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Abstract
Soft computing, especially fuzzy cognitive maps (FCMs), has become increasingly applicable to energy 
management and policy-making. In recent decades, there has been a worldwide effort to minimize energy 
consumption and manage energy flow in private and public buildings. We present a critical overview of today’s 
applications of FCM-based methods in the energy domain. We analyzed FCM methods related to energy planning, 
efficiency, sustainability, transition, forecasting, energy policy, and scenario analysis. We highlight FCM's 
applicability in the energy domain, especially its contribution to the academic and research communities. Specific 
drawbacks and limitations were identified while using FCM methods on several challenging applications, primarily 
when learning algorithms are used. A new approach addressing these issues is provided and defined as the 
advanced fuzzy cognitive maps (AFCM) approach. These drawbacks are considered when providing future 
research challenges of FCMs for building energy management and efficiency. Finally, research gaps are identified, 
and we suggest solutions, especially AFCM is advanced fuzzy cognitive maps.
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INTRODUCTION
Humans have been using energy since the dawn of civilization. Today, we use it everywhere in our daily 
activities. Most essential activities depend on access to “modern” energy. Indeed, manufacturing, health, 
construction, communications, agriculture, computing, transportation, space, business, tourism, marine, 
government, and social services cannot function properly if they lack the appropriate amount of energy. 
The way people use energy directly affects the environment and lives positively or negatively.

Energy consumption by buildings (residential and commercial) has steadily increased over the last 30-40 
years. International studies and surveys show that energy consumption is 30%-40% in developed countries. 
In some developing countries, it is between 50% and 60%. The arrival of COVID-19 has changed energy 
consumption and has shown a slight decrease. Nevertheless, the rise of energy demand will increase shortly 
due to the effects of COVID-19 on our daily life. Energy efficiency resulting in energy savings for buildings 
is a primary concern. Automated meter reading and smart metering systems have been employed to collect 
building energy data to provide insights into how individuals consume energy and identify improvements 
likely to reduce consumption[1].

Unfortunately, every year, the power crisis escalates[2-8]. Thus, energy-efficient building (EEB) design has 
become a high priority. EEB design is challenging for multi-disciplinary technology. Developing an EEB 
design involves the knowledge of computer scientists and civil, mechanical, electrical, environmental, and 
architectural engineers. The evidence for climate change and the impact of greenhouse gas emissions is 
becoming increasingly evident. In most countries, “buildings” (state and private) are responsible for 47% of 
national energy consumption. Scientists and environmental professionals are trying to develop advanced 
technologies, use renewable energies, and design practical control strategies to reduce carbon dioxide 
emissions[2].

When dealing with energy in buildings, the concept of energy management (EM) is critical. EM is the 
process of tracking and optimizing energy consumption in a building or a “typical plant.” More precisely, 
EM is the means of controlling and reducing buildings’ energy consumption. This process enables owners 
and operators to minimize costs, reduce carbon emissions, monitor equipment performance, and reduce the 
associated risks. The most common approach to meet these objectives is the energy management system 
(EMS). When referring to buildings, the term building energy management systems (BEMS) is often used.

Commercial building owners worldwide spend 30%-35% of their operating budget on energy. Improved 
building EM practices can reduce total operating costs. BEMS represent an automated system that studies 
the contribution of certain blocks of standard building equipment for energy efficiency following 
optimization. Modern, cloud-based EM systems can control heating, ventilation, air-conditioning (HVAC), 
and other energy-consuming devices while collecting real-time data for these devices. Hence, EMS can offer 
explicit, valuable real-time guidelines for achieving cost-effectiveness[3].

This paper addresses EM and energy savings using the soft computing methodology of fuzzy cognitive maps 
(FCMs). FCMs model complex systems for decision-making tasks[9-12], in which they represent the cognitive 
state of a system graphically in the form of cognitive maps. Although FCMs are applicable in diverse 
domains, The literature lacks a review of utilizing FCMs in the energy domain. To our knowledge, there has 
not been a systematic review on this topic in the last 6-7 years. Two previous reviews by one of the authors 
were conducted seven years ago[13,14]. The present study covers 2016 without disregarding previous 
reviews[13,14]. This study also covers the period before 2016 in a novel systematic manner.
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This paper aims to provide a concrete and critical review of FCMs and their applicability to EM and 
efficiency. The paper does not present any new results. On the contrary, it reviews studies that cover the 
aspects of EM and energy savings of human-made energy systems while using the recent theories of FCMs. 
For the reader to appreciate this review study, it is necessary to comprehend the FCM theories and their 
drawbacks. For this reason, the paper provides a detailed analysis of these issues in Sections “FCM” and 
“Some drawbacks and new challenges for FCMs”. The primary goal is to provide the academic and scientific 
communities with information from other studies and not to run simulation studies that produce concrete 
results. The discerning reader can select studies in this review paper to perform their research using FCMs. 
Sections “FCM”, “Some drawbacks and new challenges for FCMs” and “Future research challenges of FCMs 
in EM and efficiency” provide the academic and scientific communities with straightforward procedures on 
how to study aspects of EM and energy savings in any residential and commercial buildings. The advanced 
FCM method (AFCM) outlined in Section “Some drawbacks and new challenges for FCMs” is unique in the 
existing literature and is an innovative approach that has been used very little recently.

The outline of the paper is as follows. In Section “Basics of energy management and efficiency”, the basics of 
EM and efficiency are reviewed. Section “FCM” details the fundamentals of the FCM methodology. A 
critical overview of EM and efficiency approaches and methods is provided in Section “A critical overview 
of energy management and energy efficiency: the case of FCMs”. All related studies are reported when FCM 
methods are used in the same section. Section “Some drawbacks and new challenges for FCMs” highlights 
several drawbacks of the classical FCM methods and provides several solutions. Section “Future research 
challenges of fcms in em and efficiency” catalogs future challenges and research directions. Conclusions are 
given in Section “Conclusions”.

BASICS OF ENERGY MANAGEMENT AND EFFICIENCY
Cost analyses usually follow energy analyses. In some cases, the performances of alternative packages are 
compared[5,6]. EM is a generic term for all societal applications. It includes planning and operating energy 
production and consumption units[15]. When renewable energy sources are used, EM covers energy 
distribution and storage. EM is critical for sustainable development. Given the world’s energy situation, 
economic growth, social development, conflicts, and deterioration of resources and the environment have 
been explored. The primary objectives of EM are energy savings, resource conservation, climate protection, 
and cost savings[16]. A recent volume describes how decision-makers can improve system safety and 
reliability performance using advanced decision-making methods to utilize EM concepts better[17]. This 
volume provides several methodologies for government officials, company decision-makers, and society 
analysts and is suited to the complexity of decision problems related to EM.

The electrical energy consumed in a power system is examined to assess costs. Where several sources are 
available, all sources must be evaluated separately to estimate the total cost applying common standards. 
This method determines whether the selected conditions are optimum or whether there is a need to adjust 
them in favor of cost-effectiveness. Two common examples are when power is imported from another 
system or is generated locally. The cost of electrical energy produced in the second case differs from that 
provided by the supply authority and cannot have a direct connection to it. Thus, because increased supply 
reliability leads to the installation of local generation, it is reasonable to compare imported electrical energy 
and local generation costs on account of fuel costs, maintenance costs, and possible deterioration or 
replacement costs. To address these issues, we turn to automation, and new methods have been developed, 
including EMS.
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EMS are automation systems that collect, analyze, and display energy-related characteristic values such as 
energy usage, waste, depletion, expenditure per unit, costs, and other inputs. They provide a comprehensive 
understanding of the energy performance of a building that is critical for companies. All businesses seek the 
most effective and efficient actions to optimize energy. To meet these objectives, there are eight basic steps 
that an EMS must address[6]:

1. Collect and analyze continuous data. Evaluate long- and short-term use of continuous energy supply and 
energy-efficient energy system use.

2. Identify optimizations in equipment schedules, set points, and flow rates to improve energy efficiency.

3. Identify and incorporate energy-efficient process technologies and devices.

4. Identify and incorporate energy-efficient operating practices and methods.

5. Improve energy productivity of the energy system using smart metering and intelligent control; combine 
them with flexible process automation and optimal control.

6. Calculate return on investment. Determine the lifecycle costing of all aspects of the processes (hardware 
and software).

7. The primary objective of EM is not to reduce total energy costs. Issues of compromising productivity and 
product quality must be considered. In addition, attention must be paid to increasing the involvement and 
awareness of all team members associated with the activity and the relevant process.

8. Repeat any of the above steps until optimal energy efficiency is obtained.

The most significant challenge is reducing the facility costs of a building - especially for larger ones like 
hospitals, government buildings, residential apartments, schools, and factories - using EM methods. An 
EMS is an advanced automated system to control and monitor energy-consuming devices, including 
HVAC, fans, air conditions, pumps, dampers, and lighting.

Investing in a fully functional EMS is ideal for individuals or companies. Here are some benefits of such an 
investment[5-7].

● Reduce operational costs - energy represents 25%-35% of all operating costs in a building. The most 
obvious of all benefits is the EMS’s ability to reduce electricity costs by monitoring and optimizing energy 
used for lighting, heating and cooling, and ventilation.

● Improve overall well-being and productivity - If an individual is uncomfortable in their environment, they 
will not feel well and would not like to work. Thus, temperature, humidity, and lighting regulation are 
critical to productivity. With an EMS, one can regulate indoor temperature while minimizing energy usage 
and keep the area well-lit with minimal lights. This adjustment improves overall well-being and boosts 
productivity. Similarly, maintaining optimal ventilation, lighting, and temperature to limit mold and 
bacteria reduces the risk of illnesses.
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● Reduce carbon emissions to meet internal sustainability goals and regulatory requirements.

● Build a positive brand image - By optimizing energy consumption and minimizing waste, companies can 
send a positive image about themselves to society. This move improves relationships with customers, 
partners, and potential investors.

● Increase property value - If one owns their space and sees the prospect of selling it someday, EMS 
substantially increases the value. This fact is actual for private residences and commercial structures.

● Increase return on investment - EMS guarantees these increases.

● Reduce risk to affect oner profitability - Intelligent EM solutions can help reduce the risk of efficient 
operation of a system. This goal can be achieved by reducing energy demand and controlling it to make it 
more predictable.

Theories and practices for EM, efficiency, and savings have been used for some time[5-7,15-17]. Several studies 
have been related to the broad issue of EM and efficiency. One group presented an intelligent decentralized 
EM strategy for optimal electric vehicle charging in low-voltage islanded microgrids[18]. Another study asked 
whether EM was critical for energy-efficient investments[19]. Similarly, a Swiss National Science Foundation 
study addressed the issue of EM as a driver of energy performance[20]. A survey of Malaysian manufacturing 
firms revealed the impacts of EM practices on energy efficiency and carbon emissions[21]. Another study 
provided information regarding EM and its relation to industrial energy efficiency[22]. A study from 1998 
studied whether investments in energy efficiency would consider industry characteristics[23].

Several studies addressing other issues regarding EM and efficiency have been conducted in the last 30-40 
years[6,24-34]. To the best of our knowledge, these studies do not consider EM and efficiency from the 
perspective of FCM. The present review focuses on EM and efficiency using FCMs and does not cover other 
theories and technologies.

FCM
Kosko introduced FCM in 1986[35]. Their goal was to combine theories of fuzzy logic and neural networks. 
Since then, FCM has been used to model complex systems. A detailed presentation of FCM was described 
previously[15-16]. FCM investigates complex situations and deals with fuzzy or uncertain environments 
through reasoning[36,37]. FCM methodology is the appropriate tool for decision-making systems and (as will 
be shown in this paper) differs from statistical methods.

To model the system’s operation, FCMs encapsulate accumulated knowledge and experience of the system’s 
behavior in various circumstances. The knowledge is converted into linguistic variables and then numerical 
values through defuzzification. In other words, the process denotes the system’s parameters with a modeling 
process consisting of an array of interconnected and interdependent nodes Ci (variables) and the 
relationships between them (weights, W). Concepts take values in the interval[0, 1], and weights belong in 
the interval[-1, 1]. Figure 1 shows a representative diagram of an FCM.

The entire procedure of the development of an FCM follows the steps below:
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Figure 1. An illustration of a simple FCM.

Step 1: Experts select the system’s critical attributes, like the number and the kind of concepts Ci that 
constitute the FCM.

Step 2: Each expert defines the relationship between the concepts of the system.

Step 3: Experts define the kind and the value of the relationship between the two nodes.

Step 4: Experts describe the existing relationship in a fuzzy way, assigning initially a negative or positive sign 
and then a degree of influence using a linguistic variable, such as low, medium, or high.

There are three types of interconnections between two concepts Ci and Cj and their weighted relationship 
wij:

● wij > 0, an increase or decrease in Ci causes the same result in concept Cj.

● wij < 0, an increase or decrease in Ci causes the opposite result in Cj.

● wij = 0, there is no interaction between concepts Ci and Cj.

The absolute value wij is the degree of influence from Ci to Cj. During the simulation, the value of each 
concept is calculated using the following rule:

where N is the total number of the system’s concepts, Ai(k + 1) is the calculated value of the concept Ci at the 
iteration step (k + 1), Aj(k) is the value of the concept Cj at the current iteration step k, wij is the weight of 
interconnection from concept Cj to concept Ci, and f is the sigmoid function. k1 expresses the influence of 
the interconnected concepts on the configuration of the new value of the concept Ai and k2 represents the 
proportion of the contribution of the previous value of the concept in computing the new value. The 
sigmoid function f is defined as:
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Where λ > 0 determines the steepness of function f. The initialized values of the FCM’s concepts are re-
calculated after each iteration step, depending on their weighted relationship. A steady state must be 
achieved to stop the calculations, with no (or below a threshold) changes in concept values. A more 
comprehensive mathematical presentation of FCMs with application to real problems with valid results has 
been described[36].

Since 2000, several studies examined the Non Linear Hebbian (NLH) learning method providing results and 
solutions to this issue[38,39]. This learning algorithm triggers the nodes of the system simultaneously interact 
with their values in the same iteration step so they are updated. The initial weights defined by experts are 
modified using the following relationship:

coefficients g and h are essential to control parameters with values g $ [0.9, 1] and h $ [0, 0.1], called the 
weight reduction and learning parameters, respectively.

The weights wij are updated for each iteration step, and then the updated values are imported in Equation 
(1) to compute the new values of concepts at the current iteration step. The update procedure (learning) 
ends when the following criteria are met. The first concerns the minimization of a loss or cost function F1 
which is the sum of the square differences between each desired output concept i (DOCi) and a target value 
Ti. Ti is defined as the mean value of the range of DOCi = [Timin, Timax].

The second criterion is the minimization of the variation of two subsequent values of desired output 
concepts:

At the termination of the learning procedure, the new final weight matrix wij with the DOCs returned. 
Proposed methodologies, drawbacks, and limitations of the updated FCM theories are described in the 
following section. A detailed demonstration of FCMs methods and algorithms has been described[40].

Numerous diverse domains, including engineering and medicine, have exploited Hebbian-based learning 
when dealing with decision-making and prediction tasks[41-44]. Moreover, there are critical research studies 
applying FCMs accompanied by learning algorithms in diverse domains[40] and research works emphasizing 
the significant contribution of FCMs in energy[11,45-48], environmental sustainability, and health[41,49-52].
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A CRITICAL OVERVIEW OF ENERGY MANAGEMENT AND ENERGY EFFICIENCY: THE 
CASE OF FCMS
Although smart and energy-efficient buildings have recently become a trend, EM and efficiency have been 
prevalent since the early 1980s. This concept was needed for space exploration[53]; the US National 
Aeronautics and Space Administration established an environmental management division responsible for 
water management and set policies and guidelines to ensure the success of each mission while using energy 
and water resources as efficiently as possible. The substantial dependency on fossil fuels and the continuous 
increase in fuel prices over time (especially during shortages) led to a need for alternatives such as 
renewable energy sources (RESs). The US Department of Energy has projects for space application 
technologies [e.g., photovoltaics (PVs) and other RESs] to meet societal needs[4]. The survival and 
development of emerging communities, especially in developing countries, depend heavily on the 
availability of electricity[54,55]. For example, in Egypt, several rural areas are without access to electricity as the 
grid cannot reach distant locations. RES is promising because developing nations have high irradiation 
levels and other weather conditions that favor RESs for generating electricity. Nevertheless, this is a 
challenging task. In the case of PV systems, designing and installing a stand-alone system according to the 
daily electrical needs is challenging for a small village or remote dwelling where weather data (i.e., solar 
irradiation, temperature, and wind patterns) are needed. The sizing of each system component (e.g., the PV 
array/panels, mechanical structure, battery, maximum power point tracker, inverter, and charge controller) 
must be carefully designed. The energy efficiency of each component must be considered, and energy load 
management must be developed as part of a stand-alone energy system. An energy load management 
system was developed to provide energy to a village that depends solely on RES, implementing classical 
energy efficiency methods[5-7,56-58]. Several stand-alone PV villages have been developed worldwide[54-56,58,59].

FCM theories emerged after 1986[14]. All EM and its impact on energy efficiency used classical control 
methods[5-8,57,58,60]. Since the late 1990s, the first studies of fuzzy systems appeared in power and energy 
applications. The first study was reported in 1999, in which the FCM approach was proposed to model a 
steam boiler mill fan[61]. A year later, a two-level power system was modeled using for the first time using 
FCMs[62]. Papageorgiou et al. used a two-level hierarchical structure to model first-time radiotherapy for 
breast cancer, obtaining very high accuracy results[63]. Doukas et al. used fuzzy ruled sets to study for the 
first time an “intelligent building”[64].

Investigators reported the emergency management of a nuclear power plant as a challenging problem[65]; 
they applied FCM for the first time as early as 2008, when FCM theories had not yet identified their 
limitations and drawbacks. To model abnormal situations in a nuclear power plant, the authors used FCM 
to determine the decision-making process. This procedure is a complex multivariate process that requires 
experts with a fundamental background and substantial experience. The process is analyzed by nuclear 
reactor operators based on a set of instructions and flow charts. These instructions mitigate the 
consequences of operation failures, whose primary characteristic is linear representations of events within a 
scenario, even though this process is not linear. An FCM approach was introduced by the authors for the 
emergency operating procedures (EOPS), simulating different cases, such as the loss of coolant accident 
scenario in a boiling water reactor) with the Mark II containment. The proposed methodology designed and 
based on experts in nuclear power represents the experts’ reasoning with high fidelity and provides an 
efficient decision-making tool for reactor operators. The simulation results show that the FCM correctly 
predicted the phenomenon in the reactor vessel and primary containment.

In December 2012, Kyriakarakos et al. used the term FCM for Petri Nets EM system for autonomous poly-
generation microgrids[66]. Petri Nets and FCM were used to optimize an energy grid in that study. As an 
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optimization algorithm, a platform consisting of TRNSYS, TRNOPT, and GenOPT software packages was 
used for the simulations and Particle Swarm. The authors designed an FCM-Petri Nets EM system and a 
simpler two-state (on/off) microgrid. The former method produced an effective energy distribution, which 
led to a considerable decrease in the sizing of the microgrid’s components.

Two studies demonstrated the use of FCMs for modeling the highly nonlinear and challenging problem of 
modeling wind energy systems[67]. Scenario analysis identifies alternatives for the future state of 
technologies, needs, policies, and environment. Scenario planning helps to overcome thinking limitations 
by presenting multiple futures. FCMs are based on causal cognitive maps and combine the benefits of 
qualitative and quantitative analysis uniquely for wind energy studies and actual system design for real 
applications. Around the same time (2012-2014), the Laboratory for Automation and Robotics of the 
University of Patras was extensively researching energy and power systems using FCMs.

In 2013, FCMs were for the first time used to model hybrid energy systems[68]. Hybrid energy systems 
produce energy with a combination of more than one source (e.g., solar and wind) and are ideal for 
applications where some sources are periodically unavailable. FCMs perform well even with missing data 
and despite existing nonlinearities in the system. The obtained simulation results verified the effectiveness 
and reliability of the proposed FCM hybrid energy system[68].

Fuzzy control was used to study the energy efficiency of a building[69]. A performance comparison of fuzzy 
control vs. FCM theories was performed, and compelling results were obtained. An increase in the energy 
efficiency of a building was obtained using multi-level intelligent controllers to manage the various 
components of a building’s automation. Simulation studies were performed using actual environmental 
conditions in Western Greece in 2014 and data from a large building at the University of Patras. The results 
were beneficial, demonstrating an increase in energy efficiency of 20%-25%.

The well-known BEMS was modeled using FCM theories[70]. That study used FCM to model the total energy 
dynamic behavior of an autonomous building for residential or commercial use. To construct the FCM 
controllers, energy requirements for two buildings in southern Greece were analyzed. Simulations were 
conducted using the building’s actual and weather data for three years.

The findings revealed some interesting conclusions. (1) The benefits offered by FCMs in complex dynamic 
problems (CDS) involving many parameters. For example, the CDS parameters can be increased or 
decreased without having to model the system from the beginning. (2) The method obtained rapid and 
accurate results regarding how to use the building automation when the parameters and other related data 
of the CDS are constantly changing without wasting time in the mathematical modeling of the problem. (3) 
The model suggested implications for energy savings. (4) Energy engineers and technicians unfamiliar with 
mathematical modeling and simulation studies can easily use the proposed FCM approach. These 
individuals do not need to understand thoroughly the theories of energy efficiency and savings and 
controlling concepts of building automation. (5) The simple and innovative proposed FCM approach 
enables control of the automation of the building based on the actual needs of buildings while saving 
energy.

A national-level wind energy roadmap for Pakistan was developed through scenario planning[71]. Multiple 
future scenarios were developed using the FCM approach. This research extended technology road mapping 
using FCM-based scenario analysis. Scenarios with FCM were developed for the wind energy sector in 
Pakistan. If these scenarios were implemented, an estimated 15%-20% energy savings would be obtained for 
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Pakistan[71]. Using linguistic relationships and FCM methods, dynamic environmental factors were 
identified that are essential for energy production by photovoltaic and wind technologies or other RESs[72]. 
Such a model is helpful for governments and investors to make decisions regarding future energy 
investments.

A study examined how FCMs can affect buildings' energy efficiency[73]. Advanced automation control 
systems for intelligent buildings were analyzed to minimize the energy needed in buildings for better 
efficiency without sacrificing comfort. The approach demonstrates how an FCM can make an energy-
efficient decision based on climate data and an expected operation. FCM methodology was also used to 
increase the energy efficiency of buildings[14]. Other studies using FCMs methods present interesting and 
useful results in obtaining energy savings and increasing building energy efficiency[74,75]. Three expert 
intelligence tools were developed for EM, improving decision-making related to fault detection and 
diagnostics and intelligent predictive maintenance of essential building equipment. Surveys on energy 
efficiency in buildings with FCM methods were published in 2020[76,77]. In one of these studies, control 
systems for EM and comfort in buildings were presented with recommendations for controlling parameters 
by implementing FCM architectures[76]. Presenting new equations for the concept values calculations in 
FCMs; other authors focused on modeling a nearly-zero-energy building[77]. Using this advanced FCM 
method and considering environmental variables, methods of energy production, and consumptions in a 
few concepts established a robust base for the importance of the FCM theory.

Two studies reported FCM in characteristics and scenarios of solar and the root barriers in energy 
development in Iran[46,78]. The FCM approach was implemented to examine how the system’s parameters 
dynamically interact. A survey and two workshops with the participation of several multidisciplinary 
stakeholders led to a participatory stepwise framework[46]. A semi-quantitative model was formed in an 
integrated FCM model comprising 31 interwoven concepts. The study suggested that FCM in many 
activities of Iranian daily life would benefit the energy policies for energy savings annually while 
simultaneously achieving a profound reduction in CO2 emissions. Based on lack-based data envelopment 
analysis and FCM, their integrated approach proposes solutions to improve development and provides a 
clear view of the effects of each improvement solution and their causal relationships[78].

A review of control techniques for HVAC Systems - nonlinearity approaches based on FCM - shows that 
the FCM approach is the only method that can address challenging problems associated with nonlinear 
systems and has characteristics of uncertainties, ambiguity, and fuzziness[79]. A novel control strategy for EM 
in plug-in hybrid electric vehicles based on FCM demonstrates the usefulness of the approach[80]. A suitable 
FCM controller for air-conditioning systems to reduce energy consumption was investigated[81]. This FCM 
methodology for controlling the direct expansion air-conditioning system accurately tracked the set point 
while maintaining appropriate temperature and humidity values, despite disturbances in heat and moisture.

FCM theories were applied to healthcare centers, and the influence of maintenance operations on energy 
consumption and emissions was investigated[82]. The qualitative analysis of this work shows the effect of 
maintenance intensity on energy consumption, energy costs, and emissions in healthcare centers. FCM 
theories were used for the first time to determine how many and which specific relevant variables are 
involved in the maximization of the building efficiency of the healthcare centers. Twelve variables were 
observed to show a direct connection to energy and environmental efficiency and its maintenance 
condition.
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Investigators proposed a methodological framework with FCMs, a semi-quantitative modeling application 
to evaluate different strategies in the energy efficiency sector[83]. The authors implemented an open-source 
MATLAB-based application for modeling FCMs and tested it in an application for enhancing energy 
efficiency based on Greece’s national plan. Their findings suggest that long-term energy efficiency measures 
focus on behavioral changes in the residential sector.

An exciting approach to solar-based energy transition for the case of Greece was presented[84]. The authors 
considered the barriers and consequences and employed an FCM model to identify this transition’s most 
critical implementation and substantial risk. The model simulated several scenarios, comparing the relative 
performances of the different policy strategies.

Quantitative evidence for urban energy conservation focused on policies provided by implementing an 
FCM[85]. The authors developed a framework that integrates urban residential expenditure and sectoral 
energy consumption and clarifies how these indicators influence each other. Using data from Beijing 
revealed that policies regarding controlling resident spending contribute to reducing Beijing’s sectoral 
energy consumption.

Scenarios for PV solar energy development in Brazil with the help of FCM were presented[86]. Barriers in the 
Brazilian energy sector with the potential for solar energy utilization due to the country’s geographic 
location were explored with FCM development, providing a quasi-quantitative model for scenario planning. 
The online tool FCMWizard was used in a dynamic and complex system of the renewable energy sector. 
The findings highlight the economic and political influence on development.

Investigators employed FCMs to semi-quantitatively explore different scenarios of wind energy deployment 
in Iran[87]. Through participatory workshops and a subsequent questionnaire survey, authors identified 26 
influential factors as the dynamics of their FCM-based framework. As different scenarios were analyzed, 
one showed optimistic results in wind energy development.

An FCM for indoor temperature forecasting was implemented, and an evolutionary learning algorithm was 
developed to select the most significant concepts, sensors, and the weights of causal influence between 
them[88]. The findings suggested reducing the number of concepts by selecting the most important ones and 
high forecasting accuracy. Another interesting approach was introduced by the authors[89] in forecasting 
solar energy with fuzzy time series using high-order FCMs. The proposed hybrid method combines 
weighted high-order fuzzy time series with high-order FCMs. Public data from solar stations in Brazil from 
2012 to 2015 for their solar energy forecasting demonstrated that their method achieves the best results with 
few concepts.

This overview of FCM in EM and efficiency demonstrates that FCM use is severely limited. Nevertheless, 
FCM is beneficial in several applications. A reference study presented FCMs for decision-making and 
prediction in optimization processes[11]. This proposed methodology is clustering concepts using k-means 
and popular evolutionary algorithms for learning. This case study demonstrated their approach’s 
functionality to analyze an energy prediction dataset, with energy data recorded for four and a half months 
from a low-energy house[11].

Other applications and helpful studies were also described[12,90,91]. An FCM approach to energy-efficiency 
policies for decarbonizing residential heating demonstrated the usefulness of FCM in Spanish residential 
sectors[92]. A review of theories and applications of FCMs for the decade before 2013 was also performed[44]. 
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Investigators employed FCMs to semi-quantitatively explore the scenarios of wind energy deployment for 
energy savings in Iran[87]. The findings highlight the possibilities for government decisions in complex 
macroeconomic and political settings for economic benefits for the country.

An FCM technique was proposed for web effort estimation, which is a critical challenge in software 
engineering when they are developed for EM and energy savings in any building[93]. A master’s thesis 
generated a decision support tool based on an FCM software tool focusing on households as the users with 
the objective of energy savings of the building[94]. The practical use of this FCM technique is toward the 
residents’ attitude toward the transition, and the data for the evaluation of the attitude were collected from 
an online survey using the concept of the technology adoption model.

Another study proposed a fuzzy logic control EMS for commercial loads with a hybrid grid-solar PV/
battery energy system[95]. The obtained results show the applicability of FCM methods on EM tasks. A recent 
chapter from an edited volume described FCMs as computing frameworks to assist cities in becoming 
smarter and more resilient[96]. In this experimental research work, the study area was confined to a portion 
of a housing estate, and the data acquisition tools were in the public domain. The objective was to test the 
algorithmic process to capture urban environments built in an augmented reality model within the FCM 
framework.

SOME DRAWBACKS AND NEW CHALLENGES FOR FCMS
FCM theories existed only for 40 years, while approaches such as artificial intelligence are more than 80 
years old. FCMs have not been used as extensively as other theories. Several drawbacks and limitations were 
identified while using FCM on challenging applications despite the beneficial results obtained[97-100]. Thus, 
FCM theories and methods must be re-examined on a scientific basis. FCM theories take seriously the 
human values embedded in a process, seeking knowledge while exploring the causality of the processes of 
CDSs.

The FCM model is a promising and innovative approach for studying and controlling a CDS. This model 
can determine the most significant structural elements and the dynamic behavior of a CDS. Frequently, 
FCM methods constitute an efficient, comprehensive, and practical mechanism for analyzing and predicting 
the evolution of CDS data. For years, numerical data have been considered crisp, with exact values. By 
contrast, most data are fuzzy, uncertain, or challenging to mine, and therefore their exploitation needs an 
exact mathematical model, which may be costly, complex, or even impossible. Considering the lack of 
formal models, humans should introduce knowledge and rely on natural language arguments.

An FCM has qualitative rather than quantitative attributes. FCM methods are not statistical approaches in 
modeling and analyzing complex systems. They are based on causality and not correlation. This is a 
significant scientific statement that must be stressed and clearly understood. The FCM approach can model 
a complex system with dynamic behavior that comprises various components in a simple, flexible, and 
straightforward way. An FCM model can explore any characteristics of a CDS with the help of the following 
six characteristics:

1. They define the causality between all subsystems/components of the CDS. This causality must indicate a 
positive, zero, or negative relationship.
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2. The nature of the causal relationships between the subsystems always assumes fuzzy values.

3. The causal links between the subsystems/components are always dynamic and never static.

4. The history of the CDS model should always be available, well-defined, and reliable. If not, search for it.

5. Human-like reasoning must always be taken seriously.

6. Experts with a solid knowledge of the overall behavior of the CDS are always available. If not, seek them.

Considering these characteristics, one can always model, analyze, and control any natural or human-made 
CDS. As in all cases of new theoretical methods, there are always drawbacks and limitations[14,67,72]. The first 
major drawback lies in the fact that the concepts of an FCM model are investigated altogether. All equations 
of the mathematical model of FCM include all concepts[98]. However, this should be avoided in any scientific 
approach. For example, in early FCM theories, some concepts did not affect others, which remained static 
throughout the iteration process. However, due to Equations (1) and (2), all concepts are updated 
immediately after the first iteration. This is not true; consequently, the model sometimes leads to incorrect 
results. This outcome depends, of course, on the nature of the problem each time.

Another drawback is in the “concept vector” C, which includes all variables/concepts, defining the same 
iteration step k in Equation (1) for all concepts. Concerning actual problems, the question is why the inputs 
and outputs of a CDS when considered as concepts, must change simultaneously at every iteration step k? 
For instance, on a health problem while treating a patient: the inputs (concepts) (e.g., the dose of a drug 
given to a patient every morning) and the outputs (concepts) (e.g., X-ray or biopsy results) monitored once 
a month are updated simultaneously, taken every time the health conditions (concepts) are monitored every 
hour or every six-hours. Why does one calculate using Equation (1), which is the case using FCM theories, 
especially Equations (1) and (2)? The same question holds for Equation (3), which updates the weights of all 
concepts at the same iteration time. However, this approach cannot be taken seriously.

Even the calculation method of the values of the concepts, Equation (1) has a severe drawback problem. It 
considers the change that each concept causes separately instead of the total change caused by the concept 
Ci. This fact leads to a significant increase in the value of the concept Ci that extends far beyond the 
interval[0, 1]. Thus, the sigmoid function [Equation (2)] is needed to suppress the estimated result to the 
interval[0, 1]. However, due to the shape of the sigmoid curve, any concept value beyond 3 leads the 
sigmoid function to correspond to the value 1, which is problematic as the final output corresponds to the 
linguistic variable “high”.

However, continuing with the sigmoid function [Equation (2)], there is another drawback that leads to high 
output values. This is because the center of the sigmoid curve, instead of being on the (0, 0) point on the XY 
axis is on the (0.5, 0) point. This means that each concept’s lowest value can be 0.5. This drawback has been 
considered, and a solution to overcome it has been provided[97].

Similarly, the learning algorithms of FCM theories are subject to other drawbacks and limitations. Having 
conducted several simulations using non-Hebbian learning methods and Equation (3), we observed the 
following: considering the way weights are calculated [Equation (3)], the causality reverses, and all or some 
of the wij become positive in the case that the number of iterations of the algorithm is increased to reach a 
steady state. The causality between concepts changes as it was initially given by the experts, making it a 
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significant drawback. Thus, on several occasions, instead of reaching the correct values of the concepts, the 
obtained results were unacceptable. This drawback significantly complicates interpreting the results 
correctly. Finally, maintaining a stable running system is difficult when the problem has predetermined 
stability.

For these reasons, the early FCM methods have been referred to as the classical theories of FCM or simply 
the classical FCM methods[13,97,100]. Groumpos addressed several of these drawbacks and provided some 
solutions[98].

Let us readdress the problem of the concepts being considered as one vector.

Even when a CDS is described using fuzzy characteristics through an FCM approach, the primary 
mathematical idea is the same. Each system has its states, inputs, outputs, and other parameters and 
constraints. Representing such a system, FCM should consider these fundamental characteristics. On this 
basis and following the classic control theory methods[99], the concepts of an FCM are classified into the 
following three categories:

A. State concepts, x

B. Input concept, u

C. Output concepts, y.

In this way, a better understanding of the overall behavior of the CDS is gained. This classification offers 
insight into the system’s operation and contributes to calculating the values of states, inputs, and outputs in 
their physical nature, representing the concepts of the real system. This categorization of the FCM concepts 
was first proposed by Groumpos[44]. This new approach is referred to as the AFCM method. More 
specifications and definitions of these AFCM theories were described[13,14,43,69,73,77,100-102].

FUTURE RESEARCH CHALLENGES OF FCMS IN EM AND EFFICIENCY
Based on the presentations over only 40 years and the findings of FCMs, the future research directions are 
many and open in all aspects. A challenging and promising research area is the development of the new 
AFCM models, as proposed[70-73,97]. In this effort, concepts associated with EM and energy efficiency must 
carefully be separated by energy experts jointly with control engineers to state input and output concepts. 
AFCM can investigate system characteristics such as controllability, observability, stability, and reachability. 
New learning algorithms are needed for the AFCM models. New software tools must be developed.

When FCM theories are used methodologically and extensively, intensive studies in this research direction 
can achieve new and higher levels of energy efficiency for residential and commercial buildings. Developing 
AFCM models for energy management-energy savings of buildings (especially large ones) appears 
promising. A challenging research area is applying FCM (classical and advanced) methods to several real 
applications of large buildings (e.g., schools, hospitals, government buildings, manufacturing plants, ports, 
and public buildings). The recent topic of nearly-zero-energy buildings offers many opportunities to 
investigate the use of classical and advanced FCM models.
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Causality must be investigated, and its difference from correlation needs to be studied. Another challenging 
future research direction is specific real-life applications and results to be compared with other today’s 
methods, especially statistical studies. Another challenging research topic is defining the concept of 
intelligent buildings[13,14,102]. How can a building be made intelligent? Intelligence does not always come with 
technologically advanced systems. For example, there are cases in which intelligent buildings do not 
incorporate information and communication technology tools or not-so-intelligent buildings that integrate 
state-of-the-art technology. Hence, efficiently managing a building’s components is essential in defining its 
state of intelligence. The building is a high energy cost and environmentally hazardous machine without 
efficiently managing its components. Energy efficiency is achieved through the contribution of building 
automation components, and using RES is an essential and promising research field[103,104]. The challenging 
research topic is to use AFCM in developing realistic, intelligent buildings.

CONCLUSIONS
EM is the process of monitoring, controlling, and conserving energy in a building or organization. Much of 
the importance of energy saving stems from the global need to save energy. Different methods and 
approaches have been implemented to provide EMS. FCMs were introduced only in 1986[35]. Their use in 
EM and energy efficiency has been minimal. Studies have only reported on these essential energy systems 
issues in the last ten years. The importance of causality in these systems has not been well understood or 
sufficiently utilized. This review is the first comprehensive EM and efficiency survey using the new FCM 
theories. It is critical to realize that the few limited studies reported in this paper demonstrate the potential 
of FCM models and theories in energy savings in many aspects of everyday life; this is especially true in 
energy buildings.

FCMs provide a tool for capturing the system behavior from available information. Proper vertex selection 
is critical because the relevant concepts of the system should be identified, and their activation must be 
modeled so that causal relationships are properly identified. The FCM provides a new strategy for 
predicting effects and causes in an energy system.

This paper provides for the first time an overview of FCM theories for EM and building efficiency, with 
information for the reader to understand this essential scientific topic. This review shows that the FCM 
approach was used only in the last 15 years and obtained excellent results. We also highlighted the 
drawbacks of classical FCM theories and provided concepts for dynamic AFCMs that solve some of these 
problems. Finally, this paper discusses future challenges and research directions.

DECLARATIONS
Authors’ contributions
Conceptualization, methodology, review analysis, and investigation: Groumpos P, Papageorgiou EI
New challenges: Groumpos P
Writing - original draft preparation: Groumpos P, Papageorgiou EI
Writing - review and editing: Groumpos P, Papageorgiou EI

Availability of data and materials
Not applicable.

Financial support and sponsorship
None.



Page 33 Papageorgiou et al. J Smart Environ Green Comput 2023;3:18-36 https://dx.doi.org/10.20517/jsegc.2022.21

Conflicts of interest
Both authors declared that there are no conflicts of interest.

Ethical approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Copyright
© The Author(s) 2023.

REFERENCES
The International Organization for Standardization (ISO). Energy savings - definition of a methodological framework applicable to 
calculation and reporting on energy savings. Available from: https://www.iso.org/obp/ui/#iso:std:iso:17743:ed-1:v1:en [Last accessed 
on 27 Apr 2023].

1.     

The International Organization for Standardization (ISO). Energy efficiency and savings calculation for countries, regions and cities. 
Available from: https://www.iso.org/obp/ui/#iso:std:iso:17742:ed-1:v1:en [Last accessed on 27 Apr 2023].

2.     

International Energy Agency (IEA). Energy Efficiency 2020. Available from: https://www.iea.org/reports/energy-efficiency-2020 
[Last accessed on 27 Apr 2023].

3.     

Department of Energy (DOE). Solar energy technologies program overview. Available from: https://www.nrel.gov/docs/fy02osti/
30889.pdf [Last accessed on 27 Apr 2023].

4.     

Stephen D. Independent generation of electric power. Elsevier Science; 2014.5.     
Turner WC, Doty S. Energy management handbook. 6th ed. New York: Fairmont Press; 2006; pp. 909. Available from: https://
docplayer.net/95637113-Energy-management-handbook-sixth-edition.html. [Last accessed on 19 May 2023].

6.     

Zia MF, Elbouchikhi E, Benbouzid M. Microgrids energy management systems: a critical review on methods, solutions, and 
prospects. Appl Energy 2018;222:1033-55.  DOI

7.     

Liasi SG, Bathaee SMT. Optimizing microgrid using demand response and electric vehicles connection to microgrid. 2017 Smart 
Grid Conference (SGC). Proceedings of the 2017SGC; 2017 Dec 20-21; Tehran, Iran. IEEE; 2017. pp. 1-7.  DOI

8.     

Papageorgiou E. Fuzzy cognitive maps for applied sciences and engineering. Berlin: Springer; 2013.  DOI9.     
Papageorgiou K, Singh PK, Papageorgiou E, Chudasama H, Bochtis D, Stamoulis G. Fuzzy cognitive map-based sustainable socio-
economic development planning for rural communities. Sustainability 2020;12:305.  DOI

10.     

Poczeta K, Papageorgiou EI, Gerogiannis VC. Fuzzy cognitive maps optimization for decision making and prediction. Mathematics 
2020;8:2059.  DOI

11.     

D'Onofrio S, Muller SM, Papageorgiou EI, Portmann E. Fuzzy reasoning in cognitive cities: an exploratory work on fuzzy analogical 
reasoning using fuzzy cognitive maps. 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Proceedings of the 
2018FUZZ-IEEE; 2018 July 08-13; Rio de Janeiro, Brazil. IEEE 2018. pp.1-8.  DOI

12.     

Groumpos PP, Mpelogianni V. An overview of fuzzy cognitive maps for energy efficiency in intelligent buildings. 2016 7th 
International Conference on Information, Intelligence, Systems & Applications (IISA). Proceedings of the 2016IISA. 2016 July 13-
15; Chalkidiki, Greece. IEEE 2016. pp.1-6..  DOI

13.     

Vassiliki M, Peter GP. Increasing the energy efficiency of buildings using human cognition; via fuzzy cognitive maps. IFAC-Pap 
2018;51:727-32.  DOI

14.     

Henry HW, Symonds FW, Bohm RA, Moore JR, Snyder WT, Gibbons JH. Energy management: theory and practice. Available from: 
https://www.osti.gov/biblio/5894958 [Last accessed on 27 Apr 2023].

15.     

Lee D, Cheng C. Energy savings by energy management systems: a review. Renew Sustain Energy Rev 2016;56:760-77.  DOI16.     
Li H, Yazdi M. Advanced decision-making methods and applications in system safety and reliability problems: approaches, case 
studies, multi-criteria decision-making, multi-objective decision-making, fuzzy risk-based models. Berlin: Springer; 2022.  DOI

17.     

Boglou V, Karavas C, Karlis A, Arvanitis K. An intelligent decentralized energy management strategy for the optimal electric 
vehicles’ charging in low�voltage islanded microgrids. Int J Energy Res 2022;46:2988-3016.  DOI

18.     

Cooremans C, Schönenberger A. Energy management: a key driver of energy-efficiency investment? J Clean Prod 2019;230:264-75.  
DOI

19.     

Swiss National Science Foundation (SNSF). In: The Grants Register 2023, London: Palgrave Macmillan; 2022. pp.1081. Available 
from: https://link.springer.com/referenceworkentry/10.1057/978-1-349-96053-8_7976. [Last accessed on 17 May 2023].

20.     

Fernando Y, Hor WL. Impacts of energy management practices on energy efficiency and carbon emissions reduction: a survey of 
malaysian manufacturing firms. Resour Conserv Recycl 2017;126:62-73.  DOI

21.     

Hasan ASMM, Trianni A. A review of energy management assessment models for industrial energy efficiency. Energies 22.     

https://www.iso.org/obp/ui/#iso:std:iso:17743:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:17742:ed-1:v1:en
https://www.iea.org/reports/energy-efficiency-2020
https://www.nrel.gov/docs/fy02osti/30889.pdf
https://www.nrel.gov/docs/fy02osti/30889.pdf
https://docplayer.net/95637113-Energy-management-handbook-sixth-edition.html
https://docplayer.net/95637113-Energy-management-handbook-sixth-edition.html
https://dx.doi.org/10.1016/j.apenergy.2018.04.103
https://dx.doi.org/10.1109/sgc.2017.8308873
https://dx.doi.org/10.1007/978-3-642-39739-4
https://dx.doi.org/10.3390/su12010305
https://dx.doi.org/10.3390/math8112059
https://dx.doi.org/10.1109/FUZZ-IEEE.2018.8491474
https://dx.doi.org/10.1109/iisa.2016.7785388
https://dx.doi.org/10.1016/j.ifacol.2018.11.206
https://www.osti.gov/biblio/5894958
https://dx.doi.org/10.1016/j.rser.2015.11.067
https://dx.doi.org/10.1007/978-3-031-07430-1
https://dx.doi.org/10.1002/er.7358
https://dx.doi.org/10.1016/j.jclepro.2019.04.333
https://link.springer.com/referenceworkentry/10.1057/978-1-349-96053-8_7976
https://dx.doi.org/10.1016/j.resconrec.2017.07.023


Papageorgiou et al. J Smart Environ Green Comput 2023;3:18-36 https://dx.doi.org/10.20517/jsegc.2022.21 Page 34

2020;13:5713.  DOI
DeCanio SJ, Watkins WE. Investment in energy efficiency: do the characteristics of firms matter? Rev Econ Stat 1998;80:95-107.  
DOI

23.     

Fawcett T, Hampton S. Why & how energy efficiency policy should address SMEs. Energy Policy 2020;140:111337.  DOI24.     
Khalil E. Anon, energy management. In: Textile World; 1984. pp.30.25.     
Thiede S. Energy efficiency in manufacturing systems. Berlin: Springer; 2012.  DOI26.     
Roosa SA, Doty S, Turner WC, eds. Energy management handbook. 9th ed. New York: River Publishers; 2018; pp. 893.  DOI27.     
Eastop TD, Croft DR. Energy efficiency: for engineers and technologists. Harlow, Essex, England: Longman Scientific & Technical; 
1990. pp. 595.

28.     

Fleiter T, Worrell E, Eichhammer W. Barriers to energy efficiency in industrial bottom-up energy demand models - a review. Renew 
Sustain Energy Rev 2011;15:3099-111.  DOI

29.     

Langley KF. Energy use and energy efficiency in UK manufacturing industry up to the year 2000. London: HM Stationery Office; 
1984. pp. 95

30.     

Reay DA. Industrial energy conservation: a handbook for engineers and managers. Available from: https://www.osti.gov/biblio/
7095360 [Last accessed on 27 Apr 2023].

31.     

O'Callaghan PW. Energy management. London; New York: McGraw-Hill Book Co; 1993.32.     
Mao M, Jin P, Hatziargyriou ND, Chang L. Multiagent-based hybrid energy management system for microgrids. IEEE Sustainable 
Energy :2014 July; pp. 938-946.  DOI

33.     

Rasmussen J. The additional benefits of energy efficiency investments - a systematic literature review and a framework for 
categorisation. Energy Effic 2017;10:1401-18.  DOI

34.     

Kosko B. Fuzzy cognitive maps. Int J Man Mach Stud 1986;24:65-75.  DOI35.     
Groumpos PP. Fuzzy cognitive maps: basic theories and their application to complex systems. Fuzzy cognitive maps: advances in 
theory, methodologies, tools and applications. Berlin: Springer; 2010. pp. 1-22.  DOI

36.     

Papageorgiou E, Stylios CN, Groumpos P. Introducing interval analysis in fuzzy cognitive map framework. Advances in Artificial 
Intelligence: 4th Helenic Conference on AI, SETN 2006, Heraklion, Crete, Greece, May 18-20, 2006. Proceedings 4. Springer Berlin 
Heidelberg; 2006. pp. 571-5.  DOI

37.     

Papageorgiou E, Stylios C, Groumpos P. Fuzzy cognitive map learning based on nonlinear Hebbian rule. AI 2003: Advances in 
Artificial Intelligence: 16th Australian Conference on AI, Perth, Australia, December 3-5, 2003. Proceedings 16. Springer Berlin 
Heidelberg; 2003. pp. 256-68..  DOI

38.     

Papageorgiou EI, Stylios CD, Groumpos PP. Active Hebbian learning algorithm to train fuzzy cognitive maps. Int J Approx Reason 
2004;37:219-49.  DOI

39.     

Papageorgiou EI. Learning algorithms for fuzzy cognitive maps - a review study. IEEE Trans Syst Man Cybern C 2012;42:150-63.  
DOI

40.     

Amirkhani A, Papageorgiou EI, Mosavi MR, Mohammadi K. A novel medical decision support system based on fuzzy cognitive 
maps enhanced by intuitive and learning capabilities for modeling uncertainty. Appl Math Comput 2018;337:562-82.  DOI

41.     

Al-subhi SH, Papageorgiou EI, Pérez PP, Mahdi GSS, Acuña LA. Triangular neutrosophic cognitive map for multistage sequential 
decision-making problems. Int J Fuzzy Syst 2021;23:657-79.  DOI

42.     

Papageorgiou EI, Stylios C, Groumpos PP. Unsupervised learning techniques for fine-tuning fuzzy cognitive map causal links. Int J 
Hum Comput Stud 2006;64:727-43.  DOI

43.     

Papageorgiou EI, Salmeron JL. A review of fuzzy cognitive maps research during the last decade. IEEE Trans Fuzzy Syst 
2013;21:66-79.  DOI

44.     

Papageorgiou K, Papageorgiou E, Poczeta K, Gerogiannis V, Stamoulis G. Exploring an ensemble of methods that combines fuzzy 
cognitive maps and neural networks in solving the time series prediction problem of gas consumption in Greece. Algorithms 
2019;12:235.  DOI

45.     

Alipour M, Hafezi R, Papageorgiou E, Hafezi M, Alipour M. Characteristics and scenarios of solar energy development in Iran: 
Fuzzy cognitive map-based approach. Renew Sustain Energy Rev 2019;116:109410.  DOI

46.     

Papageorgiou KI. Papageorgiou E, Poczeta K, Bochtis D, Stamoulis G. Forecasting of day-ahead natural gas consumption demand in 
Greece using adaptive neuro-fuzzy inference system. Energies 2020;13:2317.  DOI

47.     

Papageorgiou K, Carvalho G, Papageorgiou EI, Bochtis D, Stamoulis G. Decision-making process for photovoltaic solar energy 
sector development using fuzzy cognitive map technique. Energies 2020;13:1427.  DOI

48.     

Kontogianni A, Tourkolias C, Papageorgiou EI. Revealing market adaptation to a low carbon transport economy: tales of hydrogen 
futures as perceived by fuzzy cognitive mapping. Int J Hydrog Energy 2013:38.  DOI

49.     

Mourhir A, Rachidi T, Papageorgiou EI, Karim M, Alaoui FS. A cognitive map framework to support integrated environmental 
assessment. Environ Model Softw 2016:77.  DOI

50.     

Mourhir A, Papageorgiou EI, Kokkinos K, Rachidi T. Exploring precision farming scenarios using fuzzy cognitive maps. Sustain 
Switz 2017:9.  DOI

51.     

Papageorgiou K, Singh PK, Papageorgiou EI, Chudasama H, Bochtis D, Stamoulis G. Participatory modelling for poverty alleviation 
using fuzzy cognitive maps and OWA learning aggregation. Plos One 2020;15:e0233984.  DOI  PubMed  PMC

52.     

Braman JMB, Wagner DA. Energy management of the multi-mission space exploration vehicle using a goal-oriented control system. 53.     

https://dx.doi.org/10.3390/en13215713
https://dx.doi.org/10.1162/003465398557366
https://dx.doi.org/10.1016/j.enpol.2020.111337
https://dx.doi.org/10.1007/978-3-642-25914-2
https://dx.doi.org/10.1201/9781003151364
https://dx.doi.org/10.1016/j.rser.2011.03.025
https://www.osti.gov/biblio/7095360
https://www.osti.gov/biblio/7095360
https://dx.doi.org/10.1109/tste.2014.2313882
https://dx.doi.org/10.1007/s12053-017-9528-1
https://dx.doi.org/10.1016/s0020-7373(86)80040-2
https://dx.doi.org/10.1007/978-3-642-03220-2_1
https://dx.doi.org/10.1007/11752912_71
https://dx.doi.org/10.1007/978-3-540-24581-0_22
https://dx.doi.org/10.1016/j.ijar.2004.01.001
https://dx.doi.org/10.1109/tsmcc.2011.2138694
https://dx.doi.org/10.1016/j.amc.2018.05.032
https://dx.doi.org/10.1007/s40815-020-01014-5
https://dx.doi.org/10.1016/j.ijhcs.2006.02.009
https://dx.doi.org/10.1109/tfuzz.2012.2201727
https://dx.doi.org/10.3390/a12110235
https://dx.doi.org/10.1016/j.rser.2019.109410
https://dx.doi.org/10.3390/en13092317
https://dx.doi.org/10.3390/en13061427
https://dx.doi.org/10.1016/j.ijhydene.2012.10.101
https://dx.doi.org/10.1016/j.envsoft.2015.11.018
https://dx.doi.org/10.3390/su9071241
https://dx.doi.org/10.1371/journal.pone.0233984
http://www.ncbi.nlm.nih.gov/pubmed/32511275
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279611


Page 35 Papageorgiou et al. J Smart Environ Green Comput 2023;3:18-36 https://dx.doi.org/10.20517/jsegc.2022.21

2011 Aerospace Conference; 2011; Big Sky, MT, USA. IEEE; 2011. pp. 1-6.  DOI
Shenawy E, Hegazy A, Abdellatef M. Design and optimization of stand-alone PV system for Egyptian rural communities. Available 
from: https://www.ripublication.com/ijaer17/ijaerv12n20_168.pdf. [Last accessed on 19 May 2023].

54.     

Kolhe M, Kolhe S, Joshi JC. Economic viability of stand-alone solar photovoltaic system in comparison with diesel-powered system 
for India. Energy Econ 2002;24:155-165.  DOI

55.     

Wang, Nehrir MH. Power management of a stand-alone wind/photovoltaic/fuel cell energy system. IEEE Trans Energy Convers 
2008;23:957-67.  DOI

56.     

Groumpos PP, Khouzam KY, Khouzam LS. A dynamic programming approach to the energy management problem of photovoltaic 
power systems. Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference; 1988; Las Vegas, NV, USA.  IEEE; 
1988. pp. 1164-1167 vol.2.  DOI

57.     

Groumpos PP, Papageorgiou GD. An optimum load management strategy for stand-alone photovoltaic power systems. Sol Energy 
1984; 46:647-52.  DOI

58.     

Groumpos P, Cull R, Ratajczak A. An overview of control aspects of a village stand-alone photovoltaic power system. IEEE Trans 
Power Appar Syst 1984;PAS-103:2845-53.  DOI

59.     

Shafie-khah M, Siano P. A stochastic home energy management system considering satisfaction cost and response fatigue. IEEE 
Trans Ind Inf 2018;14:629-38.  DOI

60.     

Hadjiski MB, Christova NG, Groumpos PP. Design of hybrid models for complex systems. Available from: http://
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.6161&rep=rep1&type=pdf [Last accessed on 27 Apr 2023].

61.     

Groumpos PP, Stylios CD. Modelling supervisory control systems using fuzzy cognitive maps. Chaos Solitons Fractals 2000;11:329-
36.  DOI

62.     

Papageorgiou EI, Stylios CD, Groumpos PP. An integrated two-level hierarchical system for decision making in radiation therapy 
based on fuzzy cognitive maps. IEEE Trans Biomed Eng 2003;50:1326-39.  DOI  PubMed

63.     

Doukas H, Patlitzianas KD, Iatropoulos K, Psarras J. Intelligent building energy management system using rule sets. Build Environ 
2007;42:3562-9.  DOI

64.     

Espinosa-paredes G, Nuñez-carrera A, Laureano-cruces A, Vázquez-rodríguez A, Espinosa-martinez E. Emergency management for 
a nuclear power plant using fuzzy cognitive maps. Ann Nucl Energy 2008;35:2387-96.  DOI

65.     

Kyriakarakos G, Dounis AI, Arvanitis KG, Papadakis G. A fuzzy cognitive maps -petri nets energy management system for 
autonomous polygeneration microgrids. Appl Soft Comput 2012;12:3785-97.  DOI

66.     

Amer M, Jetter A, Daim T. Development of fuzzy cognitive map (FCM)�based scenarios for wind energy. Int J Energy Sect Manag 
2011;5:564-84.  DOI

67.     

Karagiannis IE, Groumpos PP. Modeling and analysis of a hybrid-energy system using fuzzy cognitive maps. 21st Mediterranean 
Conference on Control and Automation; 2013 June 25-28; Platanias, Greece,. IEEE; 2013. pp. 257-64.  DOI

68.     

Mpelogianni V, Groumpos PP. Using fuzzy control methods for increasing the energy efficiency of buildings. Int J Monit Surveill 
Technol Res 2015;3:1-22.  DOI

69.     

Mpelogianni V, Marnetta P, Groumpos PP. Fuzzy cognitive maps in the service of energy efficiency. IFAC-Pap 2015;48:1-6.  DOI70.     
Amer M, Daim TU, Jetter A. Technology roadmap through fuzzy cognitive map-based scenarios: the case of wind energy sector of a 
developing country. Technol Anal Strateg Manag 2016;28:131-55.  DOI

71.     

Çoban V, Onar SÇ. Modeling renewable energy usage with hesitant Fuzzy cognitive map. Complex Intell Syst 2017;3:155-66.  DOI72.     
Groumpos PP. Advanced automation control systems (AACS) for energy and comfort management in a building environment. IFAC-
Pap 2018;51:34-8.  DOI

73.     

Mpelogianni V, Giannousakis K, Kontouras E, Groumpos PP, Tsipianitis D. Proactive building energy management methods based 
on fuzzy logic and expert intelligence. IFAC-Pap 2019;52:519-22.  DOI

74.     

Mpelogianni V, Groumpos P, Tsipianitis D, Papagiannaki A, Gionas J. Proactive building energy management based on fuzzy logic 
and expert intelligence. Inf Intell Syst Appl 2020;1:56-8.  DOI

75.     

Groumpos PP, Mpelogianni V. New advanced technology methods for energy efficiency of buildings. 2020 11th International 
Conference on Information, Intelligence, Systems and Applications IISA; 2020 July 15-17; Piraeus, Greece. IEEE; 2020. pp. 1-8.  
DOI

76.     

Vergini ES, Groumpos PP. Advanced fuzzy cognitive maps modelling a nearly zero energy building. 2020 11th International 
Conference on Information, Intelligence, Systems and Applications IISA; 2020 July 15-17; Piraeus, Greece; IEEE; 2020. pp. 1-5.  
DOI

77.     

Rezaee M, Yousefi S, Hayati J. Root barriers management in development of renewable energy resources in Iran: an interpretative 
structural modeling approach. Energy Policy 2019;129:292-306.  DOI

78.     

Eliasi H, Ghoreyshi M. A new control strategy for energy management in plug-in hybrid electric vehicles based on fuzzy cognitive 
maps. Ku-Energy 2019;9:14-25.  DOI

79.     

Behrooz F, Mariun N, Marhaban M, Mohd Radzi M, Ramli A. Review of control techniques for HVAC systems - nonlinearity 
approaches based on fuzzy cognitive maps. Energies 2018;11:495.  DOI

80.     

Behrooz F, Yusof R, Mariun N, Khairuddin U, Hilmi Ismail Z. Designing intelligent MIMO nonlinear controller based on fuzzy 
cognitive map method for energy reduction of the buildings. Energies 2019;12:2713.  DOI

81.     

de Salazar E, García Sanz-calcedo J. Study on the influence of maintenance operations on energy consumption and emissions in 82.     

https://dx.doi.org/10.1109/aero.2011.5747609
https://www.ripublication.com/ijaer17/ijaerv12n20_168.pdf
https://dx.doi.org/10.1016/s0140-9883(01)00095-0
https://dx.doi.org/10.1109/tec.2007.914200
https://dx.doi.org/10.1109/pvsc.1988.105887
https://dx.doi.org/10.1016/0038-092x(91)90024-q
https://dx.doi.org/10.1109/tpas.1984.318282
https://dx.doi.org/10.1109/tii.2017.2728803
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.6161&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.6161&rep=rep1&type=pdf
https://dx.doi.org/10.1016/s0960-0779(98)00303-8
https://dx.doi.org/10.1109/tbme.2003.819845
http://www.ncbi.nlm.nih.gov/pubmed/14656062
https://dx.doi.org/10.1016/j.buildenv.2006.10.024
https://dx.doi.org/10.1016/j.anucene.2008.07.007
https://dx.doi.org/10.1016/j.asoc.2012.01.024
https://dx.doi.org/10.1108/17506221111186378
https://dx.doi.org/10.1109/med.2013.6608731
https://dx.doi.org/10.4018/ijmstr.2015100101
https://dx.doi.org/10.1016/j.ifacol.2015.12.047
https://dx.doi.org/10.1080/09537325.2015.1073250
https://dx.doi.org/10.1007/s40747-017-0043-y
https://dx.doi.org/10.1016/j.ifacol.2018.11.241
https://dx.doi.org/10.1016/j.ifacol.2019.12.597
https://dx.doi.org/10.26220/IISA.3325
https://dx.doi.org/10.1109/iisa50023.2020.9284345
https://dx.doi.org/10.1109/iisa50023.2020.9284347
https://dx.doi.org/10.1016/j.enpol.2019.02.030
https://dx.doi.org/10.22052/9.3.14
https://dx.doi.org/10.3390/en11030495
https://dx.doi.org/10.3390/en12142713


Papageorgiou et al. J Smart Environ Green Comput 2023;3:18-36 https://dx.doi.org/10.20517/jsegc.2022.21 Page 36

healthcare centres by fuzzy cognitive maps. J Build Perform Simul 2019;12:420-32.  DOI
Nikas A, Ntanos E, Doukas H. A semi-quantitative modelling application for assessing energy efficiency strategies. Appl Soft Comput 
2019;76:140-55.  DOI

83.     

Nikas A, Stavrakas V, Arsenopoulos A, et al. Barriers to and consequences of a solar-based energy transition in Greece. Environ 
Innov Soc Transit 2020;35:383-99.  DOI

84.     

Tu C, Mu X, Chen J, et al. Study on the interactive relationship between urban residents’ expenditure and energy consumption of 
production sectors. Energy Policy 2021;157:112502.  DOI

85.     

Papageorgiou K, Carvalho G, Papageorgiou EI, Papandrianos NI, Mendonça M, Stamoulis G. Exploring brazilian photovoltaic solar 
energy development scenarios using the fuzzy cognitive map wizard tool; International Conference on Fuzzy Systems (FUZZ-IEEE); 
2020 July 19-24; Glasgow, UK. IEEE; 2020. pp. 1-8.  DOI

86.     

Zare S, Alipour M, Hafezi M, Stewart RA, Rahman A. Examining wind energy deployment pathways in complex macro-economic 
and political settings using a fuzzy cognitive map-based method. Energy 2022;238:121673.  DOI

87.     

Poczęta K, Kubuś Ł, Yastrebov A, Papageorgiou EI. Temperature forecasting for energy saving in smart buildings based on fuzzy 
cognitive map. In: Szewczyk R, Zieliński C, Kaliczyńska M, editors. Automation 2018. Cham: Springer International Publishing; 
2018. pp. 93-103.  DOI

88.     

Orang O, Silva R, de Lima e Silva PC, Guimaraes FG. Solar energy forecasting with fuzzy time series using high-order fuzzy 
cognitive maps. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE); 2020 July 19-24; Glasgow, UK. IEEE; 2020. 
pp. 1-8.  DOI

89.     

Huang S, Lo S, Lin Y. Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations 
to the development of wind power. Energ Policy 2013;63:851-861.  DOI

90.     

Kokkinos K, Karayannis V, Moustakas K. Circular bio-economy via energy transition supported by fuzzy cognitive map modeling 
towards sustainable low-carbon environment. Sci Total Environ 2020;721:137754.  DOI  PubMed

91.     

López-bernabé E, Linares P, Galarraga I. Energy-efficiency policies for decarbonising residential heating in Spain: a fuzzy cognitive 
mapping approach. Energy Policy 2022;171:113211.  DOI

92.     

Sharma A, Tselykh A. Machine learning-enabled estimation system using fuzzy cognitive mapping: a review. In: Singh PK, 
Wierzchoń ST, Tanwar S, Rodrigues JJPC, Ganzha M, editors. Proceedings of Third International Conference on Computing, 
Communications, and Cyber-Security. Singapore: Springer Nature; 2023. pp. 487-500.  DOI

93.     

Shahbazi R. Development of a decision support tool based on fuzzy cognitive mapping for energy transition of district heating 
systems of Leeuwarden. Available from: http://essay.utwente.nl/92647/ [Last accessed on 27 Apr 2023].

94.     

Ibrahim O, Bakare MS, Amosa TI, et al. Development of fuzzy logic-based demand-side energy management system for hybrid 
energy sources. Energy Convers Manag X 2023;18:100354.  DOI

95.     

Agbossou I. Fuzzy photogrammetric algorithm for city built environment capturing into urban augmented reality model. In Elmer P. 
P. Dadios (Editor). Advances in fuzzy logic systems. IntechOpen; 2023.  DOI

96.     

Mpelogianni V, Groumpos PP. Re-approaching fuzzy cognitive maps to increase the knowledge of a system. AI Soc 2018;33:175-88.  
DOI

97.     

Groumpos PP. Overcoming intelligently some of the drawbacks of fuzzy cognitive maps. 2018 9th International Conference on 
Information, Intelligence, Systems and Applications (IISA); 2018 July 23-25; Zakynthos, Greece. IEEE; 2018. pp. 1-6.  DOI

98.     

Mpelogianni V, Kosmas G, Groumpos PP. Modeling a microgrid using fuzzy cognitive maps. In: Kravets AG, Groumpos PP, 
Shcherbakov M, Kultsova M, editors. Creativity in Intelligent Technologies and Data Science. Cham: Springer International 
Publishing; 2019. pp. 334-43.  DOI

99.     

Mpelogianni V, Groumpos PP. Modeling the building energy management system of a building using a revised approach of fuzzy 
cognitive maps. Available from: http://siit.ugatu.su/index.php/journal/article/view/8 [Last accessed on 27 Apr 2023].

100.     

Rohrer JM. Thinking clearly about correlations and causation: graphical causal models for observational data. Adv Methods Pract 
Psychol Sci 2018;1:27-42.  DOI

101.     

Wang S. Intelligent buildings and building automation. Available from: https://www.academia.edu/10254378/
Intelligent_Buildings_and_Building_Automation?auto=download [Last accessed on 27 Apr 2023].

102.     

Sung J, Troilo M, Howarth N, et al. Better energy efficiency policy with digital tools. Available from: https://www.iea.org/articles/
better-energy-efficiency-policy-with-digital-tools [Last accessed on 27 Apr 2023].

103.     

International Energy Agency (IEA). A call to action on efficient and smart appliances. Available from: https://www.iea.org/articles/a-
call-to-action-on-efficient-and-smart-appliances [Last accessed on 27 Apr 2023].

104.     

https://dx.doi.org/10.1080/19401493.2018.1543351
https://dx.doi.org/10.1016/j.asoc.2018.12.015
https://dx.doi.org/10.1016/j.eist.2018.12.004
https://dx.doi.org/10.1016/j.enpol.2021.112502
https://dx.doi.org/10.1109/fuzz48607.2020.9177573
https://dx.doi.org/10.1016/j.energy.2021.121673
https://dx.doi.org/10.1007/978-3-319-77179-3_9
https://dx.doi.org/10.1109/fuzz48607.2020.9177767
https://dx.doi.org/10.1016/j.enpol.2013.09.012
https://dx.doi.org/10.1016/j.scitotenv.2020.137754
http://www.ncbi.nlm.nih.gov/pubmed/32172116
https://dx.doi.org/10.1016/j.enpol.2022.113211
https://dx.doi.org/10.1007/978-981-19-1142-2_39
http://essay.utwente.nl/92647/
https://dx.doi.org/10.1016/j.ecmx.2023.100354
https://dx.doi.org/10.5772/intechopen.110551
https://dx.doi.org/10.1007/s00146-018-0813-0
https://dx.doi.org/10.1109/iisa.2018.8633622
https://dx.doi.org/10.1007/978-3-030-29743-5_27
http://siit.ugatu.su/index.php/journal/article/view/8
https://dx.doi.org/10.31234/osf.io/t3qub
https://www.academia.edu/10254378/Intelligent_Buildings_and_Building_Automation?auto=download
https://www.academia.edu/10254378/Intelligent_Buildings_and_Building_Automation?auto=download
https://www.iea.org/articles/better-energy-efficiency-policy-with-digital-tools
https://www.iea.org/articles/better-energy-efficiency-policy-with-digital-tools
https://www.iea.org/articles/a-call-to-action-on-efficient-and-smart-appliances
https://www.iea.org/articles/a-call-to-action-on-efficient-and-smart-appliances

