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Abstract
Treating and preventing neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, dementia 
with Lewy bodies, amyotrophic lateral sclerosis, frontotemporal dementia, and Huntington’s disease have become 
significant challenges in the field of neurological research. In the early stages of neurodegenerative disease 
research, scientists often choose appropriate animal models to delve deeper into their molecular pathological 
mechanisms and macroscopic clinical manifestations. Selecting the right animal model is a crucial step in initiating 
and advancing this research process. This article focuses on analyzing various animal models used in the field of 
neurodegenerative diseases in recent years, with a particular focus on Huntington’s disease. It discusses in detail 
the advantages and disadvantages of different animal models in experimental research, as well as the pathological 
features and clinical manifestations they exhibit.
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INTRODUCTION
Animal models have played a pivotal role in the investigation of various neurodegenerative diseases, 
offering insights into disease pathogenesis, progression, and potential therapeutic targets. The selection of 
an appropriate animal model is crucial as different models possess distinct advantages and limitations. It is 
imperative to carefully consider the characteristics of each model, encompassing similarities in genetic 
mutations, phenotypic expression, and disease progression, to ensure that the chosen model accurately 
recapitulates the human disease and is suitable for the specific research objectives. This paper conducts an 
in-depth analysis of the merits and drawbacks of the diverse animal models extensively employed in 
Huntington’s disease (HD) research over recent years, encompassing a comprehensive evaluation spanning 
from large to small animal models. Our endeavor is to equip novices entering the realm of HD research 
with a visionary perspective by meticulously elucidating the current landscape of animal model utilization 
in HD studies. Utilizing specialized biological terminology and adjusting phrasing for enhanced 
professionalism, we have constructed a systematic and comprehensive theoretical framework. This 
framework aims to serve as a robust theoretical foundation and guiding principles for future research 
endeavors, enabling them to accurately select the most apt animal model tailored to their specific research 
objectives.

CHARACTERISTICS OF HD
HD is a dominant genetic disorder caused by mutations in the Huntington gene located on chromosome 4, 
clinically manifesting as choreiform movements accompanied by progressive cognitive and psychiatric 
dysfunction, ultimately leading to dementia, and in severe cases, even asphyxia and death. The pathogenic 
gene Huntingtin (HTT) in HD encodes the HTT protein, and its first exon contains repeated CAG triplets. 
In HD, the number of CAG triplet repeats abnormally increases, and individuals with more than 36 CAG 
repeat triplets will develop the disease. The N-terminal fragment of the HTT gene, containing more than 36 
polyglutamine (poly Q) repeats in the CAG sequence, forms inclusions within the nucleus and aggregations 
in nerve fibers. A prominent hallmark of this condition is the formation of aggregates by the mutant HTT 
(mHTT) protein, which leads to striatal atrophy and significant loss of medium spiny neurons in patients. 
Currently, there is no effective treatment for HD, and clinical management is primarily focused on 
symptomatic relief. This ultimately leads to the patient’s demise, occurring approximately 10 to 15 years 
after the initial signs of the disease manifest[1-3].

The acknowledgment of polyQ’s significance evolved gradually over time. By the late 1990s, researchers had 
already noted the instability of HTT CAG repeats in human brain tissue post-mortem, as well as in a 
substantial proportion of rodent models. As investigations deepened, it emerged that the phenotype was 
primarily dictated by the length of the CAG repeat, rather than the length of the polyQ tract within the 
Huntington protein[4]. This revelation also sheds light on why certain rodent models, notably YAC128 and 
early BACHD mice, failed to fully replicate the observed phenotype (owing to the presence of CAA 
interruptions within the CAG repeats in the original YAC and BAC constructs). These interruptions 
mitigated the somatic instability of CAG repeats, while both CAA and CAG code for the same amino acid, 
glutamic acid. A recent pre-print paper from Steve McCarroll’s lab similarly supports the idea that somatic 
instability plays a key role in HD pathogenesis[5]. Therefore, paying attention to the instability 
characterization of animal models of different animals is an important aspect in selecting suitable animal 
models for research.

While scientists have made significant strides in understanding HD, finding effective treatments to halt or 
slow its progression remains a distant goal. The gradual nature of the disease necessitates extensive and 
costly clinical trials. Additionally, the limited availability of HD patients for such trials restricts the number 
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of biochemical components that can be tested at any given time. Consequently, animal models occupy a 
pivotal position in HD research. They serve as a vital gateway before embarking on human clinical trials and 
as a tool to identify potential therapeutic compounds with promising outcomes.

Animal models of HD have a long history, and existing animal models encompass rhesus monkey, crab-
eating macaque, marmoset, sheep, miniature pig, dog, rat, mouse, song bird, frog, zebrafish, fruit fly, 
roundworm, amoeba, bacteria, budding yeast, etc.[6]. The classification of animal models includes higher 
mammals, rodents, birds, amphibians and fish, invertebrates, and unicellular microorganisms. These animal 
models provide researchers with diverse perspectives. It is impractical to provide a comprehensive overview 
of every animal model in a single article, so we have selected a variety of common large and small animal 
models for a brief overview, which should meet the needs of most researchers [Figure 1].

EARLY ANIMAL MODELS
In the early stages of this disease research, the modeling of HD primarily relied on acute striatal atrophy 
induced by neurotoxic agents[7-9]. Although striatal atrophy is considered a key neuropathological feature of 
HD, mHTT is widely expressed throughout the central nervous system and can also be found in peripheral 
tissues[10,11]. Therefore, models centered solely on acute striatal damage are insufficient to comprehensively 
reveal the complex manifestations of the disease in these aspects. The limited pathological scope of striatal 
lesions makes it difficult to replicate many HD neurological symptoms caused by lesions in other brain 
regions in current disease models. In recognition of this, researchers have begun to shift their modeling 
focus toward the development of genetic animal models, aiming to delve deeper into the essence of the 
disease.

CAENORHABDITIS ELEGANS MODELS
The Caenorhabditis elegans (C. elegans) nematode, a non-parasitic species that primarily feeds on bacteria, 
boasts a nervous system that has been comprehensively and meticulously described. Each neuron’s position 
and connectivity within this system have been accurately mapped, providing a detailed understanding of its 
neurobiological structure[12]. Remarkably, C. elegans maintains its transparency throughout its entire 
lifecycle, enabling the utilization of fluorescent markers for precise tracking and analysis. Its small size 
further facilitates non-invasive optical monitoring and manipulation techniques, enabling researchers to 
delicately observe and manipulate its biological processes[13]. Moreover, the fully sequenced genome of 
C. elegans, measuring a mere 97 Mb, reveals that 60%-80% of its genes have homologs in humans, 
highlighting its significance as a model organism for studying diverse biological phenomena and diseases[14].

In the experiment, the edited progeny of C. elegans can be obtained by injecting edited gene fragments into 
the gonads of C. elegans with plasmids as carriers[15]. In addition, a diverse group of scientists have made 
concerted efforts to unpack the molecular biology behind HD by expressing polyQ tracts with varying 
repeat lengths in specific neuronal subtypes of C. elegans. A pivotal aspect of their methodology involves 
integrating amino acids sourced from both standard and amplified human HTT with fluorescently tagged 
proteins in the touch receptor neurons of C. elegans. This enables them to corroborate the formation of 
protein aggregates and other pertinent clinical manifestations[16-18].

Even though there is no HTT orthologue present in C. elegans, HTT can be expressed in C. elegans using a 
transgenic formula to induce age-related mechanosensory impairment, neuronal dysfunction, and 
neurodegeneration under sensitized conditions[19]. C. elegans has been widely used to model several aspects 
of polyQ cytotoxicity and to identify novel disease-modifying factors. Not only that, they are also used in 
classical genetic screening. In the study by Faber et al., through genetic screening techniques, the C. elegans 
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Figure 1. Various animal models and modeling methods used in Huntington’s disease research. Common animal models include both 
large and small animals, which are often created using viruses or plasmids as vectors through injection. The targets of the injection can 
range from fertilized eggs to the brain.

model was used to identify proteins that protect neurons from the toxic effects of extended polyQ tracts[20]. 
These models have also been extensively employed to delve into the underlying mechanisms of HD and 
rigorously evaluate the therapeutic promise of diverse compounds. Voisine et al. used an invertebrate model 
instead of a mammalian model to shorten the testing time from months to days, revealing the 
neuroprotective effects of lithium chloride and mithramycin in HD[21]. Other substances found to help 
prevent HD based on the model include rutin[22-24], xyloketal B[25], and diphenyl diselenide[26].

Indeed, the C. elegans serves as an outstanding research platform at the molecular level. Nevertheless, the 
drawbacks of these models are quite evident. Chief among them is the inability to replicate identical clinical 
symptoms observed in humans, given that C. elegans lacks peripheral tissues resembling those of humans 
and possesses a central nervous system vastly different from humans. Consequently, it is infeasible to 
inform a patient that a potential therapy deemed effective in a nematode can be directly translated into 
human therapy.
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DROSOPHILA MELANOGASTER  MODELS
The Drosophila melanogaster (D. melanogaster) has served as a genetic model system for scientific research 
for over a century. Due to its low maintenance and rapid reproduction costs, researchers have developed 
numerous genetic techniques over the years[27]. The high degree of genetic homology between 
D. melanogaster and humans makes it a valuable model for exploring cellular and molecular mechanisms 
underlying developmental processes and diseases. In recent years, D. melanogaster has successfully been 
used to mimic various human diseases, including numerous neurological disorders[28,29]. Its nervous system 
is complex and diverse, exhibiting many features similar to humans, such as eyes, olfactory, gustatory, and 
auditory organs, as well as a ventral nerve cord analogous to the spinal cord. Furthermore, it possesses 
peripheral sensory neurons for proprioception and pain perception, along with a brain[30-36]. Notably, a 
significant number of mutants affecting neural development have been generated in D. melanogaster, 
providing researchers with a rich resource for investigation[37,38].

Despite the absence of an expanded polyQ sequence in the amino-terminal domain of D. melanogaster’s 
HTT protein, there exists a remarkable sequence conservation with the human protein, exhibiting 
approximately 49% positive homology and 27% identity[39]. This conserved sequence predicts a shared 
folding pattern between the two proteins. As a result, Drosophila serves as a valuable model organism for 
studying HD. By introducing mutated human HTT genes into Drosophila, researchers can explore the 
consequences of these mutations on protein function and interactions within the cell. When constructing 
D. melanogaster models for HD, most mutations are designed based on fragments of the HTT protein. 
Some studies choose to express only specific gene fragments, while others opt for larger fragments[40-42].

A pivotal stage in the development of HD involves the cleavage of the full-length HTT protein. This process 
liberates N-terminal fragments of varying lengths, containing an elongated polyQ tract that ultimately 
becomes neurotoxic in neuronal cells, contributing significantly to the pathogenesis of the disease[43]. The 
production of both N-terminal and C-terminal fragments, the latter arising specifically from double 
proteolysis, significantly augments toxicity mechanisms in HD. These byproducts contribute to the dilation 
of the endoplasmic reticulum (ER) and intensify ER stress, thereby impairing the crucial activity of dynamin 
1 protein and ultimately triggering cell death. It was experimentally demonstrated that the N-terminal and 
C-terminal metabolites produced by HTT protein hydrolysis in Drosophila model exhibited toxicity in the 
organism[39].

Transgenic D. melanogaster has proven effective in simulating some of the core features of HD, including a 
significantly shortened lifespan, the late-onset nature of the illness, motor dysfunction, and the gradual 
accumulation of aggregates within neurons, axons, and the cytoplasm. Chongtham et al. investigated the 
role of changes in gut microbiota composition in the pathogenesis of several neurodegenerative disorders, 
with a particular focus on the progression of HD. Using transgenic D. melanogaster models expressing full-
length or N-terminal mutant fragments of human HTT protein, the study aimed to explore how gut 
bacteria influence the progression of HD[44]. The drosophila model has also been used to evaluate potential 
treatments in HD, with a 2018 study showing that Rhodiola rosea improved several measures in flies 
expressing HTTQ93[45].

These models enable researchers to gain insights into the disease’s pathogenesis and progression, thereby 
facilitating the development of potential therapeutic strategies. Moreover, this approach allows researchers 
to investigate the effects of different regions of the HTT protein and their contribution to the pathogenesis 
of HD. By studying these models, scientists can gain insights into the molecular mechanisms underlying the 
disease and potentially develop new therapeutic strategies.



Page 6 of 17 Yu et al. Ageing Neur Dis 2024;4:13 https://dx.doi.org/10.20517/and.2024.13

ZEBRAFISH MODELS
With its unique advantages of large embryonic size, short developmental time, and transparency, the 
zebrafish has emerged as a popular model organism in vertebrate developmental studies. The large size of its 
embryos facilitates ease of observation and manipulation, while the short developmental cycle allows for the 
rapid exhibition of various changes throughout development[46]. Furthermore, the transparency of the 
zebrafish embryo enables the direct observation of internal structures and cellular dynamics without the 
need for special treatments. These characteristics collectively contribute to the zebrafish's status as an ideal 
choice for studying the developmental mechanisms of vertebrates, providing scientists with valuable 
experimental materials and observation windows[47].

The HTT homolog in zebrafish is similar in size to human HTT and exhibits a high degree of identity, 
reaching up to 70% in amino acid sequence[48]. From a holistic perspective, the absence of HTT has a 
significant impact on the developmental process of zebrafish embryos[49]. This discovery further emphasizes 
the crucial role of HTT in vertebrate development and provides strong support for utilizing zebrafish as a 
model for studying neurodegenerative diseases such as HD. In the zebrafish system, expressing normal and 
expanded polyQ fragments of HTT through gene editing techniques has become a commonly adopted 
research method[50]. In these cell lines, the length of the polyQ fragment is closely associated with its 
misfolding, oligomerization, aggregation, and toxic manifestations, which are highly consistent with 
observations in other animal models and patients. Insufficient expression of HTT in zebrafish can lead to 
various developmental defects and disruption of iron homeostasis[49]. Furthermore, recent studies have 
demonstrated that phosphodiesterase 5 (PDE5) inhibitors upregulate intracellular cGMP levels, resulting in 
a reduction of aggregates with 71 glutamine repeats in zebrafish larvae expressing human HTT[51].

When exploring the complex pathological mechanism of HD, a crucial molecule, brain-derived 
neurotrophic factor (BDNF), has entered the field of view of scientists, and several research teams have tried 
to unravel the mechanism of BDNF in HD through zebrafish models. BDNF, an integral member of the 
neurotrophin family, exhibits a notable diversity in its isoforms, with three distinct variants identified in 
zebrafish[52]. The initiation of BDNF signaling, a pivotal process in neuronal health, commences with BDNF 
transcription, which is disrupted in HD. This transcriptional disruption stems from a decreased BDNF level, 
a consequence of the CAG repeat expansion in the HTT. Specifically, the CAG repeat in HTT disrupts the 
normal interaction between BDNF and RE1-silencing transcription factor (REST). This disruption 
facilitates REST’s nuclear translocation, leading to a suppression of BDNF expression[53]. This 
downregulation of BDNF, in turn, has detrimental effects on spiny projection neurons, a crucial neuronal 
population in HD. Furthermore, HTT interferes with the axonal transport of BDNF-containing vesicles. 
This interference, likely due to altered binding dynamics between dynactin, microtubules, and other 
components of the transport machinery[54], further exacerbates the deficit in BDNF signaling within HD-
affected neurons [Figure 2]. Thus, multiple mechanisms converge to impair BDNF signaling in HD, 
underlining its central role in disease progression and highlighting potential therapeutic targets.

Zebrafish model has been playing an important role in the field of HD research, and scientists expect to 
further study the pathogenesis and development model of HD through this model. However, due to the lack 
of some important human tissues and organs, resulting in a very different drug delivery route from humans, 
researchers usually choose rodent models when studying the clinical manifestations and pathological 
characteristics of HD.

RODENT MODELS
For a long time, and even now, many scientists have created rodent models of HD by injecting acute striatal 
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Figure 2. mHTT competitively inhibits the release of BDNF, which causes nerve damage. mHTT: Mutant Huntingtin; BDNF: brain-
derived neurotrophic factor.

damage caused by chemical toxins. Intraventricular injection of quinolinic acid, an NMDA receptor agonist, 
can replicate the striatal histopathology of HD, making it one of the most popular methods for HD 
modeling. However, the nature of the pathogenesis of this modeling method is not the same; perhaps we 
can observe similar clinical manifestations with HD, but can not deeply study the pathogenesis of HD at the 
molecular level.

With the completion of the Human Genome Project and the sequencing of the Mus musculus genome, 
researchers have discovered significant genetic homology between these species. Concurrently, the rapid 
advancements in biotechnology and the successful breeding of numerous knockout and transgenic mouse 
strains have established mice as the most widely used model organisms for studying human diseases. 
Furthermore, from practical and economic perspectives, mice are favored by scientists due to their small 
size, rapid reproduction rate, and ease of manipulation, making them important experimental subjects. 
Currently, the rodent models used in HD research are mainly divided into Truncated N-terminal fragment 
models and Full-length HD models. The latter is divided into knock-in models and transgenic models 
[Table 1].
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Table 1. Application of a partial rodent model to HD

Phenotype
Model Transgene product

Neuropathology Survival and general observations
Survival Ref.

Truncated N-terminal fragment models

N171-82Q 171 amino acids of 
N-terminal fragment

Internal inclusion bodies and neuritis aggregates Progressive weight loss, as well as tremor and hypokinesis, and 
clasping, progressive accelerated rotation

20-24 
weeks

[55]

R6/1 67 amino acids of 
N-terminal fragment 
(116 CAG)

Progressive brain atrophy 
Decline in the number of neurons

Late stage weight loss 
Progressively asymmetric growth. Less anxiety phenotype. Gait 
abnormalities

32-40 
weeks

[56,57]

R6/2 67 amino acids of 
N-terminal fragment 
(144 CAG)

Decreased striatal and brain size Accelerated rotation deficits, increased limb movement, 
decreased grip strength, hovering behavior, cognitive deficits, 
progressive weight loss

12-15 
weeks

[57,58]

HD51 N-terminal fragment 
(22% of rat HTT 
gene)

Significant nuclear aggregates and inclusion bodies Weight loss, reduced anxiety-like behavior, cognitive decline and 
progressive motor impairment. Involuntary movements of the 
head defined by abrupt, rapid, brief, and unsustained irregular 
movements of the neck

98 weeks [59-61]

N118-82Q 118 amino acids of 
N-terminal fragment

\ Premature death and impaired locomotor coordination 28-40 
weeks

[62,63]

N586-82Q 586 amino acids of 
N-terminal fragment

\ Progressive decline 32-36 
weeks

[64,65]

Full-length HD models: transgenic models

HD89 Full-length human 
HTT

Neuronal loss and astrocytoma Clasping, hyperactive, unilateral rotation, excessive grooming. 
Decrease in exploratory and locomotor activity

Normal 
lifespan

[66]

YAC128 Full-length human 
HTT

Reduced striatum and cortex volume, Neuron loss and dysfunction Hyperkinetic, accelerated rotarod deficit, progressive cognitive 
deficits

Normal 
lifespan

[67-71]

BACHD Full-length human 
HTT

Delayed atrophy of the lamina and striatum Weight gain of 20%-30%, subtle but significant motor 
impairment initially

Normal 
lifespan

[60]

Full-length HD models: knock-in models

Hdh4/Q72, 
Hdh4/Q80

Full-length chimeric 
human HTT exon 
1:mouse HTT

Increased levels of benzodiazepine receptor binding sites in the striatum and 
cerebral cortex

Increased male aggression and a lesser extent in females Normal 
lifespan

[72,73]

HdhQ111 Full-length chimeric 
human HTT exon 
1:mouse HTT

Changes in striatal neurons Decrease in locomotor activity, hyperactivity. Gait abnormalities Normal 
lifespan

[74-76]

HdhQ140 Full-length chimeric 
human HTT exon 1: 
mouse HTT

Striatal HTT nuclear staining. Nuclear and neuropil aggregates prominent in 
the striatum, nucleus accumbens, and olfactory tubercle, as well as widespread 
nuclear staining including cortical layers II/III, and V., hippocampus, and 
regions of the olfactory system

Progressive decrease in motor activity, Abnormal gait Normal 
lifespan

[74]

Full-length chimeric 
human HTT exon 1: 

Striatal nuclear HTT immunoreactivity. Striatal NIIs. Reactive astrocytic gliosis. 
Robust striatal NIIs and striatal neuron receptor loss. Loss of striatal perikarya 

HdhQ150 Gradual weight loss, decreased motor activity, motor 
impairment on the accelerated rotarod, abnormal gait, clasping

Normal 
lifespan

[77-79]
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mouse HTT and volume. Decrease in striatal dopamine D1 and D2 receptors and dopamine 
transporters

HD: Huntington’s disease; HTT: Huntingtin.

Compared to toxin-induced models, genetic models offer a more specific and in-depth understanding of the behavioral and physiological progression of HD 
phenotypes[80]. Among them, the R6/2 transgenic mouse model stands out as one of the most commonly used, characterized by its aggressive and rapidly 
progressing phenotype with a short lifespan of approximately 15 weeks[57]. These mice begin to exhibit symptoms such as irregular gait, clasping of hind limbs, 
weight loss, increased grooming behavior, and cognitive decline at around 5 weeks of age. Furthermore, as transgenic mice age, they become increasingly 
prone to seizures, further mimicking the complex pathological processes of HD. The N171-82Q model incorporates specific fragments of the HD gene’s 
N-terminal region, including exons 1 and 2, expressing the first 171 amino acids with 82 glutamine repeats[55]. While this model also displays pathological 
changes such as striatal atrophy, ventricular enlargement, and failure to gain weight in later stages of the disease, it is notable for not exhibiting hyperkinesia or 
epileptic activity[81,82]. Additionally, these mice have a relatively longer lifespan of approximately 18-25 weeks.

The above two rodent models are N-terminal models. One of the limitations of utilizing N-terminal models is their inability to be studied over an extended 
period due to their relatively short lifespan. Additionally, they do not encompass the full-length gene, thereby lacking crucial regulatory elements that may 
contribute to a comprehensive understanding of the disease. Full-length models, such as YAC128 or BACHD, offer new perspectives on disease research by 
introducing complete human mHTT transgene. The YAC128 mouse model is particularly unique in that it carries 128 CAG repeats from the human HTT 
gene[67], which more accurately simulates the disease state. These mice usually begin to show abnormal behavior at about 6 months of age, and by about 
12 months, the striatal neurons have selectively degraded, a process that reflects the gradual progression of the disease. Specifically, the disease progressed as 
the mice experienced brief weight gain at 2 months of age, followed by increased activity at 6 to 12 months, difficulty walking on a rotating rod, and eventually 
decreased movement. Notably, the YAC128 model showed significant loss of striatal medium-sized spiny neurons at 12 months and was accompanied by 
cognitive dysfunction and increased mHTT aggregation at 18 months. The advantage of full-length models is that they support long-term research into the 
disease, which is essential to explore long-term treatment strategies. Due to the inclusion of complete human genes, these models also include all relevant 
regulatory elements, making the findings more closely related to the real situation of human disease.

Knock-in models differ from transgenic models mainly in that they can express specific mutations in endogenous genomic locus rather than through the 
introduction of foreign genes. Multiple KI models based on CAG repeat length have been successfully created by replacing alleles in the first exon of the mouse 
HTT gene with human mutated variants. Because KI models are able to more accurately simulate the genetic background of human HD, they exhibit a high 
degree of phenotypic similarity to human HD. In addition, KI models typically have a longer lifespan and are capable of progressively exhibiting disease-
related symptoms, which makes them extremely valuable in HD research, especially as they provide an ideal platform for evaluating the potential of long-term 
stem cell transplantation therapy.
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caspase-1 slowed disease progression in a mouse model of Huntington’s disease[86]. van Dellen et al. used

In rodent models of different genotypes, scientists made a number of key discoveries. Geraldine Kong et al.
confirmed the presence of gut dysbiosis in HD by observing the intestinal microbiome composition
characteristics of the R6/1 transgenic mouse model of HD[83]. By studying the symptoms of R6/2 and Q175
HD mouse models, Tong et al. revealed that astrocytes and Kir4.1 channels were therapeutic targets[84].
Abjean et al. studied the symptoms of Hdh140 mice, confirming that the JAK2-STAT3 pathway controls the
beneficial protein-homeostasis response of reactive astrocytes in HD[85]. HD animal models have also played
a huge role in the field of therapeutic environments and drug interventions. Ona et al. found that inhibiting

HD R6/1 mice to demonstrate that exposure to a stimulation-rich environment from an early age helps
prevent brain volume loss and delays the onset of dyskinesia[87]. Ferrante et al. proposed that creatine has a 
neuroprotective effect on transgenic mouse models of HD[88]. The utilization of the YAC128 model has
demonstrated the persistence of mHTT inclusions even after the manifestation of behavioral and
neuropathological alterations[67].

Transgenic full-length models, transgenic fragments, and knock-in models have all demonstrated significant
effectiveness in their construction, effectively expressing the expanded polyQ repeat domain, which is a core
factor in neurodegeneration in HD and other polyQ diseases. Additionally, the high similarity between the
huntingtin protein and its homolog in mice suggests that they likely share similar functional properties. To
increase the likelihood of predicting human outcomes from model results, the selection of appropriate
rodent genetic HD models can be evaluated using the three criteria proposed by Paul Willner[89]. When
planning an investigation, in addition to clarifying the research objectives, it is crucial to carefully consider
the duration of the study, the achievable sample size, and the degree of relevance between the content
studied and human HD in biochemical and behavioral aspects. Furthermore, the issues of consistency and
stability arising from genetic variations introduced by breeding and background strains are also important
considerations that cannot be overlooked.

SHEEP MODELS
Despite the numerous advantages of rodent models, their brains do not exhibit apoptosis or significant 
neurodegenerative changes, which are crucial pathological features in human diseases. This is one of the key 
issues that cannot be avoided when discussing whether to choose rodent models as the subject of research. 
Therefore, scientists have gradually shifted their focus to larger animal models.

Jacobsen et al. developed a transgenic sheep model of HD to demonstrate the preclinical stage of the disease, 
aid in the study of early molecular and neuropathological changes occurring in Huntington’s chorea, and 
test potential therapeutic approaches. The HD sheep were successfully developed by inserting the full-length 
human HTT cDNA containing 73 CAG repeats into a pronucleus, and then implanting this pronucleus into 
surrogate sheep[90]. The transgenic sheep G0/5 strain exhibited significant expression of mutant HTT mRNA 
and protein throughout their entire brain. Clinically, this model primarily manifests as early-onset 
abnormalities in circadian rhythm, despite the absence of significant pathological changes in the brain[91,92].

However, the transgenic sheep model exhibits only mild neuropathological changes and lacks significant 
clinical phenotypic features, making it difficult to delve deeper into the impact of observed HTT reduction 
on disease progression. Additionally, due to the long gestation period (approximately 4. 7 to 5 months) and 
lifespan of sheep, as well as their seasonal breeding habits, which limit the number of offspring produced 
each year to 1 to 3, the time required to develop and study sheep populations and collect relevant data is 
significantly longer compared to smaller experimental animals. This not only increases the pressure on 
research funding and publication, but also results in a longer time frame for making significant 
contributions to the field, posing significant challenges to research progress and output.
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NON-HUMAN PRIMATE (NHP) MODELS
By utilizing lentiviral vector technology, the team successfully introduced a transgenic fragment of human 
HTT exon 1 containing 84 CAG repeats into monkeys, establishing the first transgenic monkey model of 
HD. All five live-born neonates carried the transgenic mutant HTT and GFP genes. Their pathogenesis 
closely resembled that of humans: monkeys carrying a CAG repeat sequence below the threshold exhibited 
normal health, while those with a higher number of CAG repeats developed symptoms that positively 
correlated with the degree of repeat expansion. The main clinical manifestations included motor 
dysfunction and premature death[93].

Subsequent in-depth research revealed that this monkey model not only spontaneously exhibited 
pathological manifestations such as motor dysfunction and epileptic seizures, but also gradually developed 
progressive cognitive decline. These features closely resemble the chronic course of adult HD, and the 
model exhibited particularly prominent HTT aggregates and axonal degeneration[94,95]. Compared to rodent 
models, the monkey model exhibited more severe phenotypic characteristics and a significantly shorter 
survival time. This phenomenon may stem from the higher sensitivity of primate neurons to toxic HTT 
protein fragments[96]. Therefore, this transgenic monkey model not only provides us with a research 
platform that is closer to the pathological process of human HD, but also offers valuable insights for our 
understanding of the pathogenesis of HD and the exploration of potential treatment strategies.

Similar to the sheep model, the monkey model also has a long gestation period, and even worse, they 
typically only have one offspring per pregnancy[97]. Coupled with the incomplete development of transgenic 
technology in monkeys, the creation of a monkey model is inefficient. These factors significantly increase 
the economic cost and research cycle of the study. Unlike other experimental animals, ethical considerations 
for non-human primates are much stricter, which greatly limits our ability to conduct more in-depth 
research on HD using monkey models[98].

PIG MODELS
In order to solve the problems in the above animal models, pig models have gradually entered the field of 
view of researchers. The neural anatomical structure of pigs is similar to that of humans. For example, they 
have a gyrus structure similar to that of humans. The dorsal striatum of pig brain is divided into two 
different structures by the internal capsule, just like that of humans. The sensory cortex of pigs, such as the 
motor cortex and somatosensory cortex, is arranged according to the position of the body, which is not 
found in rodent models [Figure 3]. Pigs also have many genetic and reproductive advantages that do not 
exist in primates, including a relatively short gestation period, multiple births, and a short time to sexual 
maturity. In addition, as an important part of the world's livestock industry, pigs are relatively easy to raise 
and the cost is relatively low.

In 2010, Yang et al. collaborated to establish the first transgenic HD pig model with the N-208-105Q 
mutation. This groundbreaking work revealed for the first time that the same mutant protein can induce 
cell apoptosis in the brains of pigs, a phenomenon that had not been observed in mouse brains previously. 
Furthermore, the model exhibited notable symptoms such as convulsions and choreiform movements. 
Unfortunately, transgenic pigs previously obtained through specific methods faced the challenge of 
extremely short survival times due to the severity of their clinical symptoms, greatly limiting further in-
depth research[99]. Given this, the aforementioned research team once again collaborated to successfully 
construct an HD-KI gene knock-in pig model in an effort to overcome this challenge. This HD-KI pig 
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Figure 3. The gyrus of pigs is similar to that of humans, while that of rodents is not.

model exhibited specific neuronal death in the striatum, highly similar to the pathological changes observed 
in HD patients. Additionally, researchers observed a clear process of cell apoptosis. Notably, the HD-KI pigs 
also exhibited clinical symptoms such as abnormal gait and respiratory difficulties, which are consistent 
with the manifestations seen in human HD patients[100]. Crucially, the gene knock-in pig model possesses the 
ability to stably transmit genetic and phenotypic traits to its offspring, maximizing the reproductive and 
genetic advantages of the pig model. This provides us with a consistent and stable research platform to 
further explore the pathogenesis of HD and potential treatment strategies. The HD-KI pig, with its 
remarkably similar clinical manifestations to humans and its low-cost feeding model, is poised to become 
one of the essential platforms for translating experimental research into clinical applications in the 
treatment of HD.

In addition, among numerous HD animal models, especially in pigs, longer CAG repeat lengths may be 
required to maintain severe disease phenotypes, which are less common in human cases. Despite the fact 
that genomic editing techniques, particularly CRISPR-Cas9, have revolutionized the field of animal 
modeling, including HD research, they also exhibit certain limitations. One notable concern is the potential 
for off-target effects, leading to unintended genomic alterations. Furthermore, CRISPR/Cas9 may also 
induce mosaicism, which is particularly significant in large animal models and studies that involve founder 
animals. These limitations have the potential to confound the interpretation of phenotypes observed in 
generated animal models.

PIG MODELS ARE BECOMING INCREASINGLY IMPORTANT
Different animals provide unique advantages as research platforms for HD, but their limitations cannot be 
ignored. While models such as C. elegans, D. melanogaster, and zebrafish allow us to easily observe 
molecular-level manifestations and pathological features similar to humans, such as premature death and 
progressive neurodegeneration, researchers are unable to observe any clinical symptoms that appear in 
humans, such as choreiform movements [Table 2]. Observing clinical manifestations in rodent and large 
animal models is generally a better choice because they possess highly homologous genes to humans and 
have more complex nervous systems. However, it is important to note that the choice of animal as the 
research subject, as well as the decision to use gene knockout or transgenic methods to create the model, 
can significantly affect the clinical symptoms observed.

In HD, we have to stress the importance of pig models in current research progress. As a model with the 
advantages of low-cost feeding, high litter size, and short gestation period, its advantages are particularly 
prominent in the brain gyrus structure similar to that of humans, and it has the same progressive 
characteristics, premature death, and various behavioral disorders as humans. In the widely used HD-KI 
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Table 2. Comparison of various animal models in HD

Species             Molding method Pathological and clinical symptoms Disadvantage Ref.

C. elegans Expressing fluorescently
labeled polyQ proteins in
neurons or muscle cells

Motility defects or ASH neurodegeneration No pathologic processes and 
clinical symptoms; No orthogonal 
HTT

[17,101]

D. melanogaster Using the GAL4/UAS 
(upstream activating 
sequence) system

Cytopathia caused by polyQ; The course of the 
disease is delayed and progressive; Loss of 
motor function, metabolic imbalance and 
premature death

A winged arthropod; differences 
in morphological development 
and movement patterns

[102-109]

Zebrafish Genetic model (HTT) Morphological abnormalities and necrosis of the 
central nervous system

Lack of certain vital human 
tissues and organs;Controlled 
route of administration

[110,111]

HD: Huntington’s disease; C. elegans: Caenorhabditis elegans; ASH: amphid neurons single; HTT: Huntingtin; D. melanogaster: Drosophila 
melanogaster.

model, we can achieve efficient gene editing by injecting adenoviral vectors carrying gene fragments into the 
brains of Cas9-expressing pigs. This method perfectly reproduces the genetic manifestations of autosomal 
dominant inherited diseases. Because their offspring have a high survival rate and can be stably transmitted, 
researchers can more easily formulate reliable long-term experimental plans for behavioral analysis and the 
like.

PERSPECTIVES
Regardless of the animal model chosen for research, the ultimate goal is always to serve clinical practice, 
aiming to provide beneficial insights and methods for the treatment of human diseases. Particularly in the 
study of HD, monkey and pig models have become increasingly popular and widely adopted due to their 
significant physiological similarities to humans. Utilizing these stable and reliable animal models to delve 
deeper into the pathophysiological mechanisms of HD from a developmental perspective holds immense 
research promise, undoubtedly ushering in a new era for HD research.

Furthermore, the rapid advancements in gene therapy and editing techniques have increasingly unlocked 
their potential to correct genetic defects during embryogenesis. As gene therapy gains wider acceptance, 
these technological advancements have sparked hope for correcting inherited diseases before birth. 
Therefore, by exploring the role of early HD neurodevelopmental disorders in the progression of the 
disease, we can not only pave new research directions for a more comprehensive understanding of HD, but 
also establish a solid foundation for exploring novel therapeutic strategies for HD.
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