milder than in affected humans with truncating mutations. This is substantiated by the 4- to 6-month 
course of XLMTM in Labradors compared to the rapid deterioration of human infants over a period of only 
days to weeks[120,137]. More importantly, dogs do not develop cholestatic hepatobiliary disease that seemingly 
predisposes human XLMTM patients to SAEs[26,138-140].

In light of their historical use to demonstrate efficacy and immunogenicity with gene and cell therapy and as 
evidenced by recent papers[141,142], canine models will probably continue to be used in AAV-transgene 
preclinical testing. To better predict future problems, thought should be given to tracking early subclinical 
markers of the innate immune response, especially complement activation. As precedent, complement C8 
alpha chain and several other serum proteins were elevated in subclinical leishmaniasis in dogs and tracked 
with disease progression[143].

Background on AAV-microdystrophin constructs in DMD clinical trials [Figure 2]
The Chamberlain laboratory has systematically studied structural modifications of the dystrophin central 
rod domain to identify microdystrophins with maximal functional efficacy[144]. They chose a particular 
design, named µDys5, for further study because of its functional performance and small size. These studies 
have been augmented by work from Stephen Hauschka on regulatory cassettes showing that the CK8e 
cassette consistently drives more muscle-restricted protein expression[145]. Ultimately, µDys5 was coupled 
with CK8e for clinical development as SGT-001 in collaboration with Solid Biosciences (NCT03368742).

The improved function seen with the CK8e-μDys5 construct can be attributed to several factors[144] (Jeff 
Chamberlain, personal communication, 2022). First, µDys5 has five spectrin-like repeats (SRs) and two 
hinges as opposed to combinations of four or six SRs and three hinges in the other seven transgenes tested. 
Reasons to account for greater force generation using a transgene with fewer (five vs. six) SRs are not clear 
and were not specifically pursued in these studies. One explanation could relate to the replacement of hinge 
3 in µDys5 with the entire SR23 to enhance stability and elasticity. Perhaps most importantly, µDys5 
contains the nNOS binding domain found by Duan et al. to be within dystrophin SRs 16 and 17[146]. Mouse 
models lacking or having a mislocalized nNOS domain are at risk for functional ischemia with associated 
fatigue[147]. Moreover, Becker muscular dystrophy (BMD) patients with exon 42-45 deletions that include 
repeats 16 and 17 show mislocalization of nNOS in muscle biopsy samples and a more severe phenotype[148].

Comparing the microdystrophins that have been used in the five DMD clinical trials discussed here, only 
rAAV9-CK8e-μDys5 (SGT-001) contains the R16/17 SRs. Notably, the study of eight microdystrophins 
mentioned above[144] included a close variant (µDysH3) of an earlier transgene (µDysH2) currently used in 
the Sarepta and Genethon clinical trials[149]. As opposed to the five SRs and two hinges in μDys5, µDysH2 
has four SRs and three hinges[149,150]. Only two of the five SRs in µDys5 are included in µDysH2. Finally, 
while µDys5 is driven by the CK8e cassette, the Sarepta construct employs MHCK7 and Genethon uses the 
synthetic Spc5-12 muscle-specific promoter[150]. Continuing the comparison, the microdystrophin in the 
Pfizer clinical trial was developed and tested by Xiao Xiao in both dystrophic mice[76] and dogs[81]. Called △
3990, this transgene has five SRs and three hinges. A canine variation (△3849) lacking the central hinge was 
efficacious in mdx mice[151]. The Pfizer construct includes a muscle-specific creatine kinase promoter[152].

Ongoing DMD clinical trials are further distinguished by the AAV serotype used. The Solid and Pfizer 
constructs employ AAV9, whereas Genethon uses AAV-8. Sarepta utilizes AAV-rh74, which is like 
AAV8[149,150].
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A recent clinical trial by REGENXBIO utilizes a microdystrophin that includes four SRs and three hinges 
plus an extended coding region of the carboxyl-terminal (CT) domain[153]. The binding of α-dystrobrevin 
and α-syntrophin by this CT domain may help recruit nNOS. The RGX-202 construct uses a novel AAV8 
vector (NAV) Technology Platform and a muscle-specific promoter (Spc5-12)[153]. Strength measurements, 
histopathologic findings, immunostaining for nNOS, and MRI studies from mdx mice treated with RGX-
202 suggested improvement[153].

THE WAY FORWARD
General considerations
Several expert panels offering perspectives from scientists, clinicians, regulatory bodies, funding agencies, 
patient advocacy groups, and industry have been convened to address the causes and mitigation of SAEs 
after systemic AAV-construct administration[4,5,8,33]. Given the critical role played by AAV dose in these 
reactions, effort has been given to engineer myotropic serotypes effective at lower doses with fewer off-
target side effects compared to naturally occurring AAVs[154]. One high-throughput approach combined 
DNA/RNA barcoding with multiplexed next-generation sequencing to identify an AAV9 mutant called 
AAVMYO that specifically targets the musculature[155]. In another study, bioengineered AAV serotypes 
similar to AAV9 effectively targeted muscle in MTM1 knockout and mdx mice at lower doses than those 
necessary for standard AAV9 constructs[156]. Myotropic AAVs continue to be defined[157,158].

Importantly, the seroprevalence of antibodies against these bioengineered capsids was comparable to AAV9, 
suggesting they would translate to the clinic. Work done simultaneously by Byrne and his collaborators at 
the University of Florida showed that capsid- and genome-modified AAVrh74 vectors, originally isolated 
from rhesus monkeys, were more efficient than AAVrh74 controls in transducing a reporter gene in the 
muscle of wild-type mice[159] [Figure 7]. Providing further encouragement, titers to nonoptimized rAAVrh74 
are typically negative or low in DMD patients, suggesting they may be less immunogenic[160], and this vector 
has been used successfully in DMD microdystrophin clinical trials[161]. To allow for a more streamlined 
pathway to the clinic, AAV vectors with cross-species applications have been developed[162].

Since the DMD transgene and translated dystrophin protein contribute to the immune response, mutation 
exclusion criteria are being critically assessed[31]. This continues a trend started for the Serepta clinical trials 
in which patients with DMD gene deletions in exons 8 or 9 are excluded and those with deletions in any of 
the exons included in the microdystrophin transgene are cautioned about an increased risk of severe 
immune-mediated myositis. Additional strategies have been directed at improving the efficiency of gene 
expression or reducing exposure to immunogenic dystrophin. For instance, studies have indicated that self-
complementary single-stranded AAV vectors bypass the requirement for viral second-stranded DNA 
synthesis, thus lowering the required AAV dose[159,163]. Additionally, in studies completed jointly in the 
Stedman and Kornegay labs, the use of utrophin in mdx mice and the dystrophin null canine pointer model 
eliminated the T cell immune response[118] [Figure 8]. Subsequent reviews have shown potential structural 
and immunological advantages of utrophin, while emphasizing the need to consider amino acid sequences 
and domains as has been done with microdystrophins[164].

Given the potential for mutation type to have an analogous impact on immune response in XLMTM 
patients receiving AAV-MTM1 constructs, consideration may also be given to using MTMR2 or other 
MTMR transgenes[26,122,123]. With that being said, critical surveillance for and exclusion of patients with pre-
existing cholestatic liver disease will be most important.
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Figure 7. Histogram of comparative GFP transgene RNA expression of WT vs. capsid and genomic optimized (OptX) AAVrh74 vectors 
injected IV into C57BL mice. Bar graphs show average of WT- and OptX-AAVrh74 △Ct across organs. Statistical significance was 
determined between WT and OptX (see error bars and P values). From Shoti et al., 2023[159]. Republished under Creative Commons 
Attribution License (CC-BY 3.0). WT: Wild-type.

Whether immunity is generated against AAV capsid or transgene proteins, it is essential to carefully 
consider immunomodulatory strategies to further reduce the risk of side effects. A variety of compounds 
have been used, ranging from prednisolone alone to more targeted combinatory approaches with drugs like 
the CD20 inhibitor rituximab[33] and complement blocker eculizumab[46].

Regarding the limitations of animal studies in predicting immune reactions, the expert panels and others 
have emphasized the importance of choosing species whose disease phenotype and immune functions 
closely resemble those of humans[46]. These findings remind us of the long-held principle that there is no 
perfect animal model. Indeed, in their 2020 review, Martino and Markusic concluded, “… humans will 
probably be the best animal model to study AAV immunity with experience gained from the use of 
approved AAV biologics and clinical trials[165].”

AAV-microdystrophin studies
In the ongoing microdystrophin clinical trials, SAEs have largely been manageable, although the functional 
effects have been mixed. Sarepta’s Elevidys (SRP-9001; delandistrogene moxeparvovec) received FDA 
approval in the United States in June 2023. The Embark clinical trial did not reach the primary endpoint of 
the North Star Ambulatory Assessment (NSAA) test, but significant benefits were observed in secondary 
outcomes compared to placebo. Notably, regarding the unmet needs of non-ambulatory DMD boys and 
young men discussed above under ethical considerations, the FDA somewhat controversially recently 
granted accelerated approval for the use of Elevidys in this patient group[166].

Working in collaboration with Sarepta to treat patients in Europe, Genethon has reported promising results 
with their microdystrophin construct, GNT0004, which employs the same transgene as Sarepta’s Elevidis, 
with an AAV8 serotype and a different promoter.

https://www.neurologylive.com/view/srp-9001-fails-to-meet-primary-end-point-phase-3-embark-study
https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-announces-expanded-us-fda-approval-elevidys#:~:text=Confirming%20the%20functional%20benefits%2C%20the,benefit%20in%20a%20confirmatory%20trial.
https://investorrelations.sarepta.com/news-releases/news-release-details/sarepta-therapeutics-announces-expanded-us-fda-approval-elevidys#:~:text=Confirming%20the%20functional%20benefits%2C%20the,benefit%20in%20a%20confirmatory%20trial.
https://www.neurologylive.com/view/gene-therapy-gnt0004-demonstrates-early-efficacy-safety-duchenne-muscular-dystrophy
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Figure 8. Schematic (A) of two German shorthaired pointer muscular dystrophy dogs (Ned and Grinch), in which the opposite cranial 
tibialis muscles were injected with either µ-dystrophin or µ-utrophin, showing the numbers of blood mononuclear cells reacting over 
time when cultured with peptides spanning each protein (B), together with the level of µ-dystrophin or µ-utrophin gene expression (C) 
and resulting histopathologic lesions (D). Note the marked inflammatory cell response in the AAV-µ-dystrophin treated limb (left) 
contrasted with the absence of inflammation in the AAV-µ-utrophin limb (right). From Song et al., 2019 (Stedman HH, corresponding 
author)[118].

Solid Biosciences has moved forward with a clinical trial (NCT06138639) of their new construct, SGT-003, 
which incorporates a proprietary myotropic capsid, AAV-SLB10, while continuing to include the nNOS-
binding R16 and R17 SRs from their original AAV9-based SGT-001. Based on data from mdx mice and 
NHPs, SGT-003 provides greater microdystrophin delivery to skeletal muscles and the heart.

In contrast, Pfizer recently released negative clinical data from its Phase 3 CIFFREO clinical trial 
(NCT04281485) of fordadistrogene movaparvovec. Treated DMD boys did not reach the primary endpoint 
on the NSAA test nor differ significantly compared to placebo regarding secondary outcomes. They have 
paused dosing due to a fatal serious adverse event in the phase 2 DAYLIGHT trial (NCT05429372).

In the RGX-202 clinical trial (NCT05693142), a three-patient cohort has been treated at a dose of 1E14 vg/
kg, with a second group planned at 2E14[167,168]. Limited preliminary functional data are encouraging, and no 
SAEs have been reported.

https://clinicaltrials.gov/study/NCT06138639
https://investors.solidbio.com/news-releases/news-release-details/solid-biosciences-receives-rare-pediatric-disease-designation
https://www.pfizer.com/news/press-release/press-release-detail/pfizer-provides-update-phase-3-study-investigational-gene
https://www.ajmc.com/view/phase-3-ciffreo-trial-of-dmd-gene-therapy-misses-primary-end-point
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Overall, these results are promising, but they highlight that the microdystrophin treatment strategy, by 
definition, is suboptimal. A miniaturized partially functional version of dystrophin is used and the duration 
and distribution of its expression remain to be well defined in patients[169-171]. A further concern was recently 
raised by studies showing accelerated heart involvement in a murine model with a severe cardiac phenotype, 
apparently due to competition between microdystrophin and utrophin at the cardiomyocyte membrane[172]. 
Accordingly, while efforts to optimize the microdystrophin treatment approach continue, studies of other 
potentially curative genetic and stem cell therapies will be pursued[169,173,174], coupled with drugs to lessen 
secondary effects of dystrophin deficiency such as inflammation and fibrosis[175].

AAV-MTM1 studies
The SAEs associated with AAV-MTM1 were seen in the ASPIRO clinical trial (NCT03199469) of 
resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) conducted initially by Audentes Therapeutics[26]. 
Astellas Pharma Inc. acquired Audentes in 2020 and subsequently placed a voluntary hold on dosing 
additional patients due to the SAEs. As part of an effort to develop alternatives for XLMTM treatment, 
Astellas recently licensed a new gene therapy, KT430, developed by Kate Therapeutics. KT430 utilizes a 
muscle-targeting myoAAV vector to deliver the MTMI gene[157].

CONCLUSION
Limitations of AAV-based therapies remind us that there is no perfect preclinical model. Gene therapy will 
always carry certain risks and is unique in that the effects of the drug are irreversible once delivered. The 
treating clinician must balance the basic medical tenet of “first, do no harm” against the inevitable 
progression of diseases like DMD and XLMTM. Here, careful attention must be paid to the perspective of 
the patients and their parents.
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