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Abstract
Aim: Comparative metagenomic analysis requires measuring a pairwise similarity between metagenomes in the 
dataset. Reference-based methods that compute a beta-diversity distance between two metagenomes are highly 
dependent on the quality and completeness of the reference database, and their application on less studied 
microbiota can be challenging. On the other hand, de-novo comparative metagenomic methods only rely on the 
sequence composition of metagenomes to compare datasets. While each one of these approaches has its 
strengths and limitations, their comparison is currently limited.

Methods: We developed sets of simulated short-reads metagenomes to (1) compare k-mer-based and taxonomy-
based distances and evaluate the impact of technical and biological variables on these metrics and (2) evaluate the 
effect of k-mer sketching and filtering. We used a real-world metagenomic dataset to provide an overview of the 
currently available tools for de novo metagenomic comparative analysis.

Results: Using simulated metagenomes of known composition and controlled error rate, we showed that k-mer-
based distance metrics were well correlated to the taxonomic distance metric for quantitative Beta-diversity 
metrics, but the correlation was low for presence/absence distances. The community complexity in terms of taxa 
richness and the sequencing depth significantly affected the quality of the k-mer-based distances, while the impact 
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of low amounts of sequence contamination and sequencing error was limited. Finally, we benchmarked currently 
available de-novo comparative metagenomic tools and compared their output on two datasets of fecal 
metagenomes and showed that most k-mer-based tools were able to recapitulate the data structure observed 
using taxonomic approaches.

Conclusion: This study expands our understanding of the strength and limitations of k-mer-based de novo 
comparative metagenomic approaches and aims to provide concrete guidelines for researchers interested in 
applying these approaches to their metagenomic datasets.

Keywords: De-novo comparative metagenomics, metagenomes, k-mers

INTRODUCTION
The advent of modern metagenomics has led to the generation of massive amounts of genomic data 
allowing the characterization of microbes’ diversity and their function in ecosystems. Comparative 
metagenomics aims to explore the similarities and differences of microbial communities by comparing 
metagenomes to one another. These studies generally measure the distance between each pair of 
metagenomes in order to investigate the impact of an ecological condition on the composition of microbial 
communities. By computing distances between communities, comparative metagenomic tools also provide 
a way to cluster similar metagenomes together or, on the contrary, distinguish distinct communities. These 
techniques can be used to retrieve similar metagenomes using a query metagenome or to classify a 
metagenome based on characteristics. For whole genome shotgun datasets, these comparisons can be 
achieved by measuring the similarity of the samples in terms of their taxonomic or functional diversity. 
These approaches require the annotation of metagenomic datasets using taxonomic or functional reference 
databases. On the other hand, de novo comparative metagenomic approaches compare metagenomic 
samples based on their sequence content only. Using these approaches, the similarity between datasets is 
measured by evaluating the proportion of shared sequences using the entire dataset, compared to 
Reference-based methods that can be limited by incomplete or biased reference databases (reviewed in 
Comin et al. 2021[1]).

Historically, de novo comparative metagenomic tools using WGS have relied on two distinct approaches: 
read-based and k-mer-based comparisons. While the first studies used alignment-based algorithms such as 
BLAST[2] for comparing reads to one another, the ever-increasing size and number of metagenomic datasets 
quickly required more computationally efficient algorithms. As a result, several approaches emerged to 
retrieve the number of shared reads between two samples and compute a distance based on this measure. 
Compareads[3] and its successor Commet[4] approximate the read similarity between each pair of 
metagenomes to estimate the number of shared reads. However, these algorithms are computationally 
intensive and are difficult to scale to modern-size metagenomic datasets.

Instead of comparing datasets at the read level, another approach is to consider the dataset using a bag-of-
word model, where a metagenomic dataset can be considered as a text composed of DNA words of length k 
(referred to as k-mers). This approach relies on three core tenets: (1) closely related organisms share k-mer 
profiles and cluster together, making taxonomic assignment unnecessary[5]; (2) k-mer frequency is 
correlated with the abundance of an organism[6]; and (3) k-mers of sufficient length can be used to 
distinguish specific organisms[7]. Hence, k-mers spectra can be used to differentiate between samples. The 
most simple and effective approach is the comparison of metagenomic datasets by calculation of pairwise 
distances between datasets on the basis of their composition of k-mers. These approaches first count the 
number of k-mers in the datasets using different algorithms, then calculate a dissimilarity metric between 
pairs of samples based on their k-mer count frequencies.



Page 3 of Ponsero et al. Microbiome Res Rep 2023;2:27 https://dx.doi.org/10.20517/mrr.2023.26 21

Importantly, the all-vs-all comparison of an ever-growing number of metagenomic samples, each composed 
of millions of reads and billions of k-mers, provides a complex challenge in terms of computation time and 
resources. Different approaches have been used to reduce the computing costs of such large-scale analyses. 
Some tools approximate the real similarity distance between metagenomes using subsampling or sketching. 
This approach was notably used in the k-mer-based tool MASH[8] designed for an easy and fast de novo 
comparison of genomes and metagenomes. On the other hand, calculating an actual similarity distance 
between samples is possible and scalable when architectures such as High-Performance Computing or 
Hadoop clusters are used[9,10].

In recent years, several bioinformatic tools that perform k-mer-based de novo comparative metagenomics 
have been released; however, it is not clear how these tools and metrics compare with each other. For 
biologists and domain experts to choose a tool, it is important to understand the limitations and pitfalls 
associated with each approach. To meet this need, we developed sets of simulated metagenomes that 
allowed us to (1) thoroughly assess the relationship between k-mer-based and taxonomy-based distances 
and evaluate the impact of technical and biological variables on these metrics, in particular, the effect of 
sequencing depth, sequencing technology, metagenomic contamination and community diversity; 
(2) evaluate the effect of sketching and filtering methods; and (3) provide an overview of the currently 
available tools for large-scale de novo metagenomic comparative analysis.

METHODS
k-mer-based tools for de novo metagenomic analysis
Each of the tools evaluated in this study was installed from the recommended source following the authors’ 
instructions. When tools were available from several sources, Bioconda was preferred due to simplified 
dependency management. Tools that could not be obtained through Bioconda were directly cloned from 
GitHub or Sourceforge.

All tools were run in a SLURM High Performance Computing (HPC) environment. The standard running 
conditions were four cores and 24 GB of memory. If a tool had higher memory requirements, it received 
more memory but was limited to four threads to keep runtime comparisons consistent. If a tool supported 
paired-end reads, the R1 and R2 files were used; otherwise, only the R1 files were used. If a tool allowed for 
cluster computing commands, they were used, with subjobs limited to four cores and 24 GB of memory. 
Pre-processing, such as read filtering and trimming, was not included in the runtimes. A k-mer size of 
k = 31bp was used for all tools except CAFE which used a k-mer size of 5bp, and all tools were run with the 
default options, excluding threads, memory, cluster computing, and k-mer size options.

Simulated datasets
This study leverages four distinct simulated datasets: (1) SimSet 1 to assess technical effects; (2) SimSet 2 to 
mimic low abundance contamination effects; (3) SimSet 3 to assess the impact of microbial community 
richness; and (4) SimSet 4 to assess the impact of taxonomic diversity.

All simulated datasets were generated using InSilicoSeq v1.5.4[11]. Briefly, this tool uses an error model of 
per-base quality (Phred) scores using Kernel Density Estimation, trained on real sequencing reads, and is 
able to generate reads with realistic quality score distributions for several sequencing platforms, including 
MiSeq, HiSeq, and NovaSeq[11,12]. All simulated metagenomes were generated from complete bacterial and 
archaeal genomes downloaded from RefSeq in November 2022[13].



Page 4 of Ponsero et al. Microbiome Res Rep 2023;2:27 https://dx.doi.org/10.20517/mrr.2023.2621

SimSet 1: technical effects
The simulated dataset 1 (SimSet 1) addressed technical variations between metagenomic datasets and, more 
specifically, differences in sequencing technology and sequencing depth. The dataset is composed of 100 
simulated metagenomes, each containing 25 bacteria species picked randomly from a list of 40 possible 
organisms that were randomly selected from complete genomes available in the RefSeq database[13]. The 
relative abundance of each of the 25 organisms in each simulated metagenome was obtained from a log-
normal distribution.

From the generated relative abundance profiles, InSilicoSeq was used to simulate metagenomes of 
increasing sequencing depth (50K, 100K, 500K, 1M, 5M, 10M, and 50M paired reads), using MiSeq, HiSeq, 
and NovaSeq error profiles.

SimSet 2: human/PhiX contamination effect
The simulated dataset 2 (SimSet 2) aims to evaluate the impact of low and high human DNA and low Phi 
X174 phage contamination in metagenomes. The low human contamination experiment leverages the 
relative abundance profiles used for the SimSet 1, with the random addition of 0 to 2% of human reads. On 
the other hand, the high contamination experiment uses the SimSet 1 relative abundance profile but with 
the random addition of 10% to 25% human reads. The PhiX contamination experiment uses the same 
relative abundance profiles, with a random addition of 0 to 2% Phi X174 reads.

From these contaminated relative abundance profiles, InSilicoSeq was used to simulate metagenomes of 
increasing sequencing depth (50K, 100K, 500K, 1M, 5M, 10M, and 50M paired reads), using HiSeq error 
profiles.

SimSet 3: community richness effect
The simulated dataset 3 (SimSet 3) aims to evaluate the impact of increasing species richness. The dataset is 
composed of 5 sets of 100 simulated metagenomes each, containing 5, 25, 50, 100, or 500 bacterial species 
picked randomly from a list of 10, 40, 80, 130 or 530 possible organisms, respectively. The relative 
abundance of each organism in each simulated metagenome was obtained from a log-normal distribution.

From the generated relative abundance profiles, InSilicoSeq was used to simulate metagenomes of 
increasing sequencing depth (50K, 100K, 500K, 1M, 5M, 10M, and 50M paired reads), using HiSeq error 
profiles.

SimSet 4: community taxonomic richness effect
The simulated dataset 4 (SimSet 4) aims to evaluate the impact of increasing taxonomic diversity. The 
dataset is composed of 3 sets of 100 simulated metagenomes each, containing 50 bacterial species picked 
randomly from a list of 80 possible organisms belonging to the same taxonomic class (Actinomyces) or 
from the same taxonomic family (Mycobacteriaceae). An additional dataset was generated similarly but 
including all possible taxonomic classes. The relative abundance of each organism in each simulated 
metagenome was obtained from a log-normal distribution.

From the generated relative abundance profiles, InSilicoSeq was used to simulate metagenomes of 
increasing sequencing depth (50K, 100K, 500K, 1M, 5M, 10M, and 50M paired reads), using HiSeq error 
profiles.
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Beta-diversity distances between simulated metagenomes
Three distinct types of distance metrics were computed on the simulated metagenomes:

The expected taxonomic beta-diversity distances (Bray-Curtis and presence/absence Jaccard distances) were 
computed on the simulated samples’ taxonomic abundance profiles using the Vegan R package[14].

Read-based taxonomic profiles were obtained using Kraken2[15] and Bracken[16] on the simulated 
metagenomes using the “Standard plus protozoa & fungi database” (from https://benlangmead.github.io/
aws-indexes/k2 on 05.2021). The read-based taxonomic beta-diversity distances (Bray-Curtis and presence/
absence Jaccard distances) were computed on the simulated samples’ taxonomic abundance profiles using 
the Vegan R package.

k-mer-based beta-diversity distances were computed using Simka (Bray-Curtis and presence/absence 
Jaccard distances), with controlled k-mer length. The minimum abundance k-mer filter was set to 2 and the 
maximum abundance k-mer filter to 999999999[10].

Spearman correlations between the different types of beta-diversity distances were assessed using the Stats R 
package v3.6.2.

Effect of sketched k-mer distances
A simulated dataset of 100 simulated metagenomes composed of 25 organisms each was generated using 
InSilicoSeq for a sequencing depth of 5 million reads and with the HiSeq error model. The exact k-mer-
based Bray-Curtis and presence/absence Jaccard distances were obtained for determined k-mer lengths 
using Simka with the default filtering parameter. Sketched k-mer profiles and distances were obtained using 
SimkaMin[17] at determined k-mer and sketch sizes.

The absolute difference between the exact and sketched k-mer distance was calculated for each sample pair 
comparison. The correlation between the expected Bray-Curtis distances on the simulated taxonomic 
profiles and the sketched k-mer-based distances was calculated using a Spearman correlation.

Minimum and maximum abundance k-mer filter effects
For this experiment, a simulated dataset of 100 simulated metagenomes composed of 25 organisms each was 
generated using InSilicoSeq for a sequencing depth of 5 million reads and using an HiSeq error model. K-
mer-based Bray-Curtis and presence/absence Jaccard distances were obtained for a determined k-mer 
length using Simka without a k-mer filter. Distances also were computed on the same simulated 
metagenome dataset using the minimum k-mer abundance or maximum k-mer abundance parameter from 
Simka. The absolute difference between the unfiltered and filtered k-mer distance was calculated for each 
sample pair comparison. The correlation between the expected Bray-Curtis distances on the simulated 
taxonomic profiles and the filtered k-mer-based distances was calculated using a Spearman correlation.

Benchmark on infant and mother metagenomic dataset
Publicly available fecal metagenomes from infants and pregnant mothers were retrieved from the European 
Nucleotide Archive (ENA Bioproject ID: PRJEB52774). The sample collection and sequencing are described 
in a previously published study[18]. Sequences were trimmed and quality filtered using FastQC v0.11.9 and 
Trim Galore v0.6.6 with default parameters. Quality-filtered sequences were screened to remove human 
read sequences using Bowtie2 v2.4.2 against the Human genome (Human Build 38, patch release 7). After 
quality control and human read filtering, infant fecal metagenomes containing less than 10 million paired-
end reads and mother fecal metagenomes with less than 20 million paired-end reads were discarded. 

https://benlangmead.github.io/aws-indexes/k2
https://benlangmead.github.io/aws-indexes/k2
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Taxonomic profiling of the metagenomic samples was performed using Kraken2 v2.1.1[15] against the 
HumGut database[19], and Bracken v2.6.1 was run on Kraken2 outputs[16]. PCoA visualization of the 
distances computed between sample pairs was generated using the ecodist R package v2.0.9.

Before hierarchical clustering of the samples, low-abundance species (< 0.01% relative abundance and 
< 0.1% prevalence) were filtered out. Then, the dataset was transformed into relative abundances, and a 
distance matrix was calculated from the transformed data using the Bray-Curtis or presence/absence using 
the Ecodist function. Hierarchical clustering was done with the function hclust and with the Wald.D2 
method. Clusters’ purity was calculated as follows: (1) each cluster was assigned to the sample group, which 
is most frequent in the cluster; (2) the accuracy of this assignment was measured by counting the number of 
correctly assigned samples; and (3) dividing the accuracy by the total number of samples.

PERMANOVA testing was performed using the adonis2 function from the vegan R package using 999 
permutations.

RESULTS
Comparing k-mer-based and taxonomy-based analysis
To assess and compare beta-diversity distances obtained using Reference-based and k-mer-based 
approaches, four simulated short-reads metagenomic datasets were generated. Each dataset was composed 
of 100 metagenomes, and each sample had a known taxonomic composition and relative abundance profile. 
Pairwise beta-diversity metrics were computed between all pairs of samples in the dataset using the true 
taxonomic profile at the species level and is referred to as the “expected taxonomic-based” beta-diversity 
metric. Using the generated sample taxonomic composition and profiles, simulated metagenomic reads 
were generated with a given sequencing depth and sequencing error model. The k-mer-based beta-diversity 
distances between each pair of simulated metagenomes were assessed using Simka[10] and are referred to as 
“k-mer-based” beta-diversity metrics. Finally, the simulated metagenomes were profiled using the read 
classifier Kraken2 and Bracken. The read counts obtained were used to compute a “read-based taxonomic” 
beta-diversity metric at the species level. It is important to note that because all genomes used to generate 
the mock communities are present in the Kraken2 database, the impact of unknown taxa in metagenomes is 
not investigated in this experiment. The correlation between the beta-diversity metrics for the same sample 
pairs was measured using a Spearman correlation. Figure 1 provides an overview of the simulated 
experiment.

Technical effects
We first evaluated the correlation between taxonomic-based beta-diversity and k-mer-based metrics in 
simple simulated metagenomes and assessed the potential impact of technical variables such as sequencing 
technology and sequencing depth. A simulated dataset (SimSet 1) of 100 simulated metagenomes composed 
of 25 bacterial species was generated for three different sequencing technologies (HiSeq, MiSeq, and 
NovaSeq) and at different sequencing depths (50K, 100K, 500K, 1M, 5M, 10M, and 50M paired reads). The 
“expected taxonomic-based” beta-diversity distances (Bray-Curtis and presence/absence Jaccard distance) 
were computed at the species level between each pair of samples using the true taxonomic profiles used to 
generate the simulated metagenomes. The same beta-diversity distances were computed on the simulated 
metagenomes’ k-mer composition using Simka at different k-mer lengths (10, 15, 20, 25, and 30)[10]. The 
correlation between expected taxonomic and k-mer-based beta-diversity distances was assessed for each 
setting using Spearman correlations.
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Figure 1. Overview of simulated experiments. Simulated metagenomic reads were generated using InSilicoSeq. The k-mer spectra were 
obtained using Simka and read-based profiles using Kraken2 and Bracken.

On simple communities of only 25 organisms, the expected taxonomic and k-mer-based Bray-Curtis 
distances are overall well correlated (rho estimate > 0.75 in most tested conditions) [Figure 2A]. The 
correlation is linear [Figure 2B], and both Spearman and Pearson correlations give consistent results (not 
shown). The correlation between expected taxonomic and k-mer-based Bray-Curtis distances is affected by 
both the k-mer size and sequencing depth, with the strongest correlations observed for a k-mer size above 
20bp and a sequencing depth above 1 million reads [Figure 2A]. On the other hand, the sequencing 
technology had only a minimal impact on the observed correlations [Supplementary Figure 1].

The correlations between expected taxonomic and k-mer-based presence/absence Jaccard distances were 
globally poor, with a rho estimate below 0.5 in most tested conditions [Figure 2C and D]. Similar to the 
results for the Bray-Curtis distances, longer k-mer sizes (> 15bp) and higher sequencing depth (> 1M reads) 
improved the correlations with the expected Jaccard distances, while the choice of sequencing technologies 
only had a minimal impact [Supplementary Figure 1].

Notably, in all tested conditions, the correlations between expected taxonomic and k-mer-based distances 
were poor when considering shallow sequencing depth below 1M reads. Given the simple composition of 
the mock communities, composed of only 25 organisms each, read-based classifiers such as Kraken2 allows 
for a complete description of the total community richness even at the shallowest sequencing depth (50k 
reads). However, k-mer-based beta-diversity distances computed on shallow datasets are overestimated, 
with most samples-to-samples k-mer-based distances close or equal to 1 [Supplementary Figure 2].

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
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Figure 2. Impact of Sequencing technology, sequencing depth and k-mer length on the correlation between expected taxonomic and k-
mer-based beta-diversity metric. (A) Spearman correlations between the expected taxonomic and k-mer-based Bray-Curtis distance 
using the HiSeq sequencing error model; (B) Expected taxonomic against the k-mer-based Bray-Curtis distances (k = 30bp) obtained for 
a simulated dataset of 100 metagenomes simulated at a sequencing depth of 5 million paired reads using the HiSeq sequencing error 
model; (C) Spearman correlations between the expected taxonomic and k-mer-based presence/absence Jaccard distance using the 
HiSeq sequencing error model; (D) Expected taxonomic against the k-mer-based presence/absence Jaccard distances (k = 30bp) 
obtained for a simulated dataset of 100 metagenomes simulated at a sequencing depth of 5 million paired-reads using the HiSeq 
sequencing error model.

We next assessed the impact of human DNA contamination on the observed correlations between true 
taxonomic and k-mer-based beta-diversity distances. A new simulated dataset (SimSet 2) composed of 100 
simulated metagenomes, each containing 25 bacterial species, was created using the HiSeq error model and 
the same range of sequencing depth as the SimSet 1. Human reads were added randomly to the simulated 
metagenomes to reach a relative abundance between 0% and 2% of the total reads [Figure 3A]. The Bray-
Curtis beta-diversity distances between samples were computed as previously, and the correlation between 
k-mer-based and expected taxonomy distances was assessed. Interestingly, the overall impact of random 
and low human DNA contamination on the correlations was minimal in all settings tested [Figure 3B], and 
similar results were obtained for the presence/absence Jaccard index (not shown).

Using similar settings, we created a simulated dataset mimicking low contamination by the E.coli phage Phi 
X174, classically used to spike metagenomic sequencing runs. In this dataset, the Phi X174 reads accounted 
for less than 2% of the total reads [Figure 3C]. As for the low human read contamination, this low Phi X174 
read contamination had a minimal impact on the correlations between k-mer-based and expected 
taxonomy distances [Figure 3D].
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Figure 3. Impact of low abundance human and PhiX174 sequence contaminations on the correlation between expected taxonomic and k-
mer-based beta-diversity metric. (A) Distribution of the percentage of human reads content in the simulated dataset; (B) Spearman 
correlations between the expected taxonomic and k-mer-based Bray-Curtis distance for the human contaminated dataset; 
(C) Distribution of the percentage of PhiX174 reads content in the simulated dataset; (D) Spearman correlations between the expected 
taxonomic and k-mer-based Bray-Curtis distance for the PhiX174 contaminated dataset.

While low contaminations from both human and Phi X174 sequences had limited impact on the k-mer-
based beta-diversity distance estimations, a noticeable impact could be seen in the case of high 
contamination settings. Using a simulated dataset mimicking high contamination of human DNA (10% to 
25% of the reads), we observed a degraded correlation between the k-mer-based and true taxonomy-based 
Bray-Curtis [Supplementary Figure 3].

Community composition effects
While the impact of technical effects was assessed on a simple community composed of 25 bacterial species, 
most real-world metagenomes are characterized by higher species richness. We next assessed how k-mer-
based beta-diversity distances compare to expected beta-diversity distances on more complex artificial 
communities. The SimSet 3 is composed of five datasets of 100 artificial metagenomes each, composed of an 
increasing number of bacterial taxa (5, 25, 50, 100, and 500 organisms), and simulated reads were generated 
to simulate a range of sequencing depth (500K, 1M, 5M, and 10M paired reads) using a HiSeq error model.

When considering communities with increasing richness, the observed correlations between the expected 
taxonomic and k-mer-based Bray-Curtis metrics are more susceptible to shallow sequencing depth effects. 
While expected taxonomic and k-mer-based Bray-Curtis metrics between simple communities are well 
correlated with each other at shallow sequencing depth [Figure 4A and B], the correlation is decreased when 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
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Figure 4. Impact of increasing community species richness on the correlation between expected taxonomic and k-mer-based beta-
diversity metric. Spearman correlations between the expected taxonomic and k-mer-based Bray-Curtis distance for simulated 
communities containing an increasing number of taxa, for a simulated sequencing depth of (A) 500K paired-reads; (B) 1 Million paired-
reads; (C) 5 Million paired-reads; or (D) 10 Million paired-reads.

considering more complex communities at the same sequencing depth [Figure 4C and D]. Strikingly, for the 
simulated community composed of 500 organisms, the correlation between the expected taxonomic- and k-
mer-based Bray-Curtis metrics was weak (rho estimate of 0.52 of k = 20bp), even for a sequencing depth of 
10 million reads.

A similar impact of the increasing community diversity and sequencing depth is observed for presence/
absence Jaccard index, but as observed for the SimSet 1, the expected presence/absence Jaccard index and k-
mer-based presence/absence Jaccard indices were globally poorly correlated in all tested situations 
[Supplementary Figure 4].

Community taxonomic diversity
In the previous simulated dataset (SimSet 3), the richness of a simulated community was considered in 
terms of the number of different species. Next, we assessed the effect of a reduced taxonomic diversity by 
creating three simulated sets of 50 organisms from any bacterial class (referred to as “All taxa dataset”), only 
from the Actinomycetes class (referred to as “same class” dataset) or from the same Mycobacterium family 
(referred to as “same family” dataset). The Mycobacterium family was chosen as it contains more than 100 
species, including several major human pathogens as well as numerous other environmental species. As 
previously, the simulated metagenomes were generated for a range of sequencing depths (500K, 1M, 5M, 
and 10M paired reads) using a HiSeq error model.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
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Figure 5. Impact of decreasing taxonomic diversity on the correlation between expected taxonomic and k-mer-based beta-diversity 
metric. Spearman correlations between the expected taxonomic and k-mer-based Bray-Curtis distance for simulated communities 
containing 50 taxa from all possible taxonomic classes (“All taxa”), from the Actinomycetes class (“Same class”) or from the 
Mycobacterium family (“Same family”). Simulated metagenomes were generated to simulate a sequencing depth of (A) 500K paired 
reads; (B) 1 Million paired reads; (C) 5 Million paired reads; or (D) 10 Million paired reads.

The correlation between the expected taxonomic Bray-Curtis and the k-mer-based Bray-Curtis metrics were 
comparable for the three datasets at all sequencing depths. The correlation was markedly lower for a k-mer 
size of 15bp for the “same class” and “same family” datasets than for the “all taxa” dataset [Figure 5]. The 
results for the presence/absence Jaccard index were comparable between the three datasets at all tested k-
mer sizes and sequencing depths [Supplementary Figure 5].

Assessing the effect of sketching
In order to alleviate the high computational requirements necessary to compute exact k-mer counts for 
large-scale metagenomic datasets, dimensionality reduction approaches were proposed to obtain a simpler 
feature vector description of a metagenomic sample. Tools such as MASH[8], SimkaMin[17], HULK[20], 
SourMash[21], and kWip[22] use a local sensitive hashing to randomly subsample the k-mer space of each 
sample, reducing the set of sequences into sketches. Beta-diversity distances such as Bray-Curtis and Jaccard 
indices can be estimated on such sketches, considerably reducing the time required for distance 
computation between samples.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
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Figure 6. Impact of sketching k-mer on the estimation of k-mer-based Bray-Curtis distances. (A) Absolute differences between the 
exact k-mer-based Bray-Curtis distances and sketched Bray-Curtis distances for an increasing Sketch size; (B) Exact k-mer-based 
against the sketched Bray-Curtis distances (k = 30bp) obtained for a simulated dataset of 100 metagenomes simulated at a sequencing 
depth of 5 million paired reads using the HiSeq sequencing error model.

In order to assess the effect of sketching size on the precision of the k-mer-based distance, we computed the 
absolute difference between exact and sketched k-mer-based Bray-Curtis and presence/absence Jaccard 
distances obtained on a dataset of simulated metagenomes composed of 25 organisms sequenced at 5 
million reads using a HiSeq error model (SimSet 1). As expected, the difference between exact k-mer and 
sketched Bray-Curtis indices decreased as the sketch size increased [Figure 6]. Strikingly, for all considered 
k-mer lengths, even small sketch sizes allowed for a reliable estimation of the indices. However, increasing 
the sketch size above 50K k-mers only marginally improved the estimated distance. As expected from a 
presence/absence distance metric, the estimation of presence/absence Jaccard distances was noisier than for 
the Bray-Curtis distances, even considering the large sketch size [Supplementary Figure 6].

Assessing the impact of k-mer filtering
In order to improve upon the k-mer-based beta-diversity measures, several tools enable users to filter out or 
weigh k-mers for consideration in the comparison between samples. In particular, the ability to filter 
extremely low abundance k-mers or extremely highly abundant k-mers was proposed as a method to 
remove potentially erroneous k-mers due to sequencing error or to filter out contaminants in the 
metagenomes[10]. While the rationale behind the use and chosen thresholds for these filters has been mostly 
empirical, some tools, such as Simka, implement a default filtering of low (n < 2) and high abundance k-
mers. In order to assess the impact of k-mer filtration on the k-mer-based distance metrics, the Bray-Curtis 
and presence/absence Jaccard index was computed between pairs of samples in a simulated community 
composed of 25 random organisms, sequenced at 5 million reads using a HiSeq error model (SimSet 1). 
Distances obtained on the same sample pairs before and after filtering of k-mers were compared to the 
expected taxonomic beta-diversity metric.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
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Figure 7. Impact of low abundance k-mer filter on the estimation of k-mer-based Bray-Curtis distances. (A) Absolute differences 
between the exact k-mer Bray-Curtis distances and distances after low abundance k-mer filter; (B) Spearman correlation between the 
expected taxonomic Bray-Curtis index and the k-mer-based Bray-Curtis index when increasing the low abundance k-mer filter; 
(C) Absolute differences between the exact k-mer presence/absence Jaccard distances and distances after low abundance k-mer filter; 
(D) Spearman correlation between the expected taxonomic presence/absence Jaccard index and the k-mer-based Jaccard index when 
increasing the low abundance k-mer filter.

We first assessed the impact of filtering low abundance k-mers on the Beta-diversity distances, by
comparing the k-mer-based distances without filter to the same distance obtained when increasing the
minimum abundance k-mer filtering threshold. As expected, the filtering of low-abundance k-mers had a
more important effect on the presence/absence Jaccard indices compared to the Bray-Curtis indices
[Figure 7A and B]. Importantly, for both metrics, using the minimum abundance k-mer filter degraded the
correlation between the expected taxonomic and k-mer-based taxonomic distances for both metrics
[Figure 7C and D].

Similarly, we assessed the impact of filtering high abundance k-mers, by comparing the k-mer-based
distances without filter to the same distance obtained when increasing the maximum abundance k-mer
filtering threshold. As previously, the filtering of high abundance k-mers had a more important effect on the
presence/absence Jaccard indices [Supplementary Figure 7]. Expectedly, the maximum abundance filter
effect depends on the k-mer size, because a larger proportion of shorter k-mer size will be filtered out for
the same maximum abundance threshold.

Benchmark of published k-mer de-novo comparative tools
Finally, we reviewed and compared published de-novo comparative metagenomic tools to assess each tool’s
characteristics and usability on a real-world dataset. A total of 12 previously published de-novo comparative
metagenomic tools were found in the literature [Table 1] between 2016 and 2020. Published tools could be
grouped into three broad approaches, (1) read-based k-mer comparison tools that compare metagenomes
on their read content; (2) complete k-mer spectra comparison tools that compare metagenomes on their
complete k-mer content; and (3) sketched k-mer spectra tools that leverage a sketching approach to
approximate k-mer-based distances. We installed and benchmarked each tool’s computing requirements in
terms of CPU time and memory usage on a dataset of 30 metagenomes (74 GB). LIBRA was excluded as the

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
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Table 1. Summary of tools, overview of the algorithm, reference to the publication and computational resources for the pairwise 
comparison of 30 metagenomes

Name Algorithm summary Output distance Publication Resources

MASH Sketched  
k-mer spectra

Presence/absence Jaccard Ondov et al. 2016[8] CPU: 4 
Mem: 4.21 MB 
Runtime: 01:04:36

kWIP Sketched  
k-mer spectra

Other Murray et al. 2017[22] CPU: 4 
Mem: 150.58 GB 
Runtime: 03:24:55

SourMash Sketched  
k-mer spectra

Other Pierce et al. 2019[21] CPU: 4 
Mem: 88.63 MB 
Runtime: 02:26:23

HULK Sketched  
k-mer spectra

Presence/absence Jaccard  
Bray-Curtis 
& Others

Rowe et al. 2019[20] CPU: 4 
Mem: 2.2 GB 
Runtime: 04:10:51

Simka-min Sketched  
k-mer spectra

Presence/absence Jaccard  
Bray-Curtis

Benoit et al. 2020[17] CPU: 4 
Mem: 24 GB 
Runtime: 00:20:08

Simka Complete  
k-mer spectra

Presence/absence Jaccard  
Bray-Curtis 
& Others

Benoit et al. 2016[10] CPU: 4 
Mem: 4.10 GB 
Runtime*: 02:37:27

Metafast k-mer based,  
de Bruijn graphs

Bray-Curtis Ulyantsev et al. 2016[24] CPU: 4 
Mem: 66.98 GB 
Runtime: 03:26:11

LIBRA Complete  
k-mer spectra 

Bray-Curtis  
& Others

Choi et al. 2019[9] Not computed (requires Hadoop cluster)

Triagetool Read-based  
k-mer comparison

Other Fimerelli et al. 2013[23] Not computed (not updated for recent systems)

Compareads Read-based  
k-mer comparison

Other Maillet et al. 2012[3] Not computed (tool deprecated)

Commet Read-based  
k-mer comparison

Other Maillet et al. 2014[4] CPU: 4 
Mem: 1.07 GB 
Runtime: 17:07:14

Cafe** Sketched k-mer spectra Other Lu et al. 2017[26] CPU: 4 
Mem: 6.39 GB 
Runtime: 00:03:53

*For tools with cluster commands, the subjobs also received four cores and 24 GB of memory. Runtime was calculated by summing the runtime of 
the main job and all subjobs. Each counting subjob for Simka averaged 4 GB of memory utilized; **Cafe was run using a k-mer size of 5bp.

tool requires a Hadoop cluster to be run[9], Comparead[3] was excluded since the tool was deprecated when 
Commet was published[4], and TriageTool[23] could not be installed and run as the tool was not updated for 
current systems. As expected, Commet, which used a read-based comparison, required a significantly longer 
computational time than the other k-mer-based tools. Tools relying on a sketching approach to accelerate 
their computation finished the pairwise comparison quickly, between 20 min to 4 h. Strikingly, Simka, 
which computes complete k-mer spectra finished the comparison in a comparable time with the same 
resources. Finally, Metafast[24] required a larger memory allocation to perform this comparison and kWIP[22] 
memory requirements were dependent on the size of the k-mer countgraph generated by khmer[25]. A max 
sketch size of 1e09 utilized 17 GB of memory, while a max sketch size of 1e10 utilized 150.58 GB of memory. 
Cafe was originally designed to perform k-mer-based comparisons using a small k-mer size, and the authors 
previously demonstrated the tool’s performance on metagenomic datasets using a k-mer size of 5bp[26]. In 
order to fairly assess the computational requirements of all tools on a similar task, we attempted to run the 
tool using a k-mer size of 31bp. However, these parameters required a large memory size that could not be 
accommodated. Presented below are therefore the computational requirements of Cafe using a k-mer size of 
5pb.
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Figure 8. Comparison of taxonomic and k-mer-based approaches on a small dataset of infant and maternal fecal metagenomes. 
(A) Average composition of the samples grouped by sample origin at the Family level, taxonomic families with a prevalence below 10% 
and a relative abundance below 5% were grouped as “Other”; (B) PcoA of the samples on the taxonomic profiles at the species level 
using a Bray-Curtis distance; (C) PcoA of the samples on the taxonomic profiles at the species level using a presence/absence Jaccard 
distance; (D) PcoA of the samples on the k-mer spectra using a Bray-Curtis distance (E) PcoA of the samples on k-mer spectra profiles 
using a presence/absence Jaccard distance. VD infants: Vaginally delivered infants.

We next compared the k-mer-based tools on a clustering task using a real metagenomic dataset of 30 
metagenomes from 3-week-old infant and adult fecal samples. The samples’ taxonomic profiles were 
obtained using a read classifier, and the dataset was visualized using a PcoA on Bray-Curtis or presence/
absence Jaccard. At the taxonomic level, the dataset was composed of three distinct sample clusters, mother 
samples, infants born by C-Section, and infants born vaginally [Figure 8A]. Hierarchical clustering was 
performed on the computed distances using a ward linkage method, and the purity of the obtained clusters 
was calculated. The taxonomic Bray-Curtis distance allowed for a clear separation between the three types 
of samples (cluster purity = 1), while the presence/absence Jaccard distance separated only infants from 
mother samples but did not allow for a clear separation of the samples according to delivery mode (cluster 
purity = 0.67) [Figure 8B and C]. K-mer-based distances were computed for these samples using Simka, 
SimkaMin, Mash, HULK, Metafast, kWIP, and SourMash using the same k-mer size (k = 31bp). With 
complete k-mer spectra, using Simka, the data structure observed was well conserved, and samples were 
clearly separated as expected (cluster purity = 0.97 for Bray-Curtis, cluster purity = 0.9 for presence/absence 
Jaccard) [Figure 8D and E]. Using the default parameters settings, most tools were able to cluster the 
samples as expected (cluster purity > 0.8), with the exception of Sourmash (cluster purity = 0), as the default 
sketch size parameters were too small to allow for a correct approximation of the sample’s distances. 
Additionally, CAFE was not able to recapitulate the expected data structure using the Cosine or D2Star 
distance metric and a k-mer size of 5pb (cluster purity < 0.5 for all conditions tested) [Supplementary Figure 
8]. The cluster purity metrics obtained for all tools are available in Supplementary Table 1.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
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Figure 9. Comparison of taxonomic and k-mer-based approaches on a large dataset of infant fecal metagenomes. (A) Average 
composition of the samples grouped by sample origin at the Family level, taxonomic families with a prevalence below 10% and a relative 
abundance below 5% were grouped as “Other”; (B) PcoA of the samples on the taxonomic profiles at the species level using a Bray-
Curtis distance; (C) PcoA of the samples on the taxonomic profiles at the species level using a presence/absence Jaccard distance; 
(D) PcoA of the samples on the k-mer spectra using a Bray-Curtis distance (E) PcoA of the samples on k-mer spectra profiles using a 
presence/absence Jaccard distance.

Finally, we compared the tools’ distances obtained on a large dataset of 224 samples from infant fecal 
microbiota sampled at 3 weeks, 6 months, and 12 months of age. These fecal samples were selected as they 
enable the assessment of the tools on a gradient of microbiota change [Figure 9A]. The tool’s ability to 
recapitulate the gradient data structure was assessed using PCoA visualizations and PERMANOVA testing. 
Using taxonomic annotation, both Bray-Curtis and presence/absence Jaccard distances were able to 
distinguish the sample time points (PERMANOVA P < 0.001, permutations = 999) [Figure 9B and C]. k-
mer-based distances were computed for these samples as previously, with the exception of Commet, which 
could not scale to this larger dataset size. As observed in the small benchmark, the data structure observed 
using k-mer-based Bray-Curtis or presence/absence Jaccard distances recapitulates well the taxonomic data 
structure [Figure 9D and E]. Using the default parameters settings, most tools were able to separate the 
samples by age (PERMANOVA P < 0.001, permutations = 999), except for SimkaMin using the presence/
absence Jaccard distance, whose default sketch size was not appropriate for this dataset. Additionally, CAFE 
was not able to recapitulate the expected data structure for all tested distances using a k-mer size of 5bp 
(PERMANOVA P > 0.001, permutations = 999) [Supplementary Figure 9].

DISCUSSION
A central task in the analysis of metagenomic samples is the ability to compare microbial communities from 
different samples. Comparative metagenomics analysis typically includes measuring a distance, often an 
ecological beta-diversity distance between pairs of metagenomes, and the resulting distance matrix can be 
used for various tasks, such as visualization, clustering, or retrieval. De novo comparative metagenomic 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202307/mrr-2023-26-SupplementaryMaterials.pdf
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approaches aim to allow metagenomic comparisons in conditions where Reference-based methods are 
impossible given high novelty or bias due to the underrepresentation of taxa in a reference database. These 
computational approaches compare metagenomic samples solely on their k-mer composition, thus 
bypassing the need for taxonomic profiling. These types of approaches, which take into account both 
known and unknown taxa in the microbiota, are particularly relevant when analyzing understudied 
ecosystems where microbial unknowns are prevalent[27].

Very few previous studies have compared taxonomic Beta-diversity metrics to k-mer-based distances. 
Notably, Dubinkina et al. explored the relationship between k-mer-based and taxonomy-based beta-
diversity measurements, using simulated metagenomic datasets composed of ten human gut bacteria[5]. 
Using these simple simulated datasets, the authors reported a high correlation between taxonomy-based and 
k-mer-based Bray-Curtis distances (rho = 0.88 with k = 10bp) and observed that the correlation increases 
with longer k-mer sizes. Importantly, due to computational constraints, the authors only explored these 
correlations for a small k-mer size (maximum 12bp). These observations were later confirmed using a k-
mer size above 21bp by Benoit et al., who demonstrated a strong correlation (rho = 0.885 with k = 21pb) 
between k-mer-based and taxonomic-based Bray-Curtis metrics on real metagenome datasets from the 
Human Microbiome Project (HMP)[10]. In this study, we built on these prior works and used simulated 
metagenomes to extensively compare the correlation between taxonomy-based and k-mer-based beta-
diversity distances. We focused our analysis on two commonly used ecological metrics: the quantitative 
Bray-Curtis index and the presence/absence Jaccard index. As previously observed by Dubinkina et al., the 
correlation between taxonomic and k-mer-based beta-diversity distances improved when the k-mer length 
increased and reached a plateau for k-mer lengths above 20bp[5].

Using simulated metagenomic datasets of increasing sequencing depth, we showed that the correlation 
between taxonomic and k-mer-based distances was strongly impacted by the number of reads in the 
metagenomes. The correlation increased with the sequencing depth, and k-mer-based distances measured 
between shallow metagenomes were close to 1 (completely dissimilar). This result suggests that k-mer-based 
distances at shallow sequencing depth tend to overestimate the dissimilarity between metagenomes. This is 
further confirmed when comparing the results obtained for communities of increased richness. While a 
strong correlation between the expected taxonomic and k-mer-based Bray-Curtis distance was measured at 
a sequencing depth of 5M reads for simple communities of 25 organisms, the correlation dropped in the 
same conditions for more complex communities composed of 500 organisms.

While sequencing depth and community richness had a notable impact on the correlation between expected 
and k-mer-based distances, no major impact was found for the sequencing technology and low abundance 
sequence contaminations. These experiments demonstrate a global resilience of k-mer-based distances 
towards low k-mer noise. This is in accordance with prior experiments, showing that low-rate SNP 
mutation had a minor impact on the k-mer-based distances[5]. Additionally, we assessed the effect of 
community phylogenetic richness on the k-mer-based distances. This experiment showed little impact of 
the phylogenetic richness when considering long k-mer size above 20bp.

Even if de novo k-mer-based methods are globally scalable, applying these methods to very large 
metagenomic projects containing thousands of metagenomes is still a computational challenge. In order to 
reduce the computational time of k-mer-based comparisons, several tools choose to approximate pairwise 
distances by subsampling the k-mer space, instead of considering the billions of k-mers typically present in 
metagenomic projects. Here we show that these sketched approaches allow for a robust estimation of the k-
mer-based distance at a sketch size of 1 million k-mers or above. Importantly, the estimation is more precise 
for quantitative-based distances such as the Bray-Curtis metric than for presence/absence distances.
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Finally, we assessed the impact of k-mer filtering on the k-mer-based distance computed between samples 
in a simulated metagenomic dataset. Filtering of low-abundance k-mers was proposed as a solution to 
palliate sequencing errors, while the filtration of high-abundance k-mers aims to remove potential sequence 
contaminants. Additionally, filtering out the rare k-mers reduces the computational requirements of the 
comparison by reducing the number of unique k-mers to be taken into account[10]. In the conditions chosen 
for the simulated experiment (simple mock communities of 25 organisms each, sequenced at 5 million 
reads), applying a low abundance k-mer filter consistently degraded the correlation between expected and 
k-mer-based distances, even for a k-mer minimum abundance filter of 2. Importantly, while our simulated 
metagenomes allow for realistic modeling of sequencing errors, we acknowledge that additional sequencing 
errors not simulated in our experiments could be present in real metagenomic datasets. As expected, the 
potential impact of k-mer filtering is particularly important to consider when using distances such as the 
presence/absence Jaccard distance.

To our knowledge, there are 12 tools currently published for k-mer-based de novo comparative 
metagenomic tasks. Older tools, such as Commet, TriageTool, and Compareads, used k-mers to compare 
metagenomes in terms of read content. However, these approaches are unable to scale to modern 
metagenomic dataset sizes. More recent approaches compare datasets on their k-mer content directly. We 
benchmarked all de-novo comparative metagenomic tools that could be installed and run on a dataset of 30 
metagenomes. Most tools were able to compute pairwise distances in less than 5 h. Strikingly, Simka 
allowed for a comparison of the samples on their complete k-mer spectra in less than 3 h, a run time 
comparable to other tools such as Mash or Sourmash that use a sketching approach. The fastest tool in this 
benchmark was SimkaMin, which was able to perform the comparison in less than 30 minutes. Finally, we 
compared the output of all tools on two real metagenomic datasets, and assessed if the tools were able to 
recapitulate data structures observed taxonomically. Importantly, most of the tested k-mer-based de novo 
tools were able to successfully recapitulate this data structure using the standard parameters, with the 
exception of CAFE, whose recommended small k-mer size (5-13bp) seems not to be appropriate for a fine-
scale exploration of metagenomic differences.

Recommendations for de novo comparative metagenomic users
From the experiments and benchmarks performed in this study, we highlight key points for users interested 
in applying de novo comparative methods to their metagenomic datasets. In terms of usability, ease of 
installation, and computational requirements, we believe that Simka allows for a fast and accurate k-mer-
based comparison of metagenomic datasets, and SimkaMin provides an alternative for the fast estimation of 
Bray-Curtis and presence/absence Jaccard distances for very large-scale datasets or for users with limited 
computational resources.

In accordance with previously published observations, we recommend using a k-mer length of 20bp or 
above to measure k-mer-based Bray-Curtis distances between metagenomes, in order to obtain results that 
are well correlated with taxonomic-based distances. However, we highlight here that presence/absence k-
mer-based metrics such as the presence/absence Jaccard do not correlate well with the equivalent 
taxonomic-based distances. Importantly, our experiments also show that sequencing depth can have a 
drastic effect on the k-mer-based distances, and users should look out for inflation of k-mer distances close 
to or equal to 1. Finally, users should limit their use of minimum abundance k-mer filters to cases where 
they strongly suspect a large number of erroneous k-mers, or in case of computational limitations. 
However, in this situation, the users should refrain from using presence/absence distances, as they are most 
affected by the filtration of k-mers.
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Limitations and future directions
This study aimed to provide an overview of the current k-mer-based de novo comparative approaches, 
evaluating their strengths and current limitations. Here, we highlight additional limitations and future 
research directions that are particularly interesting, although outside the scope of this current study. In 
particular, our study focused on k-mer-based tools and showed their applicability to short-read sequencing 
metagenomes. Importantly, k-mers fail to distinguish between similar sequences arising from high 
sequencing error rate. Error tolerance is particularly important for long reads technologies (Oxford 
Nanopore Technologies or Pacific Biosciences of California sequencing platforms). To allow a deterministic 
level of tolerance for base mismatches, several authors have proposed to replace k-mers with spaced 
seeds[28,29]. Additionally, we focused here on tools performing comparative metagenomic tasks, but further 
studies should also include additional k-mer-based tools, such as KmerGo, which capture group-specific k-
mers between groups of metagenomic sequencing datasets[30].
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