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Abstract
This paper addresses themulti-sensor fusion filtering problem for a class of linear discrete time-varying systems with
censored measurement, described by the Tobit model, and scheduled by dynamic event-triggering protocols with
token bucket specification. A dynamic event-triggering mechanism is first used to determine whether to transmit
measurements under the token bucket specification, allowing transmission only if there are sufficient tokens and if
the event-triggering condition is satisfied. Next, two indicator variables are denoted to represent the combined impact
of the dynamic event-triggering protocol and the token bucket specification. A local Tobit Kalman filtering algorithm
is then designed for each node by minimizing the trace of the filtering error covariance matrix under censoring and
information transmission protocols’ influence. Subsequently, all local estimates from each node are transmitted to
the fusion center, where global estimates are generated using a federal fusion rule. The global estimates with suitable
weights are sent back to every node for predictions at subsequent time instants. Finally, an illustrative simulation
example is used to evaluate performance of this fused filtering scheme proposed in this paper.
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1. INTRODUCTION
As is well known, multi-sensor fusion filtering (MSFF) refers to the integration of information from different
sensors to enhance the performance of the filtering scheme [1]. To date, multi-sensor information fusion tech-
nology has been extensively applied in a variety of fields, including target localization [2,3], fault detection [4],
environmental monitoring [5], signal processing [6], image processing [7], etc. In general, multi-sensor fusion
falls into two categories: centralized and distributed [8]. In the former, the raw data from each sensor is di-
rectly transmitted to the fusion center for filtering processing [9]. In contrast, the latter manner involves the
fusion center integrating available estimates from local filters to generate optimal or suboptimal estimates [10].
While the precision of distributed fusion filtering may not match that of centralized fusion, its advantages in-
clude reducing the burden on the central processor, lowering communication bandwidth requirements, and
enhancing system reliability and robustness. These distinguished advantages have led to widespread attention
towards distributed fusion filtering schemes in recent years [11].

In networked control systems, due to harsh environmental conditions, limitations in sensor capabilities, poor
signal transmission line quality, and hardware or software failures in sensors, nonlinearities are inevitable in the
actual systemmeasurement output. These nonlinearities include, but are not limited to, censoring [12], channel
fading [13], quantization [14], saturation [15], etc. If not handled properly, these nonlinear factors may even affect
the stability of the filtering error system. When designing and implementing filters in networked systems, it is
necessary to fully consider the impact of these nonlinear factors and take effective measures to minimize their
impact on system performance to ensure system stability and reliability. At present, for addressing nonlinear
challenges and improving filtering accuracy and stability, various nonlinear filtering algorithms have been
proposed, such as the extended Kalman filtering (EKF) [16], the unscented Kalman filtering (UKF) [17], and the
Tobit Kalman filtering (TKF) [18].

Because of the limited sensing abilities of low-cost sensors, the censored measurements are prevalent in practi-
cal engineering [19]. The censoredmeasurements are commonly formulated by the Tobitmodel, which is widely
used in data analysis in economics, finance, and social sciences. This model can effectively handle problems
involving censored data and provides estimates of unobserved variables. When the measurement noise of a
system exhibits non-Gaussian characteristics near the censoring region, traditional Kalman filtering methods
cannot handle it. The primary challenge induced by the censored measurements lies in its nonlinearities. A
useful method is to introduce the indicator variable to transform the piecewise linear functions into a unified
form in [20], which will provide convenience for performance analysis and deal with the scalable distributed
H∞-consensus filtering problem. Another challenge in recursive filtering is to calculate the probability of
occurrence of censoring measurement [21]. In addition, the TKF surpasses both UKF and EKF in terms of
filtering performance when dealing with censored measurements [22].

Allik et al. have designed TKF for the first time by using the Tobit model, where the unilateral and bilateral
Tobit regression models are integrated into the recursive form of the Kalman filter [23]. In a comparison of TKF
and KF, it can be found that when data is not censored, there is no difference between these two filters; when
data is censored, the extra computational burden of TKF mainly comes from the calculation of occurrence
of censoring measurement. Nevertheless, it fails to fully explore and utilize the useful information contained
in the censored region. To address this problem, Han et al. have developed a novel conditional expectation
approach to study TKF problem for stochastic parameter systems [24]. Subsequent research regarding TKF
has been published by combining with other interesting phenomena, such as dynamic bias and Round-Robin
protocol [25], fading measurements [26], dynamic event-triggered protocols (DETPs) [27], and so on.

Although there are currently a large number of research results on TKF, the Tobit Kalman fusion filtering
(TKFF) has not received sufficient attention due primarily to its complexities in analysis. The core step of this
paper is to select an appropriate fusion rule from various existing fusion rules and combine it with local TKFs.
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The well-known fusion rules include centralized filtering fusion [28], information filtering fusion [29], weighted
filtering fusion [30], covariance intersection fusion [31], federated filtering fusion [10], sequential fusion [32], and
robust fusion [33]. In the survey paper [34], these fusion rules are compared in terms of the structure of the fusion,
filtering accuracy, and computation burden, respectively. Federated filtering fusion belongs to a distributed
structure and has the smallest burden and highest accuracy. As a result, we choose federated filtering fusion
for this paper.

In the past decades, networked systems have gained popularity owing to multiple advantages such as high flex-
ibility, simple installation, and low cost, making them suitable for a range of applications including aerospace,
energy monitoring, and telecommunications [35]. Unlike traditional automatic control systems, the focus of
networked systems explicitly considers the limitations of the communication medium between the sensor and
the controller/filter. Especially when network congestion occurs, where the allocation of requests exceeds
the network’s sustainable transmission rate, these limitations become even more evident, which would pose a
serious impact on the desirable performance. A well-established paradigm for addressing this issue is event-
triggered protocol [36]. The idea of event-triggered protocol is to reduce the transmission number only if the
event-triggering condition is satisfied. Such a protocol can efficiently save the communication resource [37].
However, it cannot be guaranteed that the transmission network will not be overused, especially when the de-
sired performance level requires a high transmission rate. In the existing references [36,37], the event-triggering
protocol (ETP) is introduced to save unilaterally the network bandwidth resource in the premise of a certain
performance by reducing the number of information transmissions. Nonetheless, such a protocol cannot be
appropriate for practical engineering scenarios. In a shared network with limited bandwidth, when encoun-
tering multiple requests of information transmission, it is difficult to have enough bandwidth resources.

It should be noted that the total communication resource cannot be formulated in the existing results and
thus the role of the ETP cannot be reflected in a unified framework. Recently, a dynamic model has been
used to describe the network resources: the token bucket algorithm [38,39], where the network’s communica-
tion resources are considered and the signal transmission is triggered only when the network’s communication
capabilities allow. The level of the bucket reflects the network’s current communication capabilities. The ob-
jective of these studies is to optimally utilize limited communication resources by combining control inputs
with triggering mechanisms [40]. Inspired by such an idea, an interesting problem is to explore how the token
bucket algorithm can be integrated with communication protocols, to more reasonably allocate tokens for net-
work requests and achieve optimized resource utilization. In line with this concept, an intriguing issue is to
investigate the integration of the token bucket algorithm with DETPs within a unified framework for studying
TKFF. This constitutes another motivation for the present paper.

Enlightened by the above arguments, the objective is to investigate the federated TKFF (FTKFF) problemunder
the schedule of dynamic event-triggered protocols with token bucket specification. The main contributions
of this paper are highlighted as follows: (1) an FTKFF problem is studied under the combined schedule of
the token buckets and DETPs, where the former characterizes the limited communication resources and the
latter determines the necessary information to be transmitted; (2) a recursive local filter is designed, where two
indicator variables are introduced to formulate the transmitted censored measurements, and the gain matrix
is derived by minimizing the upper bound of the filtering error covariance; (3) the federated fusion criterion
is chosen in the fusion center to obtain an optimal estimation by using the local estimates.

Notations: ∥𝑥∥ =
√
𝑥𝑇𝑥, where 𝑥 ∈ R𝑛. The notation 𝑋 > 𝑌 , where 𝑋 and𝑌 are real symmetricmatrices, means

that 𝑋 −𝑌 is positive-definite. tr{𝑋} stands for the trace of the matrix 𝑋 . E{·} and D{·} are the mathematical
expectation and variance. 𝛿(·) ∈ (0, 1) is the Dirac delta function.
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2.1. System model
Consider the state-space model for a class of linear discrete time-varying systems and its measurements from
𝑙 sensor nodes as follows: {

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝜔𝑡 ,
𝑧𝑚,𝑡 = 𝐶𝑚,𝑡𝑥𝑡 + 𝑣𝑚,𝑡 , 𝑚 = 1, 2, . . . , 𝑙

(1)

where 𝑥𝑡 ∈ R𝑛𝑥 and 𝑧𝑚,𝑡 ∈ R𝑛𝑦 are the state vector and measurement vector, respectively; 𝜔𝑡 ∈ R𝜔 and 𝑣𝑚,𝑡 ∈
R𝑛𝑦 are white Gaussian noises with E{𝜔𝑡} = 0, E{𝑣𝑚,𝑡} = 0, D{𝜔𝑡} = 𝑄𝑡 , and D{𝑣𝑚,𝑡} = 𝑅𝑚,𝑡 . Furthermore,
it is assumed that 𝑥0, 𝜔𝑡 and 𝑣𝑚,𝑡 are mutually independent for different 𝑡 and 𝑚. 𝐴𝑡 , 𝐵𝑡 and 𝐶𝑚,𝑡 are known
time-varying matrices with compatible dimensions; the initial state 𝑥0 is a random variable with mean 𝑥0 and

variance 𝑃0. For convenience of later discussion, denote 𝑧𝑚,𝑡 ≜
[
𝑧(1)𝑚,𝑡 𝑧(2)𝑚,𝑡 . . . 𝑧

(𝑛𝑦 )
𝑚,𝑡

]𝑇
∈ R𝑛𝑦 .

The situation where one or multiple sensors cannot perform data measurement or acquisition properly for
various reasons is referred to as “censored measurements”. To address the issue of censored measurements
and mitigate its adverse impact on system monitoring, the Tobit measurement model is used to formulate the
one-side censored measurement:

𝑦
( 𝑗)
𝑚,𝑡 ≜

{
𝑧
( 𝑗)
𝑚,𝑡 , 𝑧

( 𝑗)
𝑚,𝑡 > 𝜏

( 𝑗)
𝑚 ;

𝜏
( 𝑗)
𝑚 , 𝑧

( 𝑗)
𝑚,𝑡 ≤ 𝜏

( 𝑗)
𝑚

(2)

where 𝑦 ( 𝑗)𝑚,𝑡 is the censored measurement from the 𝑚-th sensor and 𝜏( 𝑗)𝑚 is the one-side censoring threshold of
𝑦
( 𝑗)
𝑚,𝑡 .

In light of (2), define a series of Bernoulli random variables 𝜚( 𝑗)𝑚,𝑡 (𝑚 = 1, 2, . . . , 𝑙; 𝑗 = 1, 2, . . . , 𝑛𝑦) to formulate
𝑦
( 𝑗)
𝑚,𝑡 as follows:

𝜚
( 𝑗)
𝑚,𝑡 ≜

{
1, 𝑧

( 𝑗)
𝑚,𝑡 > 𝜏

( 𝑗)
𝑚 ;

0, 𝑧
( 𝑗)
𝑚,𝑡 ≤ 𝜏

( 𝑗)
𝑚 ,

(3)

which obeys the distribution law: {
P{𝜚( 𝑗)𝑚,𝑡 = 1} = �̄�( 𝑗)𝑚,𝑡 ;

P{𝜚( 𝑗)𝑚,𝑡 = 0} =1 − �̄�( 𝑗)𝑚,𝑡
(4)

where �̄�( 𝑗)𝑚,𝑡 are known non-negative constants. Moreover, 𝜚𝑚,𝑡 is uncorrelated with other random variables
mentioned above.

The censoring probability �̄�𝑚,𝑡 is approximated by

�̄�
( 𝑗)
𝑚,𝑡 = Φ

©«
(𝐶𝑚,𝑡𝑥𝑡) ( 𝑗) − 𝜏( 𝑗)𝑚√

𝑅
( 𝑗)
𝑚,𝑡

ª®®¬ ≈ Φ
©«
(𝐶𝑚,𝑡𝑥𝑚,𝑡 |𝑡−1) ( 𝑗) − 𝜏( 𝑗)𝑚√

𝑅
( 𝑗)
𝑚,𝑡

ª®®¬ (5)

where 𝑥𝑚,𝑡 |𝑡−1 represents prediction for 𝑥𝑡 from node 𝑚, and Φ(·) is the cumulative distribution function of
the standard normal distribution. From (5), it follows that �̄�𝑚,𝑡 is related to the state 𝑥𝑡 , which is replaced with
𝑥𝑚,𝑡 |𝑡−1 since 𝑥𝑡 is unknown.

Similar to [12], the measurement expectation and variance of �̄�( 𝑗)𝑚,𝑡 are given as follows:

E{𝑦 ( 𝑗)𝑚,𝑡 |𝑥𝑡} = Φ
©«
(𝐶𝑚,𝑡𝑥𝑡) ( 𝑗) − 𝜏( 𝑗)𝑚√

𝑅
( 𝑗)
𝑚,𝑡

ª®®¬
(𝐶𝑚,𝑡𝑥𝑡)

( 𝑗) +
√
𝑅
( 𝑗)
𝑚,𝑡𝜆

©«
𝜏
( 𝑗)
𝑚 − (𝐶𝑚,𝑡𝑥𝑡) ( 𝑗)√

𝑅
( 𝑗)
𝑚,𝑡

ª®®¬
 +Φ

©«
𝜏
( 𝑗)
𝑚 − (𝐶𝑚,𝑡𝑥𝑡) ( 𝑗)√

𝑅
( 𝑗)
𝑚,𝑡

ª®®¬ 𝜏
( 𝑗)
𝑚 ,

(6)

2. PROBLEM FORMULATION
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D{𝑦 ( 𝑗)𝑚,𝑡 |𝑥𝑡} =𝑅
( 𝑗)
𝑚,𝑡

1 − 𝜑
©«
𝜏
( 𝑗)
𝑚 − (𝐶𝑚,𝑡𝑥𝑡) ( 𝑗)√

𝑅
( 𝑗)
𝑚,𝑡

ª®®¬
 (7)

where

𝜆(𝜁) ≜ 𝜙(𝜁)
1 −Φ(𝜁) , 𝜑(𝜁) ≜ 𝜆(𝜁)(𝜆(𝜁) − 𝜁).

Here, 𝜙(·) and Φ(·) are the probability density function and the cumulative distribution function of the stan-
dard normal distribution, respectively.

Denote 𝜚𝑚,𝑡 ≜ diag
{
𝜚(1)𝑚,𝑡 , 𝜚

(2)
𝑚,𝑡 , . . . , 𝜚

(𝑛𝑦 )
𝑚,𝑡

}
, 𝑦𝑚,𝑡 ≜

[
𝑦 (1)𝑚 , 𝑦 (2)𝑚 , . . . , 𝑦

(𝑛𝑦 )
𝑚

]𝑇
, and 𝜏𝑚 ≜

[
𝜏(1)𝑚 , 𝜏 (2)𝑚 , . . . , 𝜏

(𝑛𝑦 )
𝑚

]𝑇
.

Hence, (2) can be rewritten as:
𝑦𝑚,𝑡 = 𝜚𝑚,𝑡𝑧𝑚,𝑡 + (𝐼 − 𝜚𝑚,𝑡)𝜏𝑚 . (8)

Also, the following statistical information can be obtained from (6) and (7):

E{𝑦𝑚,𝑡 |𝑥𝑡} = Φ

(
𝐶𝑚,𝑡𝑥𝑡 − 𝜏𝑚√

𝑅𝑚,𝑡

) [
𝐶𝑚,𝑡𝑥𝑡 +

√
𝑅𝑚,𝑡𝜆

(
𝜏𝑚 − 𝐶𝑚,𝑡𝑥𝑡√

𝑅𝑚,𝑡

)]
+Φ

(
𝜏𝑚 − 𝐶𝑚,𝑡𝑥𝑡√

𝑅𝑚,𝑡

)
𝜏𝑚 , (9)

and

D{𝑦𝑚,𝑡 |𝑥𝑡} =𝑅𝑚,𝑡

[
𝐼 − 𝜑

(
𝜏𝑚 − 𝐶𝑚,𝑡𝑥𝑡√

𝑅𝑚,𝑡

)]
. (10)

Remark 1. The censoring measurement is formulated as the Tobit model. The main challenge in dealing with the
Tobit model arises from two aspects. Firstly, the Tobit model (2) represents a piecewise linear function, which is
inherently nonlinear. To facilitate subsequent analysis, a random variable defined in (3) is introduced to refor-
mulate the censoring measurement into a uniform form (8). Another issue involves determining the probability
law and statistical property of the random variable (i.e., (5), (6), and (7)), where (5) is derived by using statistical
information of normal distribution of measurement noise 𝑣𝑚,𝑡 , and (6) and (7) are achieved by means of (5).

2.2. Information transmission protocols
To save precious energy and limited bandwidth, the DETP is used for node 𝑚 to decide whether to transmit
the current measurements to the filter. For this purpose, denote the event-triggering time sequence by 0 ≤
𝑡1𝑚 < · · · < 𝑡𝑛𝑚 < · · · and define

𝑡𝑛+1
𝑚 ≜min

{
𝑡 |𝑡 > 𝑡𝑛𝑚 ,

1
𝜒𝑚
𝜂𝑚,𝑡 + 𝜎𝑚 − ∥𝜀𝑚,𝑡 ∥ ≤ 0

}
, (11)

𝜀𝑚,𝑡 ≜𝑦𝑚,𝑡𝑛𝑚 − 𝑦𝑚,𝑡 , (12)

where 𝜎𝑚 and 𝜒𝑚 are given positive scalars, 𝑦𝑚,𝑡𝑛𝑚 represents the latest transmitted measurement until time 𝑡,
and the internal dynamic variable 𝜂𝑚,𝑡 satisfies:

𝜂𝑚,𝑡+1 = 𝜆𝑚𝜂𝑚,𝑡 + 𝜎𝑚 − ∥𝜀𝑚,𝑡 ∥, 𝜂𝑚,0 = 𝜂0, (13)

where 𝜆𝑚 is a given positive scalar and 𝜂0 ≥ 0 is the initial value. Moreover, 𝜆𝑚𝜒𝑚 > 1 and thus ensure
𝜂𝑚,𝑡+1 ≥ 0. Here, the inequality

1
𝜒𝑚
𝜂𝑚,𝑡 + 𝜎𝑚 − ∥𝜀𝑚,𝑡 ∥ ≤ 0, (14)

is referred to as the event-triggering condition. For convenience, define the following indicator variable:

𝛼𝑚,𝑡 ≜
{

1, if (14) holds ;
0, otherwise.

(15)

http://dx.doi.org/10.20517/ces.2024.37
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Figure 1. A block diagram of FTKFF under DETP with token bucket.

To copewith themeasurement transmission in unexpected situations, such as the need to transfermultiple data
at once, a token bucket triggering mechanism is introduced. First, the token bucket is employed to describe
the available bandwidth resource, where the integer 𝑔 and 𝑐𝑚 are the token generating rate and transmission
cost, respectively. For simplicity, 𝑐𝑚 means the total cost for transmitting all elements of 𝑦𝑚,𝑡 at time instant 𝑡
of node 𝑚.

In order to unify the centralized utilization of the token bucket algorithm, the number of tokens is then evenly
allocated to each sensor node, which is given as follows:

𝜉𝑚,𝑡 = 𝜉𝑡/𝑙. (16)

The internal token change of the token bucket is formulated as follows:

𝜉𝑡 = min

{
𝜉𝑡−1 + 𝑔 −

𝑙∑
𝑚=1

𝛽𝑚,𝑡𝛼𝑚,𝑡𝑐𝑚 , 𝑏

}
(17)

with initial values 𝜉0 ≥ 0, where 𝑏 is the token bucket capacity, and

𝛽𝑚,𝑡 ≜
{

1, if 𝑐𝑚 ≤ 𝜉𝑚,𝑡 ;
0, otherwise.

(18)

After scheduled by the DETP with token bucket specification, the measurement received by the filter is formu-
lated as

�̄�𝑚,𝑡 =

{
𝑦𝑚,𝑡𝑛𝑚 , if 𝛽𝑚,𝑡 = 1 and 𝛼𝑚,𝑡 = 1;
�̄�𝑚,𝑡−1, otherwise.

(19)

For the convenience of later analysis, (19) is rewritten as

�̄�𝑚,𝑡 = 𝛼𝑚,𝑡𝛽𝑚,𝑡𝑦𝑚,𝑡𝑛𝑚 + (1 − 𝛼𝑚,𝑡𝛽𝑚,𝑡) �̄�𝑚,𝑡−1. (20)

Remark 2. Different from [30], the introduction of the indicator variable 𝛼𝑚,𝑡 is utilized to determine whether the
conditions are met. This approach provides convenience for subsequent analysis, clearly defining the impact of the
ETP. Building on this concept, another indicator variable 𝛽𝑚,𝑡 is implemented to assess whether there are sufficient
tokens for information transmission.

http://dx.doi.org/10.20517/ces.2024.37
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The block diagram of FTKFF is depicted in Figure 1. As for node 𝑚, the event trigger is used to determine
whether the censored measurement 𝑦𝑚,𝑡 is transmitted or not, which is formulated by 𝛼𝑚,𝑡 . If the event-
triggering condition (14) to be predetermined is met (i.e., 𝛼𝑚,𝑡 = 1), then the measurement to be transmitted
is denoted as 𝑦𝑚,𝑡𝑛𝑚 . Next, the token bucket 𝑚 is employed to formulate the available communication resource,
which is formulated by 𝛽𝑚,𝑡 . If there exist sufficient tokens (i.e., 𝛽𝑚,𝑡 = 1), then the filter can receive the mea-
surement, i.e., �̄�𝑚,𝑡 . Therefore, only when both token and event-triggering conditions are met can information
transmission proceed. Such a procedure is expressed as (20).

2.3. Filter design
By using the available measurement �̄�𝑚,𝑡 , construct a recursive filter

𝑥𝑚,𝑡 |𝑡−1 = 𝐴𝑡−1𝑥𝑚,𝑡−1|𝑡−1, (21)

𝑥𝑚,𝑡 |𝑡 = 𝑥𝑚,𝑡 |𝑡−1 + 𝐾𝑚,𝑡 ( �̄�𝑚,𝑡 − �̂�𝑚,𝑡 |𝑡−1) (22)

with the initial value 𝑥𝑚,0|0 = 𝑥𝑚,0, and for 𝑡 ∈ [𝑡𝑛𝑚 , 𝑡𝑛+1
𝑚 )(𝑛 ≥ 0, 𝑡 ≥ 1), where 𝑥𝑚,𝑡 |𝑡−1 and 𝑥𝑚,𝑡 |𝑡 represent the

prediction of one step and estimation from node 𝑚, respectively; �̂�𝑚,𝑡 |𝑡−1 is the measurement estimate to be
discussed later; and 𝐾𝑚,𝑡 is the filter gain to be designed.

The primary objective of this paper is to design a local filter of the form (21) and (22) for every node under the
DETPwith token bucket specifications for all censoredmeasurements within the framework of TKF.Moreover,
we are devoted to developing an FTKFF framework to address the multiple challenges induced by the censored
measurements, the DETP and the token bucket specifications.

3. MAIN RESULTS
This section introduces the recursive bound of the TKF of the filtering error covariance. In addition, the desired
filter gain is calculated based on the minimum mean square error criterion.

3.1. Filtering error and covariance matrix
In line with (5) and (6), the estimate of the measurement �̂�𝑚,𝑡 |𝑡−1 is derived as

�̂�𝑚,𝑡 |𝑡−1 = �̄�𝑚,𝑡 (𝐶𝑚,𝑡𝑥𝑚,𝑡 |𝑡−1 + 𝜆𝑚,𝑡
√
R𝑚,𝑡) + (𝐼 − �̄�𝑚,𝑡)𝜏𝑚 (23)

where

�̄�𝑚,𝑡 ≜diag
{
�̄�(1)𝑚,𝑡 , �̄�

(2)
𝑚,𝑡 , . . . , �̄�

(𝑛𝑦 )
𝑚,𝑡

}
, 𝜆𝑚,𝑡 ≜ 𝜆

(
𝜏𝑚 − 𝐶𝑚,𝑡𝑥𝑚,𝑡 |𝑡−1√

𝑅𝑚,𝑡

)
,

R𝑚,𝑡 ≜
[
𝑅(1)
𝑚,𝑡 · · · 𝑅

(𝑛𝑦 )
𝑚,𝑡

]𝑇
,

√
R𝑚,𝑡 ≜

[√
𝑅(1)
𝑚,𝑡 · · ·

√
𝑅
(𝑛𝑦 )
𝑚,𝑡

]𝑇
.

Let 𝑒𝑚,𝑡 |𝑡−1 ≜ 𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡−1. From (1) and (21), one calculates

𝑒𝑚,𝑡 |𝑡−1 = 𝐴𝑡−1𝑒𝑚,𝑡−1|𝑡−1 + 𝐵𝑡−1𝜔𝑡−1. (24)

Subsequently, from (1), (8), (22) and (23), one has

𝑒𝑚,𝑡 |𝑡 =(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑒𝑚,𝑡 |𝑡−1 − (1 − 𝜃𝑚,𝑡)𝐾𝑚,𝑡 𝜚𝑚,𝑡𝑣𝑚,𝑡 + 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝜆𝑚,𝑡
√
R𝑚,𝑡

− (1 − 𝜃𝑚,𝑡)𝐾𝑚,𝑡 �̃�𝑚,𝑡𝐶𝑚,𝑡𝑥𝑡 + 𝜃𝑚,𝑡𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡𝑥𝑡 − 𝜃𝑚,𝑡𝐾𝑚,𝑡 �̄�𝑚,𝑡−1

− (1 − 𝜃𝑚,𝑡)𝐾𝑚,𝑡𝜀𝑚,𝑡 + 𝜃𝑚,𝑡𝐾𝑚,𝑡 (𝐼 − �̄�𝑚,𝑡)𝜏𝑚 + (1 − 𝜃𝑚,𝑡)𝐾𝑚,𝑡 �̃�𝑚,𝑡𝜏𝑚 (25)
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where
𝜃𝑚,𝑡 ≜ 1 − 𝛼𝑚,𝑡𝛽𝑚,𝑡 , �̃�𝑚,𝑡 ≜ 𝜚𝑚,𝑡 − �̄�𝑚,𝑡 , 𝜀𝑚,𝑡 ≜ 𝑦𝑚,𝑡𝑛𝑚 − 𝑦𝑚,𝑡 .

By means of Eqs. (24) and (25), the covariance matrices of the prediction error and filtering error are, respec-
tively, calculated as follows

𝑃𝑚,𝑡 |𝑡−1 = E(𝑒𝑚,𝑡 |𝑡−1𝑒
𝑇
𝑚,𝑡 |𝑡−1) = 𝐴𝑡−1𝑃𝑚,𝑡−1|𝑡−1𝐴

𝑇
𝑡−1 + 𝐵𝑡−1𝑄𝑡−1𝐵

𝑇
𝑡−1, (26)

and

𝑃𝑚,𝑡 |𝑡 = (𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑃𝑚,𝑡 |𝑡−1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑇 + (1 − 𝜃𝑚,𝑡)2𝐾𝑚,𝑡E{𝜚𝑚,𝑡𝑣𝑚,𝑡𝑣𝑇𝑚,𝑡 𝜚𝑇𝑚,𝑡}𝐾𝑇𝑚,𝑡
+ 𝐾𝑚,𝑡 �̄�𝑚,𝑡E

{
𝜆𝑚,𝑡

√
R𝑚,𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡

}
�̄�𝑇𝑚,𝑡𝐾

𝑇
𝑚,𝑡 + (1 − 𝜃𝑚,𝑡)2𝐾𝑚,𝑡E{ �̃�𝑚,𝑡𝐶𝑚,𝑡𝑥𝑡𝑥𝑇𝑡 𝐶𝑇𝑚,𝑡 �̃�𝑇𝑚,𝑡}𝐾𝑇𝑚,𝑡

+ 𝜃2
𝑚,𝑡𝐾𝑚,𝑡 �̄�𝑚,𝑡E{𝐶𝑚,𝑡𝑥𝑡𝑥𝑇𝑡 𝐶𝑇𝑚,𝑡} �̄�𝑇𝑚,𝑡𝐾𝑇𝑚,𝑡 + 𝜃2

𝑚,𝑡𝐾𝑚,𝑡E{�̄�𝑚,𝑡−1 �̄�
𝑇
𝑚,𝑡−1}𝐾𝑇𝑚,𝑡 + K1

𝑚,𝑡 + K1𝑇
𝑚,𝑡

+ (1 − 𝜃𝑚,𝑡)2𝐾𝑚,𝑡E{𝜀𝑚,𝑡𝜀𝑇𝑚,𝑡}𝐾𝑇𝑚,𝑡 + 𝜃2
𝑚,𝑡𝐾𝑚,𝑡 (𝐼 − �̄�𝑚,𝑡)E{𝜏𝑚𝜏𝑇𝑚}(𝐼 − �̄�𝑚,𝑡)𝑇𝐾𝑇𝑚,𝑡+1

+ (1 − 𝜃𝑚,𝑡)2𝐾𝑚,𝑡E{ �̃�𝑚,𝑡𝜏𝑚𝜏𝑇𝑚 �̃�𝑇𝑚,𝑡}𝐾𝑇𝑚,𝑡 + K2
𝑚,𝑡 + K2𝑇

𝑚,𝑡 − K3
𝑚,𝑡 − K3𝑇

𝑚,𝑡 − K4
𝑚,𝑡 − K4𝑇

𝑚,𝑡

+ K5
𝑚,𝑡 + K5𝑇

𝑚,𝑡 + K6
𝑚,𝑡 + K6𝑇

𝑚,𝑡 + K7
𝑚,𝑡 + K7𝑇

𝑚,𝑡 − K8
𝑚,𝑡 − K8𝑇

𝑚,𝑡 + K9
𝑚,𝑡 + K9𝑇

𝑚,𝑡 − K10
𝑚,𝑡 − K10𝑇

𝑚,𝑡

− K11
𝑚,𝑡 − K11𝑇

𝑚,𝑡 − K12
𝑚,𝑡 − K12𝑇

𝑚,𝑡 + K13
𝑚,𝑡 + K13𝑇

𝑚,𝑡 (27)

where

K1
𝑚,𝑡 ≜E{(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑒𝑚,𝑡 |𝑡−1

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡},

K2
𝑚,𝑡 ≜𝜃𝑚,𝑡E{(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑒𝑚,𝑡 |𝑡−1𝑥

𝑇
𝑡 𝐶

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡},

K3
𝑚,𝑡 ≜𝜃𝑚,𝑡E{(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑒𝑚,𝑡 |𝑡−1 �̄�

𝑇
𝑚,𝑡−1𝐾

𝑇
𝑚,𝑡},

K4
𝑚,𝑡 ≜(1 − 𝜃𝑚,𝑡)E{(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑒𝑚,𝑡 |𝑡−1𝜀

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡},

K5
𝑚,𝑡 ≜𝜃𝑚,𝑡E{(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑒𝑚,𝑡 |𝑡−1𝜏

𝑇
𝑚,𝑡 (𝐼 − �̄�𝑚,𝑡)𝑇𝐾𝑇𝑚,𝑡},

K6
𝑚,𝑡 ≜(1 − 𝜃𝑚,𝑡)2E{𝐾𝑚,𝑡 �̃�𝑚,𝑡𝐶𝑚,𝑡𝑥𝑡𝜏𝑇𝑚 �̃�𝑇𝑚,𝑡𝐾𝑇𝑚,𝑘 },

K7
𝑚,𝑡 ≜𝜃𝑚,𝑡E{𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡𝑥𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡},

K8
𝑚,𝑡 ≜𝜃

2
𝑚,𝑡E{𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡𝑥𝑡 �̄�𝑇𝑚,𝑡−1𝐾

𝑇
𝑚,𝑡−1},

K9
𝑚,𝑡 ≜𝜃

2
𝑚,𝑡E{𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡𝑥𝑡𝜏𝑇𝑚 (𝐼 − �̄�𝑚,𝑡)𝑇𝐾𝑇𝑚,𝑡},

K10
𝑚,𝑡 ≜𝜃𝑚,𝑡E{𝐾𝑚,𝑡 �̄�𝑚,𝑡−1

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡},

K11
𝑚,𝑡 ≜𝜃

2
𝑚,𝑡E{𝐾𝑚,𝑡 �̄�𝑚,𝑡−1𝜏

𝑇
𝑚 (𝐼 − �̄�𝑚,𝑡)𝑇𝐾𝑇𝑚,𝑡},

K12
𝑚,𝑡 ≜(1 − 𝜃𝑚,𝑡)E{𝐾𝑚,𝑡𝜀𝑚,𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡},

K13
𝑚,𝑡 ≜𝜃𝑚,𝑡E{𝐾𝑚,𝑡 (𝐼 − �̄�𝑚,𝑡)𝜏𝑚

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡}.

Next, an upper bound for the filtering error covariance matrix 𝑃𝑚,𝑡 |𝑡 is provided to eliminate the uncertainties
in Eq. (27).

Theorem 1. For the given positive scalars 𝜀 𝑗 ( 𝑗 = 1, 2, ..., 14), it is said that �̄�𝑚,𝑡 |𝑡 is an upper bound of the 𝑃𝑚,𝑡 |𝑡 ,
namely,

𝑃𝑚,𝑡 |𝑡 ≤ �̄�𝑚,𝑡 |𝑡 , (28)

with the initial value of 𝑃0|0 = �̄�0|0 > 0. Moreover, �̄�𝑚,𝑡 |𝑡 satisfies the following recursions:

�̄�𝑚,𝑡 |𝑡−1 = 𝐴𝑡−1�̄�𝑚,𝑡 |𝑡𝐴
𝑇
𝑡−1 + 𝐵𝑡−1𝑄𝑡−1𝐵

𝑇
𝑡−1, (29)
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and

�̄�𝑚,𝑡 |𝑡 = 𝜅1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)�̄�𝑚,𝑡 |𝑡−1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑇 + (1 − 𝜃𝑚,𝑡)2𝐾𝑚,𝑡{Ω𝑚3,𝑡 ◦ 𝑅𝑚,𝑡}𝐾𝑇𝑚,𝑡
+ 𝜅2𝐾𝑚,𝑡 �̄�𝑚,𝑡𝜆𝑚,𝑡

√
R𝑚,𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡 + (1 − 𝜃𝑚,𝑡)2𝜅3𝐾𝑚,𝑡𝐶𝑚,𝑡{Υ𝑚,𝑡 ◦Ω𝑚1,𝑡}𝐶𝑇𝑚,𝑡𝐾𝑇𝑚,𝑡

+ 𝜃2
𝑚,𝑡𝜅4𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡Ω𝑚1,𝑡𝐶

𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡 + 𝜃2

𝑚,𝑡𝜅5𝐾𝑚,𝑡Ω𝑚2,𝑡𝐾
𝑇
𝑚,𝑡

+ (1 − 𝜃𝑚,𝑡)2𝜅6𝐾𝑚,𝑡Ξ(�̄�𝑚,𝑡)𝐾𝑇𝑚,𝑡 + 𝜃2
𝑚,𝑡𝜅7𝐾𝑚,𝑡 (𝐼 − �̄�𝑚,𝑡)𝜏𝑚𝜏𝑇𝑚 (𝐼 − �̄�𝑚,𝑡)𝑇𝐾𝑇𝑚,𝑡+1

+ (1 − 𝜃𝑚,𝑡)2𝜅8𝐾𝑚,𝑡{Υ𝑚,𝑡 ◦ 𝜏𝑚𝜏𝑇𝑚}𝐾𝑇𝑚,𝑡 (30)

where

𝜅1 ≜ 1 + 𝜀1 + 𝜀2 + 𝜀3 + 𝜀4 + 𝜀5,

𝜅2 ≜ 1 + 𝜀−1
1 + 𝜀−1

7 + 𝜀−1
10 + 𝜀−1

12 + 𝜀−1
13 ,

𝜅3 ≜ 1 + 𝜀6,

𝜅4 ≜ 1 + 𝜀7 + 𝜀8 + 𝜀9 + 𝜀−1
2 ,

𝜅5 ≜ 1 + 𝜀−1
3 + 𝜀−1

8 + 𝜀10 + 𝜀11,

𝜅6 ≜ 1 + 𝜀−1
4 + 𝜀12,

𝜅7 ≜ 1 + 𝜀−1
5 + 𝜀−1

9 + 𝜀−1
11 + 𝜀13,

𝜅8 ≜ 1 + 𝜀−1
6 ,

Υ𝑚,𝑡 ≜ diag{ �̄�(1)𝑚,𝑡 (1 − �̄�(1)𝑚,𝑡), · · · , �̄�
(𝑛𝑦 )
𝑚,𝑡 (1 − �̄�(𝑛𝑦 )𝑚,𝑡 )},

Ω𝑚1,𝑡 ≜ (1 + 𝜀14)𝑃𝑡 |𝑡−1 + (1 + 𝜀−1
14 )𝑥𝑚,𝑡 |𝑡−1𝑥

𝑇
𝑚,𝑡 |𝑡−1

Ω𝑚2,𝑡−1 ≜ �̄�𝑚,𝑡−1 �̄�
𝑇
𝑚,𝑡−1, Ω𝑚3,𝑡 ≜ Υ𝑚,𝑡 + �̄�𝑚,𝑡 �̄�𝑇𝑚,𝑡 ,

and

�̄�𝑚,𝑡+1 ≜ Ξ(�̄�𝑚,𝑡)

=

(
(1 + 𝑑𝑡) (1 + 𝑒𝑡)𝜆2

𝑚 + (1 + 𝜒𝑚)(1 + 𝑑−1
𝑡 )

𝜒2
𝑚

)
�̄�𝑚,𝑡 +

(
(1 + 𝑑𝑡)(1 + 𝑒−1

𝑡 ) + (1 + 𝑑−1
𝑡 ) (1 + 𝜒−1

𝑚 )
)
𝜎2
𝑚

where �̄�𝑚,𝑡 is an upper bound of 𝐺𝑚,𝑡 ≜ E{𝜂2
𝑚,𝑡} with the initial condition �̄�𝑚,0 = 𝜂2

𝑚,0.

Here, ◦ denotes the Hadamard product, which is defined as [𝐴 ◦ 𝐵]𝑖 𝑗 = 𝐴𝑖 𝑗 · 𝐵𝑖 𝑗 .

Proof. According to lemma 1 in [36], it follows from Eq. (27) that

𝑃𝑚,𝑡 |𝑡

≤𝜅1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑃𝑚,𝑡 |𝑡−1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑇 + (1 − 𝜃𝑚,𝑡)2𝐾𝑚,𝑡E{𝜚𝑚,𝑡𝑣𝑚,𝑡𝑣𝑇𝑚,𝑡 𝜚𝑇𝑚,𝑡}𝐾𝑇𝑚,𝑡
+ 𝜅2𝐾𝑚,𝑡 �̄�𝑚,𝑡E

{
𝜆𝑚,𝑡

√
R𝑚,𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡

}
�̄�𝑇𝑚,𝑡𝐾

𝑇
𝑚,𝑡 + (1 − 𝜃𝑚,𝑡)2𝜅3𝐾𝑚,𝑡E{ �̃�𝑚,𝑡𝐶𝑚,𝑡𝑥𝑡𝑥𝑇𝑡 𝐶𝑇𝑚,𝑡 �̃�𝑇𝑚,𝑡}𝐾𝑇𝑚,𝑡

+ 𝜃2
𝑚,𝑡𝜅4𝐾𝑚,𝑡 �̄�𝑚,𝑡E{𝐶𝑚,𝑡𝑥𝑡𝑥𝑇𝑡 𝐶𝑇𝑚,𝑡} �̄�𝑇𝑚,𝑡𝐾𝑇𝑚,𝑡 + 𝜃2

𝑚,𝑡𝜅5𝐾𝑚,𝑡E{�̄�𝑚,𝑡−1 �̄�
𝑇
𝑚,𝑡−1}𝐾𝑇𝑚,𝑡

+ (1 − 𝜃𝑚,𝑡)2𝜅6𝐾𝑚,𝑡E{𝜀𝑚,𝑡𝜀𝑇𝑚,𝑡}𝐾𝑇𝑚,𝑡 + 𝜃2
𝑚,𝑡𝐾𝑚,𝑡𝜅7(𝐼 − �̄�𝑚,𝑡)E{𝜏𝑚𝜏𝑇𝑚}(𝐼 − �̄�𝑚,𝑡)𝑇𝐾𝑇𝑚,𝑡+1

+ (1 − 𝜃𝑚,𝑡)2𝜅8𝐾𝑚,𝑡E{ �̃�𝑚,𝑡𝜏𝑚𝜏𝑇𝑚 �̃�𝑇𝑚,𝑡}𝐾𝑇𝑚,𝑡 . (31)

Following the same line, one has

E{𝑥𝑡𝑥𝑇𝑡 } =E{(𝑒𝑚,𝑡 |𝑡−1 + 𝑥𝑚,𝑡 |𝑡−1)(𝑒𝑚,𝑡 |𝑡−1 + 𝑥𝑚,𝑡 |𝑡−1)𝑇 }
≤E{(1 + 𝜀14)𝑒𝑚,𝑡 |𝑡−1𝑒

𝑇
𝑚,𝑡 |𝑡−1 + (1 + 𝜀−1

14 )𝑥𝑚,𝑡 |𝑡−1𝑥
𝑇
𝑚,𝑡 |𝑡−1}

≜Ω𝑚1,𝑡 . (32)
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Moreover, given the event-triggering condition (11), we have

𝜀𝑇𝑚,𝑡𝜀𝑚,𝑡 ≤
(

1
𝜒𝑚
𝜂𝑚,𝑡 + 𝜎𝑚

)2
≤ (1 + 𝜒𝑚)𝜒−2

𝑚 𝜂
2
𝑚,𝑡 + (1 + 𝜒−1

𝑚 )𝜎2
𝑚 . (33)

In light of lemma 5 and the proof of lemma 4 in [27], one derives

E{𝜀𝑚,𝑡𝜀𝑇𝑚,𝑡} ≤ Ξ(�̄�𝑚,𝑡). (34)

Substituting Eqs. (32) and (34) into (31), one obtains the following inequality

𝑃𝑚,𝑡 |𝑡 ≤𝜅1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑃𝑚,𝑡 |𝑡−1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑇 + (1 − 𝜃𝑚,𝑡)2𝐾𝑚,𝑡{Ω𝑚3,𝑡 ◦ 𝑅𝑚,𝑡}𝐾𝑇𝑚,𝑡
+ 𝜅2𝐾𝑚,𝑡 �̄�𝑚,𝑡𝜆𝑚,𝑡

√
R𝑚,𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡 + (1 − 𝜃𝑚,𝑡)2𝜅3𝐾𝑚,𝑡𝐶𝑚,𝑡{Υ𝑚,𝑡 ◦Ω𝑚1,𝑡}𝐶𝑇𝑚,𝑡𝐾𝑇𝑚,𝑡

+ 𝜃2
𝑚,𝑡𝜅4𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡Ω𝑚1,𝑡𝐶

𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡 + 𝜃2

𝑚,𝑡𝜅5𝐾𝑚,𝑡Ω𝑚2,𝑡𝐾
𝑇
𝑚,𝑡

+ (1 − 𝜃𝑚,𝑡)2𝜅6𝐾𝑚,𝑡Ξ(�̄�𝑚,𝑡)𝐾𝑇𝑚,𝑡 + 𝜃2
𝑚,𝑡𝜅7𝐾𝑚,𝑡 (𝐼 − �̄�𝑚,𝑡)𝜏𝑚𝜏𝑇𝑚 (𝐼 − �̄�𝑚,𝑡)𝑇𝐾𝑇𝑚,𝑡+1

+ (1 − 𝜃𝑚,𝑡)2𝜅8𝐾𝑚,𝑡{Υ𝑚,𝑡 ◦ 𝜏𝑚𝜏𝑇𝑚}𝐾𝑇𝑚,𝑡 . (35)

By using lemma 2 in [27], one obtains that

𝑃𝑚,𝑡 |𝑡 ≤ �̄�𝑚,𝑡 |𝑡 . (36)

The proof is now complete.

Next, the filter gain 𝐾𝑚,𝑡 is designed such that tr{�̄�𝑚,𝑡 |𝑡} is minimized at each time instant.

Theorem 2. Suppose that the positive scalars 𝜀 𝑗 ( 𝑗 = 1, 2, ..., 14) are given. The upper bound of the filtering error
covariance �̄�𝑚,𝑡 |𝑡 given by Eq. (30) is minimized by the following filter gain

𝐾𝑚,𝑡 = Ψ𝑚,𝑡Φ
−1
𝑚,𝑡 (37)

where

Ψ𝑚,𝑡 ≜𝜅1�̄�𝑚,𝑡 |𝑡−1𝐶
𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡 ,

Φ𝑚,𝑡 ≜𝜅1 �̄�𝑚,𝑡𝐶𝑚,𝑡 �̄�𝑚,𝑡 |𝑡−1𝐶
𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡 + 𝜅2 �̄�𝑚,𝑡𝜆𝑚,𝑡

√
R𝑚,𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡

+ 𝜃2
𝑚,𝑡

(
𝜅4 �̄�𝑚,𝑡𝐶𝑚,𝑡Ω𝑚1,𝑡𝐶

𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡 + 𝜅5Ω𝑚2,𝑡 + 𝜅7(𝐼 − �̄�𝑚,𝑡)𝜏𝑚𝜏𝑇𝑚 (𝐼 − �̄�𝑚,𝑡)𝑇

)
+ (1 − 𝜃𝑚,𝑡)2

(
Ω𝑚3,𝑡 ◦ 𝑅𝑚,𝑡 + 𝜅3𝐶𝑚,𝑡{Υ𝑚,𝑡 ◦Ω𝑚1,𝑡}𝐶𝑇𝑚,𝑡 + 𝜅8{Υ𝑚,𝑡 ◦ (𝜏𝑚𝜏𝑇𝑚)} + 𝜅6Ξ(�̄�𝑚,𝑡)

)
.

Proof. First, calculate the trace of �̄�𝑚,𝑡 |𝑡 obtained by Eq. (30) as follows

tr(�̄�𝑚,𝑡 |𝑡)

=tr
{
𝜅1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑃𝑚,𝑡 |𝑡−1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)𝑇 + (1 − 𝜃𝑚,𝑡)2𝐾𝑚,𝑡{Ω𝑚3,𝑡 ◦ 𝑅𝑚,𝑡}𝐾𝑇𝑚,𝑡

+ 𝜅2𝐾𝑚,𝑡 �̄�𝑚,𝑡𝜆𝑚,𝑡
√
R𝑚,𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡 + (1 − 𝜃𝑚,𝑡)2𝜅3𝐾𝑚,𝑡𝐶𝑚,𝑡{Υ𝑚,𝑡 ◦Ω𝑚1,𝑡}𝐶𝑇𝑚,𝑡𝐾𝑇𝑚,𝑡

+ 𝜃2
𝑚,𝑡𝜅4𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡Ω𝑚1,𝑡𝐶

𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡𝐾

𝑇
𝑚,𝑡 + 𝜃2

𝑚,𝑡𝜅5𝐾𝑚,𝑡Ω𝑚2,𝑡𝐾
𝑇
𝑚,𝑡

+ (1 − 𝜃𝑚,𝑡)2𝜅6𝐾𝑚,𝑡Ξ(�̄�𝑚,𝑡)𝐾𝑇𝑚,𝑡 + 𝜃2
𝑚,𝑡𝜅7𝐾𝑚,𝑡 (𝐼 − �̄�𝑚,𝑡)𝜏𝑚𝜏𝑇𝑚 (𝐼 − �̄�𝑚,𝑡)𝑇𝐾𝑇𝑚,𝑡+1

+ (1 − 𝜃𝑚,𝑡)2𝜅8𝐾𝑚,𝑡{Υ𝑚,𝑡 ◦ (𝜏𝑚𝜏𝑇𝑚)}𝐾𝑇𝑚,𝑡
}
. (38)
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Next, one can derive the derivative of tr
{
�̄�𝑚,𝑡 |𝑡

}
as follows

𝜕

𝜕𝐾𝑚,𝑡
tr

{
�̄�𝑚,𝑡 |𝑡

}
= − 2𝜅1(𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡)�̄�𝑚,𝑡 |𝑡−1𝐶

𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡 + 2(1 − 𝜃𝑚,𝑡)2𝐾𝑚,𝑡{Ω𝑚3,𝑡 ◦ 𝑅𝑚,𝑡}

+ 2𝜅2𝐾𝑚,𝑡 �̄�𝑚,𝑡𝜆𝑚,𝑡
√
R𝑚,𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡 + 2(1 − 𝜃𝑚,𝑡)2𝜅3𝐾𝑚,𝑡𝐶𝑚,𝑡{Υ𝑚,𝑡 ◦Ω𝑚1,𝑡}𝐶𝑇𝑚,𝑡

+ 2𝜃2
𝑚,𝑡𝜅4𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡Ω𝑚1,𝑡𝐶

𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡 + 2𝜃2

𝑚,𝑡𝜅5𝐾𝑚,𝑡Ω𝑚2,𝑡

+ 2(1 − 𝜃𝑚,𝑡)2𝜅6𝐾𝑚,𝑡Ξ(�̄�𝑚,𝑡) + 2𝜃2
𝑚,𝑡𝜅7𝐾𝑚,𝑡 (𝐼 − �̄�𝑚,𝑡)𝜏𝑚𝜏𝑇𝑚 (𝐼 − �̄�𝑚,𝑡)𝑇

+ 2(1 − 𝜃𝑚,𝑡)2𝜅8𝐾𝑚,𝑡{Υ𝑚,𝑡 ◦ (𝜏𝑚𝜏𝑇𝑚)}. (39)

By letting (39) be zero, one acquires the filter gain as follows:

𝐾𝑚,𝑡 =𝜅1�̄�𝑚,𝑡 |𝑡−1𝐶
𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡

{
𝜅1 �̄�𝑚,𝑡𝐶𝑚,𝑡 �̄�𝑚,𝑡 |𝑡−1𝐶

𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡 + (1 − 𝜃𝑚,𝑡)2{Ω𝑚3,𝑡 ◦ 𝑅𝑚,𝑡}

+ 𝜅2 �̄�𝑚,𝑡𝜆𝑚,𝑡
√
R𝑚,𝑡

√
R𝑚,𝑡

𝑇
𝜆𝑇𝑚,𝑡 �̄�

𝑇
𝑚,𝑡 + (1 − 𝜃𝑚,𝑡)2𝜅3𝐶𝑚,𝑡{Υ𝑚,𝑡 ◦Ω𝑚1,𝑡}𝐶𝑇𝑚,𝑡

+ 𝜃2
𝑚,𝑡𝜅4 �̄�𝑚,𝑡𝐶𝑚,𝑡Ω𝑚1,𝑡𝐶

𝑇
𝑚,𝑡 �̄�

𝑇
𝑚,𝑡 + 𝜃2

𝑚,𝑡𝜅5Ω𝑚2,𝑡 + (1 − 𝜃𝑚,𝑡)2𝜅6Ξ(�̄�𝑚,𝑡)

+ 𝜃2
𝑚,𝑡𝜅7(𝐼 − �̄�𝑚,𝑡)𝜏𝑚𝜏𝑇𝑚 (𝐼 − �̄�𝑚,𝑡)𝑇 + (1 − 𝜃𝑚,𝑡)2𝜅8{Υ𝑚,𝑡 ◦ (𝜏𝑚𝜏𝑇𝑚)}

}−1
. (40)

As such, one completes the proof of this theorem.

Remark 3. Different from the approach to dealing with the DETP in [6,27,37], an indicator variable is employed
to formulate the impact of the DETP. From (37), it can be observed that the filter gain 𝐾𝑚,𝑡 is dependent on
the indicator variable 𝜃𝑚,𝑡 , which formulates the combined role of DETP with the token bucket specifications.
Meanwhile, the filter gain can be calculated under two cases, i.e., 𝜃𝑚,𝑡 = 1 (i.e., filter does not receivemeasurement)
and 𝜃𝑚,𝑡 = 0 (i.e., filter does receive measurement), respectively.

3.2. Boundedness analysis
In this section, the boundedness of �̄�𝑚,𝑡 |𝑡 will be discussed in the sense of mean square. Before carrying out the
performance analysis, an assumption is provided to make some necessary constraints on the corresponding
parameters.

Assumption 1. Suppose that the following inequalities hold

∥𝐴𝑡 ∥ ≤ 𝑎, ∥𝐵𝑡 ∥ ≤ 𝑏, 𝑐 ≤
𝐶𝑚,𝑡 ≤ 𝑐,

Υ𝑚,𝑡 ≤ 𝜋,
𝑄𝑚,𝑡 ≤ 𝑞,

Ξ(�̄�𝑚,𝑡+1)
 ≤ 𝜌,

∥𝜏𝑚 ∥ ≤ 𝜏,
Ω𝑚1,𝑡−1

 ≤ 𝜉,
Ω𝑚2,𝑡−1

 ≤ 𝜗,
Ω𝑚3,𝑡−1

 ≤ 𝑜, 𝜛 ≤
 �̄�𝑚,𝑡 ≤ 𝜛,𝑅𝑚,𝑡 ≤ 𝑟, 𝜆 ≤

𝜆𝑚,𝑡 ≤ �̄�,
√R𝑚,𝑡

 ≤ 𝜇 (41)

where 𝑎, 𝑏, 𝑐, 𝜋, 𝑞, 𝑟 , 𝑞, 𝑜, 𝜌, 𝜏, 𝜗, 𝜉, 𝑐, 𝑐, 𝜛, �̄�, 𝜇, and 𝜏 are all known positive real numbers.

Theorem 3. Suppose Assumption 1 holds, in line with the system (1) and censored measurement (2) under As-
sumption 1, if the following inequality holds:

𝜅1𝑤𝑚,𝑡𝑎
2 < 1, (42)

where 𝑤𝑚,𝑡 ≜
𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡2, then the filtering error (25) is mean-square bounded. Moreover, one has

lim
𝑡→+∞

∥�̄�𝑚,𝑡 |𝑡 ∥ =
Δ

1 − 𝜅1𝑤𝑚,𝑡𝑎2 (43)
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where

Δ ≜𝜅1𝑤𝑚,𝑡𝑏
2𝑞 + (1 − 𝜃𝑚,𝑡)2 �̄�2𝑟𝑜 + 𝜅2 �̄�

2𝜛2�̄�2𝜇2 + (1 − 𝜃𝑚,𝑡)2𝜅3 �̄�
2𝑐2𝜋𝜉

+ 𝜃2
𝑚,𝑡𝜅4 �̄�

2𝜛2𝑐2𝜉 + 𝜃2
𝑚,𝑡𝜅5 �̄�

2𝜗 + (1 − 𝜃𝑚,𝑡)2𝜅6 �̄�
2𝜌

+ 𝜃2
𝑚,𝑡𝜅7 �̄�

2𝜏2 + (1 − 𝜃𝑚,𝑡)2𝜅8 �̄�
2𝜋𝜏2.

Proof. In line with Assumption 1 and Eq. (26), it deduces that�̄�𝑚,𝑡 |𝑡−1
 ≤ 𝑎2 �̄�𝑚,𝑡−1|𝑡−1

 + 𝑏2𝑞. (44)

By noting Eqs. (37) with (40), the upper bound of the filter gain 𝐾𝑚,𝑡+1 is given as𝐾𝑚,𝑡 ≤
Ψ𝑚,𝑡 Φ𝑚,𝑡

−1 ≤ 𝜛𝑐

𝜛2𝑐2 ≜ �̄� , (45)

from which can be gained from Eq. (30):�̄�𝑚,𝑡 |𝑡 ≤ 𝜅1
𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡2 �̄�𝑚,𝑡 |𝑡−1

 + (1 − 𝜃𝑚,𝑡)2 �̄�2𝑟𝑜 + 𝜅2 �̄�
2𝜛2�̄�2𝜇2

+ (1 − 𝜃𝑚,𝑡)2𝜅3 �̄�
2𝑐2𝜋𝜉 + 𝜃2

𝑚,𝑡𝜅4 �̄�
2𝜛2𝑐2𝜉 + 𝜃2

𝑚,𝑡𝜅5 �̄�
2𝜗 + (1 − 𝜃𝑚,𝑡)2𝜅6 �̄�

2𝜌

+ 𝜃2
𝑚,𝑡𝜅7 �̄�

2𝜏2 + (1 − 𝜃𝑚,𝑡)2𝜅8 �̄�
2𝜋𝜏2. (46)

By means of 𝑤𝑚,𝑡 ≜
𝐼 − 𝐾𝑚,𝑡 �̄�𝑚,𝑡𝐶𝑚,𝑡2, one has�̄�𝑚,𝑡 |𝑡 ≤ 𝜅1𝑤𝑚,𝑡𝑎

2 �̄�𝑚,𝑡−1|𝑡−1
 + 𝜅1𝑤𝑚,𝑡𝑏

2𝑞 + (1 − 𝜃𝑚,𝑡)2 �̄�2𝑟𝑜 + 𝜅2 �̄�
2𝜛2�̄�2𝜇2

+ (1 − 𝜃𝑚,𝑡)2𝜅3 �̄�
2𝑐2𝜋𝜉 + 𝜃2

𝑚,𝑡𝜅4 �̄�
2𝜛2𝑐2𝜉 + 𝜃2

𝑚,𝑡𝜅5 �̄�
2𝜗 + (1 − 𝜃𝑚,𝑡)2𝜅6 �̄�

2𝜌

+ 𝜃2
𝑚,𝑡𝜅7 �̄�

2𝜏2 + (1 − 𝜃𝑚,𝑡)2𝜅8 �̄�
2𝜋𝜏2. (47)

In the following, we can rewrite (47) as follows

∥�̄�𝑚,𝑡 |𝑡 ∥ ≤ 𝜅1𝑤𝑚,𝑡𝑎
2∥�̄�𝑚,𝑡−1|𝑡−1∥ + Δ, (48)

which further implies

∥�̄�𝑚,𝑡 |𝑡 ∥ ≤ (𝜅1𝑤𝑚,𝑡𝑎
2)𝑡 ∥�̄�𝑚,0|0∥ +

1 − (𝜅1𝑤𝑚,𝑡𝑎
2)𝑡−1

1 − 𝜅1𝑤𝑚,𝑡𝑎2 Δ. (49)

If (42) holds, i.e., 𝜅1𝑤𝑚,𝑡𝑎
2 < 1, one then has (43), which implies that the convergence of the upper bound�̄�𝑚,𝑡 |𝑡. Meanwhile, it is observed that �̄�𝑚,𝑡 |𝑡 always serves as an upper bound for the true estimation er-

ror covariance 𝑃𝑚,𝑡 |𝑡 . Consequently, the filtering error is mean-square bounded. Therefore, the proof is now
complete.

Remark 4. Theorem 3 shows the combined impact of the DETPwith the token bucket specifications on the filtering
error boundedness and the filtering accuracy. Noticing that 𝑤𝑚,𝑡 is dependent on filter gain 𝐾𝑚,𝑡 from sufficient
condition (42) and 𝐾𝑚,𝑡 is dependent on 𝜃𝑚,𝑡 from (37), the DETP with the token bucket specifications will pose
an impact on the bounded condition. In addition, as given in (43), 𝜃𝑚,𝑡 and 𝑤𝑚,𝑡 are involved in the upper bound
of the filtering error covariance, showing that 𝜃𝑚,𝑡 would also pose effect on the filtering accuracy.
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3.3. Federated Tobit Kalman fusion filtering
In line with federated filtering fusion, the state estimate and the error covariance are 𝑥𝑚,𝑡 |𝑡 and �̄�𝑚,𝑡 |𝑡 , respec-
tively, produced by the 𝑚th LTKF. Let 𝑥𝑔

𝑡 |𝑡 and �̂�
𝑔
𝑡 |𝑡 denote the global optimal estimate and covariance obtained

at the fusion center under the federated fusion rule.

Theorem 4. The FTKFF scheme for systems (1)-(2) is expressed as
𝑃
𝑔
𝑡 |𝑡 =

(
𝑙∑

𝑚=1
�̄�−1
𝑚,𝑡 |𝑡

)−1

,

𝑥
𝑔
𝑡 |𝑡 = 𝑃

𝑔
𝑡 |𝑡

𝑙∑
𝑚=1

�̄�−1
𝑚,𝑡 |𝑡𝑥𝑚,𝑡 |𝑡

(50)

with the resulting updated values 
𝑄𝑚,𝑡 = 𝛼

−1
𝑚 𝑄𝑡 ,

�̄�𝑚,𝑡 |𝑡 = 𝛼
−1
𝑚 𝑃

𝑔
𝑡 |𝑡 ,

𝑥𝑚,𝑡 |𝑡 = 𝑥
𝑔
𝑡 |𝑡

(51)

where 𝛼𝑚 is the information weight of the 𝑚-th local estimator and ∑𝑙
𝑚=1𝛼𝑚 = 1; 𝑥𝑚,𝑡 |𝑡 , �̄�𝑚,𝑡 |𝑡 , and 𝑄𝑚,𝑡 are the

local estimates, upper bounds, and process noise covariance to be initialized at time 𝑡 for predictions at time 𝑡 + 1.

It is noted that the role of (51) is to allocate the fused result to the individual sub-filter. The detailed procedure
of FTKFF is summarized in Algorithm 1.

In line with the boundedness analysis of Theorem 3, the same argument can be applied to deduce the bound-
edness.

According to Algorithm 1, one has the computational complexity of the scheme developed in this paper.

Remark 5. Now, we focus on the computational complexity of the scheme. In light of the system dimensions,
such as 𝑥𝑡 ∈ R𝑛𝑦 , 𝑦𝑖,𝑡 ∈ R𝑛𝑦 , 𝑤𝑡 ∈ R𝑤 and the resulting matrix dimensions, such as 𝐴𝑡 ∈ R𝑛𝑥×𝑛𝑥 , 𝐵𝑡 ∈ R𝑛𝑥×𝑛𝑤 ,
𝐶𝑖,𝑡 ∈ R𝑛𝑦×𝑛𝑥 , one can obtain the computational complexity of the scheme developed in this paper at every fixed
time instant. The FLOPS (Floating Point Operations Per Second) of main computational formulas fromAlgorithm
1 is 7𝑙𝑛3

𝑦+(10𝑙+1)𝑛3
𝑥+36𝑙𝑛2

𝑦𝑛𝑥+22𝑙𝑛𝑦𝑛2
𝑥+(13𝑙+6)𝑛2

𝑥+18𝑙𝑛2
𝑦−17𝑙𝑛𝑥𝑛𝑦−(2𝑙+1)𝑛𝑥−𝑙𝑛𝑦+2𝑙𝑛𝑥𝑛2

𝑤−2𝑙𝑛𝑥𝑛𝑤+2𝑙+59.
The corresponding complexity is given as 𝑂 (7𝑙𝑛3

𝑦 + (10𝑙 + 1)𝑛3
𝑥 + 36𝑙𝑛2

𝑦𝑛𝑥 + 22𝑙𝑛𝑦𝑛2
𝑥 + 2𝑙𝑛𝑥𝑛2

𝑤).

In the following, we will discuss the consistency of the federated fusion.

Theorem 5. If 𝑃𝑚,𝑡 |𝑡 ≤ �̄�𝑚,𝑡 |𝑡 , then one has

E
{
(𝑥𝑡 |𝑡 − 𝑥𝑔𝑡 |𝑡) (𝑥𝑡 |𝑡 − 𝑥

𝑔
𝑡 |𝑡)

𝑇
}
≤ 𝑃

𝑔
𝑡 |𝑡 . (52)

Proof. First of all, one calculates

E
{
(𝑥𝑡 − 𝑥𝑔𝑡 |𝑡) (𝑥𝑡 − 𝑥

𝑔
𝑡 |𝑡)

𝑇
}

=E


(
𝑥𝑡 − 𝑃𝑔𝑡 |𝑡

𝑙∑
𝑚=1

�̄�−1
𝑚,𝑡 |𝑡𝑥𝑚,𝑡 |𝑡

) (
𝑥𝑡 − 𝑃𝑔𝑡 |𝑡

𝑙∑
𝑚=1

�̄�−1
𝑚,𝑡 |𝑡𝑥𝑚,𝑡 |𝑡

)𝑇
=𝑃𝑔

𝑡 |𝑡E


(
(𝑃𝑔

𝑡 |𝑡)
−1𝑥𝑡 −

𝑙∑
𝑚=1

�̄�−1
𝑚,𝑡 |𝑡𝑥𝑚,𝑡 |𝑡

) (
(𝑃𝑔

𝑡 |𝑡)
−1𝑥𝑡 −

𝑙∑
𝑚=1

�̄�−1
𝑚,𝑡 |𝑡𝑥𝑚,𝑡 |𝑡

)𝑇 𝑃𝑔𝑡 |𝑡 .
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Algorithm 1 FTKFF
1: form=1:l do
2: Initialization: 𝑥𝑚,0|0 and �̄�𝑚,0|0
3: end for
4: for t=1:N do
5: form=1:l do
6: Execute information transmission protocols
7: determine 𝛼𝑚,𝑡 by (15)
8: determine 𝛽𝑚,𝑡 by (18)
9: if 𝛼𝑚,𝑡 = 1 and 𝛽𝑚,𝑡 = 1 then
10: �̄�𝑚,𝑡 = 𝑦𝑚,𝑡𝑛𝑚
11: else
12: �̄�𝑚,𝑡 = 𝑦𝑚,𝑡−1
13: end if
14: Execute Local filtering
15: Calculate 𝑥𝑚,𝑡 |𝑡−1 by (21)
16: Calculate 𝑃𝑚,𝑡 |𝑡−1 by (29)
17: Compute the filter gain 𝐾𝑚,𝑡 in line with (37)
18: Calculate 𝑥𝑚,𝑡 |𝑡 by (22)
19: Compute �̄�𝑚,𝑡 |𝑡 by (30)
20: end for
21: Execute fusion filtering
22: Compute 𝑃𝑔

𝑡 |𝑡 and 𝑥
𝑔
𝑡 |𝑡 by (50)

23: Update the number of tokens by (17)
24: Tokens are assigned to every node by (16)
25: Update 𝑥𝑚,𝑡 |𝑡 and �̄�𝑚,𝑡 |𝑡 by (51)
26: end for

Noting such a fact:

(
𝑃
𝑔
𝑡 |𝑡

)−1
=

𝑙∑
𝑚=1

�̄�−1
𝑚,𝑡 |𝑡 ,

one derives that

E
{
(𝑥𝑡 − 𝑥𝑔𝑡 |𝑡)(𝑥𝑡 − 𝑥

𝑔
𝑡 |𝑡)

𝑇
}

=𝑃𝑔
𝑡 |𝑡E


(
𝑙∑

𝑚=1
�̄�−1
𝑚,𝑡 |𝑡𝑥𝑡 −

𝑙∑
𝑚=1

�̄�−1
𝑚,𝑡 |𝑡𝑥𝑚,𝑡 |𝑡

) (
𝑙∑

𝑚=1
�̄�−1
𝑚,𝑡 |𝑡𝑥𝑡 −

𝑙∑
𝑚=1

�̄�−1
𝑚,𝑡 |𝑡𝑥𝑚,𝑡 |𝑡

)𝑇 𝑃𝑔𝑡 |𝑡
=𝑃𝑔

𝑡 |𝑡E

{
𝑙∑

𝑚=1
�̄�−1
𝑚,𝑡 |𝑡

(
𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡

) 𝑙∑
𝑚=1

(𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡)𝑇 �̄�−1
𝑚,𝑡 |𝑡

}
𝑃
𝑔
𝑡 |𝑡 .

According to (49), one further has

�̄�−1
𝑚,𝑡 |𝑡 = 𝛼𝑚 (𝑃

𝑔
𝑡 |𝑡)

−1, (53)
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which indicates that

E
{
(𝑥𝑡 − 𝑥𝑔𝑡 |𝑡)(𝑥𝑡 − 𝑥

𝑔
𝑡 |𝑡)

𝑇
}

=𝑃𝑔
𝑡 |𝑡E

{
𝑙∑

𝑚=1
𝛼𝑚 (𝑃𝑔𝑡 |𝑡)

−1 (
𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡

) 𝑙∑
𝑚=1

(𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡)𝑇𝛼𝑚 (𝑃𝑔𝑡 |𝑡)
−1

}
𝑃
𝑔
𝑡 |𝑡

=E

{
𝑙∑

𝑚=1
𝛼𝑚

(
𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡

) 𝑙∑
𝑚=1

𝛼𝑚 (𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡)𝑇
}

=E

{
𝑙∑

𝑚=1

𝑙∑
𝑠=1

𝛼𝑚𝛼𝑠
(
𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡

)
(𝑥𝑡 − 𝑥𝑠,𝑡 |𝑡)𝑇

}
. (54)

By resorting to lemma 2 in [41], one derives

E
{
(𝑥𝑡 − 𝑥𝑔𝑡 |𝑡)(𝑥𝑡 − 𝑥

𝑔
𝑡 |𝑡)

𝑇
}

=E

{
𝑙∑

𝑚=1

𝑙∑
𝑠=1

𝛼𝑚𝛼𝑠
(
𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡

)
(𝑥𝑡 − 𝑥𝑠,𝑡 |𝑡)𝑇

}
≤E

{
1
2

𝑙∑
𝑚=1

𝑙∑
𝑠=1

𝛼𝑚𝛼𝑠

[ (
𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡

) (
𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡

)𝑇 + (𝑥𝑡 − 𝑥𝑠,𝑡 |𝑡) (𝑥𝑡 − 𝑥𝑠,𝑡 |𝑡)𝑇
]}

=
𝑙∑

𝑚=1
𝛼𝑚

𝑙∑
𝑚=1

𝛼𝑚E
{(
𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡

) (
𝑥𝑡 − 𝑥𝑚,𝑡 |𝑡

)𝑇 }
=

𝑙∑
𝑚=1

𝛼𝑚

𝑙∑
𝑚=1

𝛼𝑚𝑃𝑚,𝑡 |𝑡

≤
𝑙∑

𝑚=1
𝛼𝑚

𝑙∑
𝑚=1

𝛼𝑚 �̄�𝑚,𝑡 |𝑡

=
𝑙∑

𝑚=1
𝛼𝑚𝑃

𝑔
𝑡 |𝑡

=𝑃𝑔
𝑡 |𝑡 . (55)

Now, the proof is complete.

Remark 6. The FTKFF scheme is proposed for a class of discrete time-varying systems under the schedule of the
DETP with token bucket specifications. This paper embodies the following significant characteristics from two
viewpoints: (1) a local Tobit Kalman filter (LTKFs) is elaborately designed based on an enhanced protocol model
that gives combined consideration of the impacts incurred by the DETP and token bucket specifications, where two
indicator variables are used to formulate their roles; (2) a federated fusion rule is chosen by productively integrating
the local estimates from LTKFs.

4. AN ILLUSTRATION EXAMPLE
In this section, an oscillator simulation example in [10,12] is provided to showcase the effectiveness of the pro-
posed FTKFF algorithm, under the schedule of the dynamic event-triggering with tokens buckets. The system
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Figure 2. The dynamic change of token and triggering instants of three nodes.

parameters are chosen as

𝐴𝑡 =

[
cos(𝑤) sin(𝑤)
− sin(𝑤) cos(𝑤)

]
, 𝐵𝑡 =

[
0.16
0.18

]
, 𝑤 = 0.052𝜋,

𝐶1,𝑡 =

[
1 0
0 1

]
, 𝐶2,𝑡 =

[
1 0
0 1

]
, 𝐶3,𝑡 =

[
1 0
0 1

]
, 𝑥0 =

[
5
0

]
,

𝑄𝑡 = diag{0.05, 0.05}, 𝑅1,𝑡 = 𝑅2,𝑡 = 𝑅3,𝑡 = 0.5.

In terms of the token bucket formulation, choose the following parameters

𝛽0 = 10, 𝑐1 = 𝑐2 = 𝑐3 = 3, 𝑏 = 30, 𝑔 = 5.

The corresponding parameters in the dynamic event-triggering conditions (14) are set to be 𝑑𝑡 = 1.5, 𝑒𝑡 = 2
𝜎1 = 0.1, 𝜎2 = 0.2, 𝜎3 = 0.3, 𝜆2 = 0.2, 𝜆1 = 𝜆3 = 0.1, 𝜃1 = 𝜃2 = 𝜃3 = 5, 𝜂1,0 = 𝜂2,0 = 𝜂3,0 = 1.5,
𝑎1 = 𝑎2 = 𝑎3 = 1.5, 𝑏1 = 𝑏2 = 𝑏3 = 2. The threshold of 𝜏𝑚 is set to be a zero vector. In addition, set
𝜀1 = 𝜀2 = 𝜀3 = 𝜀4 = 𝜀5 = 0.05, 𝜀𝑖 = 0.7(𝑖 = 6, · · · , 13), and 𝜀14 = 1 for Eq. (32). By means of Theorems 2 and
3, one calculates the local filter gains 𝐾𝑖,𝑡 , the local estimates 𝑥𝑚,𝑡 |𝑡 , and the global estimates 𝑥𝑔

𝑡 |𝑡 , respectively.

The simulation results are displayed in Figures 2-10. Figure 2 depicts the utilization of communication re-
sources under the schedule of dynamic event-triggered protocol with the token bucket specifications in the
network, where the black asterisk, blue circle, and red cross are denoted as the event-triggering time instant of
Node 𝑖 = 1, 2, 3, and the green line represents the dynamic change of tokens. Figures 3 and 4 plot the censored
measurements before and after the communication protocol scheduling, respectively, which reflects the role
of scheduling in the information transmission. Figures 5-7 depict the local estimated values from every node
and fusion estimation of state 𝑥𝑡 . Figures 8-10 illustrate the logarithm (lg) of 𝑒𝑇

𝑚,𝑡 |𝑡𝑒𝑚,𝑡 |𝑡 , Tr(�̄�𝑚,𝑡 |𝑡) for every
sensor, (𝑒𝑔

𝑡 |𝑡)
𝑇 𝑒

𝑔
𝑡 |𝑡 , and Tr(�̄�

𝑔
𝑡 |𝑡).

In Figures 5-7, the blue curve represents the estimates from the local filters. Due to the existence of censored
measurements, there exist obvious fluctuations of the local estimate, especially in the estimation of state 𝑥2

3,𝑡 in
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Figure 3. 𝑦1
𝑚,𝑡 and �̄�1

𝑚,𝑡 .

Figure 7. However, federated fusion rules are used in this paper to obtain an optimal fusion estimate (shown
by the red curve) by fully exploiting the estimates of all local filters. Meanwhile, the optimal fusion estimate
can be fed back to the local filter to modify the fluctuations.

In Figures 8-10, the red curve represents the upper bound of the covariance of the local estimation error, while
the yellow curve shows that of the filtering error after fusion. It can be observed that the result after fusion is
better than that before fusion. Additionally, the blue dashed line represents the mean square error of the local
estimator; the black curve indicates that after fusion. It can be noticed that in most cases, the mean square
error of fused results is almost smaller than that of the local estimates, and the error curve is relatively smooth.
This also demonstrates the superiority of the FTKFF scheme.

Thanks to the regulations of federated fusion filtering, distributed processing is achieved among sensors, where
each local filter enhances the real-time performance of the system. Even in cases where a sensor fails or pro-
vides inaccurate information, the fusion center can enhance the filter’s performance by utilizing data from
other nodes and transmitting it to the local filter, resulting in a smoother filtered state value, which implies
that the system becomes more resilient. As shown in Figures 8-10, the upper bound of the trace of the fused
filtering error covariance matrix is smaller than that of a single node, and there is also an improvement in
terms of mean square error. Therefore, the FTKFF scheme developed in this paper is indeed effective.

5. CONCLUSIONS
This paper has proposed a class of FTKFF schemes with censored measurements under the schedule of dy-
namic event-triggering with token specifications. First, the Tobit model has been used to describe the censored
measurements. The token bucket traffic shaping algorithm with DETPs has been integrated to fully utilize lim-
ited communication resources. A local recursive filtering scheme has been designed for every node and an
upper bound for the covariance matrix of the filtering error has been derived in the sense of trace. By mini-
mizing this upper bound at each time step, the local filter gain has been calculated recursively. Additionally,
sufficient conditions for the local filtering error to be mean-square stable are derived by analyzing the bounded-
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Figure 4. 𝑦2
𝑚,𝑡 and �̄�2

𝑚,𝑡 .

Figure 5. 𝑥𝑡 , �̂�1,𝑡 |𝑡 , and �̂�
𝑔
𝑡 |𝑡 .

ness of the local filtering error covariance matrix. The fusion center processes the local filtering values at each
time step via the federated fusion rule and distributes the fused results to each local filter. This comprehen-
sive fusion filtering framework provides an effective solution to the censored measurements and information
transmission protocol involving the DETP and token bucket specifications. Finally, the performance of the
proposed FTKFF scheme is evaluated through a simulation example. In the future, the schemes proposed in
this paper could be further developed to deal with more complicated cases such as sensor saturation, uncertain
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Figure 6. 𝑥𝑡 , �̂�2,𝑡 |𝑡 , and �̂�
𝑔
𝑡 |𝑡 .

Figure 7. 𝑥𝑡 , �̂�3,𝑡 |𝑡 , and �̂�
𝑔
𝑡 |𝑡 .

parameter systems, signal quantization, and time-delay systems or two-side censored measurements.
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Figure 8. The logarithm of 𝑒𝑇1,𝑡 |𝑡𝑒1,𝑡 |𝑡 , (𝑒𝑔𝑡 |𝑡 )
𝑇𝑒

𝑔
𝑡 |𝑡 , tr( �̄�1,𝑡 |𝑡 ) and tr( �̄�𝑔

𝑡 |𝑡 ).

Figure 9. The logarithm of 𝑒𝑇2,𝑡 |𝑡𝑒2,𝑡 |𝑡 , (𝑒𝑔𝑡 |𝑡 )
𝑇𝑒

𝑔
𝑡 |𝑡 , tr( �̄�2,𝑡 |𝑡 ) and tr( �̄�𝑔

𝑡 |𝑡 ).
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