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Abstract
Construction of the structure-property (SP) relationship is an important tenet during materials development. Opti-
mizing microstructural information is a necessary and challenging task in understanding and improving this linkage.
To solve the problem that the experimentalmicrostructureswith a small size usually fail to represent the entire sample
structure, a data-driven scheme integrating two-point statistics, principal component analysis, and machine learning
was developed to reasonably construct a representative volume element (RVE) set from the small microstructures
and extract optimized structural information. Based on the elaborate quantitative metrics and method, this kind
of RVE set was successfully constructed on an experimental microstructure dataset of ferrite heat-resistant steels.
Moreover, to remove redundant information included in two-point statistics, the critical threshold of the tolerance
factor related to the coherence length in microstructures was determined to be 0.005. An accurate SP linkage was
finally established (mean absolute error < 6.28MPa for yield strength). This scheme was further validated on two
other simulated and experimental datasets, which proved that it can offer scientific nature, reliability, and universal-
ity compared to traditional strategies. This scheme has a bright application prospect in microstructure classification,
property prediction, and alloy design.
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INTRODUCTION
A great acceleration in target prediction and alloy design can be realized through materials informatics in-
cluding multitudinous advanced data-driven technologies and theories related to materials science, which has
received extensive attention in recent years [1–3]. Establishing process-structure-property (PSP) linkages rep-
resents a recognized core task for achieving this ambitious goal. Indeed, significant efforts have been made to
pursue such an accurate and universal linkage [3–5].

Traditionally, materials development is largely completed by a mix of Edisonian approaches and serendipity,
which can extract experiential process-property (PP) relationships from existing experimental data, and then
studies to understand and explain the dominant mechanism leading to the expectations or serendipity through
investigating microstructural features [6]. Using an informatics strategy that is different from the traditional
experiment methods simply guided by physical metallurgy knowledges, we previously demonstrated the im-
provement effect of microstructural information in predicting the hardness of austenite steels by comparing PP
and PSP linkages [7]. Similarly, Molkeri et al. proposed a novel microstructure-aware framework for materials
design and rigorously confirmed the importance of microstructure information in alloy design [8]. One can
find that the focus of attention on microstructure has gradually shifted from providing scientific explanations
to practically promoting the forward and reverse process of PSP. Therefore, it is necessary to quantification-
ally extract microstructure information [9–13]. Generally, some physical parameters based on statistical average
(phase fraction, grain size, etc.) are used to simply characterize themicrostructural features of materials, which
nevertheless ignores the correlation and heterogeneity of these features in terms of spatial distribution. In ad-
dition, considering the entire discrete and highly nonlinear micrograph data as partial input of a PSP linkage,
one may be at risk of dimensional disaster due to the inapplicability of some common dimension reduction
algorithms [14]. Therefore, a challenge to be addressed is how to extract sufficient and effective microstructure
information including correlation and heterogeneity of spatial features in a quantitative and low-dimensional
manner.

Some admirable efforts have been made to overcome this challenge. Sangid et al. used crystal plasticity simu-
lations to identify the stress concentration around pores of various sizes and quantify the pore with the small-
est size that results in a debit in the fatigue performance of IN718 alloy [15]. Zinovieva et al. proposed a
multi-physics methodology combining physically based cellular automata to simulate the grain structure evo-
lution [16]. They successfully uncovered the effects of scanning pattern on the microstructure and elastic prop-
erties of 316L austenitic stainless steel prepared by powder bed-based additive manufacturing. It is noted that,
although the two works mentioned above used advanced simulation methods to investigate the PSP relation-
ship, the high computational cost and high-dimensional data analysis process were not completely avoided.
Popova et al. developed a data-driven workflow and applied it to a set of synthetic AM microstructures ob-
tained using the Potts-kinetic Monte Carlo (kMC) approach [17]. They finally correlated process parameters in
the kMC approach with the predicted microstructures. The chord length distributions method used in their
workflow addresses the quantification of the grain size and shape distributions and their anisotropy in a mi-
crostructure. However, other important microstructural features, such as the volume fraction of the phase of
interest, fail to be extracted by this method [18–21]. Fortunately, Fortunately, a rigorous quantitative framework
based on the 𝑛-point statistics method has been developed to capture the statistical information of microstruc-
ture [22–25]. As the basis of the 𝑛−point statistics, the one-point statistics can reflect the probability density
(i.e., volume fraction) of finding a specific discrete local state of interest at any randomly selected single point
(or voxel) in a microstructure. Two-point statistics, a higher-order measurement, can capture the probability
associated with finding an ordered pair of specific local states at the head and tail of a vector 𝒕 that is randomly
thrown into a microstructure. These statistics have been proven to contain unbiased and completed structural
information [26,27]. However, an experimentally obtained microstructure with a small size always includes lim-
ited structure information and cannot be used as a representative volume element (RVE); it thus can hardly be
associated with the macroscopic mechanical properties. One may emphasize a compromised scheme of com-
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bining chemical compositions and experimental conditions to fill the gaps [7,9]. Unfortunately, this indirect
strategy cannot essentially eliminate the statistical error caused by the small size of microstructures. Another
surrogate solution is to approximate the statistics of an RVE by averaging that of multiple subdomains of the
entire sample based on the assumption of statistical homogeneity. It is conceivable that more details of struc-
ture will be captured by these subdomains [a single domain refers to a statistical volume element (SVE) in this
study] with a higher resolution. Niezgoda et al. proposed a novel concept called the RVE set consisting of
a certain number of SVEs with the minimum size [28]. Through accessing the convergence of a quantitative
metric 𝐷𝑠 (root mean square error between individual statistics of SVE and the two-point statistics of a priori
RVE or the average statistics of the overall SVEs), they successfully constructed such an optimal RVE set so
that the distribution and dispersion of structural features match the entire material sample. This scheme has
the advantages of saving time and computing resources for predicting mechanical properties by finite element
analysis. Nevertheless, it is not applicable to establish PSP linkages in a real experimental situation without a
prior RVE.The existing reports thus intuitively averaged the statistics of several SVEs to extract the maximum
amount of structural information [29–32]. Therefore, it is necessary to explore new and universal methods for
optimizing microstructure information to construct an RVE set and thus build a more reliable PSP linkage.

The effective information of two-point statistics is compressed in the central area after centralized transforma-
tion, leading to the statistics of an RVE containing a great deal of redundancy in the area with a large length of
𝒕 [7,33,34]. Determining the boundary of these two areas is beneficial for analyzing and understanding structure
features, especially for the features related to length scales such as average grain size. Through an example of
Al-alloy matrix composites, Tewari et al. found that numerous length parameters that characterize spatial het-
erogeneity and clustering of SiC particles can be extracted from two-point statistics [35]. Niezgoda et al. further
defined a concept named coherence length, 𝑡𝑐 , which is mathematically expressed as〈

ℎℎ′ 𝑓
𝑗
𝒕 − ℎ 𝑓 𝑗 · ℎ′ 𝑓 𝑗

〉
≤ 𝜖 ∀ ∥ 𝒕∥ ≥ 𝑡𝑐 (1)

where ℎℎ′ 𝑓
𝑗
𝒕 represents the two-point cross-correlation statistics for the two local state ℎ and ℎ′ of the 𝑗 th

members in an RVE set [22]. ℎ 𝑓 𝑗 and ℎ′ 𝑓 𝑗 are their one-point statistics, namely volume fraction. ⟨·⟩ denotes
the ensemble average operation. The statistics in the area with 𝒕 of length longer than 𝑡𝑐 are considered as
redundancy information. It can be imagined that the value of 𝑡𝑐 will obviously change if 𝜖 is of a different
magnitude, leading to an inaccurate measurement of the length scale associated with the structural features
of interest. High dimensional redundant data may introduce unnecessary noise and impede the modeling of
PSP linkage. However, there is no accurate reference value for this tolerance factor 𝜖 , and the existing studies
are based on intuition to truncate redundancy [14,30,34,36,37] . Thus, determining the threshold of 𝜖 is also one
of the important issues in optimizing microstructural information.

Principal component analysis (PCA) [38], a popular dimensionality reduction algorithm, can effectively address
the above challenge of high-dimensional data and has been widely applied to many fields, such as grain coars-
ening [39], microstructure evolution during creep [31], nonmetallic inclusions in steels [37], etc. Interestingly, one
can project statistical features of microstructures into a PCA space and compare them using some common
distance metrics such as Euler distance [40–43], which provides a potential solution for optimizing microstruc-
tural information by constructing an RVE set and removing redundancy. More importantly, low-dimensional
features of microstructures obtained by PCA can be input into machine learning (ML) models to establish
high-fidelity PSP linkages [13,44–48].

In the present study, we developed a new scheme to build a more reliable structure-property (SP) linkage by
optimizing microstructural information, which can be extended to a higher-ordered PSP linkage in the future.
Taking an example of ferrite heat-resistant steels, we performed a series of experiments and built a small dataset.
This kind of steel has become one of the main materials for the heavy and thick components of advanced ultra-
supercritical (A-USC) power plants due to its high thermal diffusivity and low cost [49]. Significant efforts have
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Table 1. Nominal chemical compositions and yield strength (𝝈) at 650 ◦C of the steels.The compositions of the elements Cr, C, Si, and
Cu are identical for the five alloys and thus not listed (Cr, 15.00; C, 0.05; Si, 0.50; Cu, 0.10; unit, wt%)

Label Mn Ni Al Ti Mo W 𝝈(MPa)

Alloy 1 1.06 2.64 0.80 0.24 0.08 0.04 254
Alloy 2 0.96 3.20 1.12 0.08 0.24 0.08 299
Alloy 3 1.54 3.04 1.20 0.08 0 0.32 276
Alloy 4 0.60 3.12 1.12 0.08 0.32 0 336
Alloy 5 1.44 2.56 1.20 0 0.04 0.52 325

been made to understand the SP linkage and improve mechanical properties at a high temperature (650 ◦C)
for the steels [50–53]. Using PCA and two-point statistics, we propose a new method and metric to construct
an RVE set from the small SVEs of the steels. We also explored the effect of different redundancy-truncation
levels of two-point statistics on the established ML model and determined the acceptable threshold of the
tolerance factor 𝜖 . The reliability and generalization ability of this scheme were also proved by two other
datasets including experimental data of Ni-Fe-based superalloys collected by Zhong et al. [54] and simulated
data by phase field method (PFM), respectively.

MATERIALS AND METHODS
Materials preparation
Five alloys were prepared using the rawmetals with purity higher than 99.99% by smelting, followed by casting
into ingots of ≈ 40 g. The chemical compositions of the alloys are listed in Table 1. The samples were homog-
enized for 16 h at 1100 ◦C with subsequent air-cooling. Hot rolling was then performed at 1100 ◦C five times,
each time holding for 10 min (60% final deformation). Heat treatment was achieved by austenitizing at 1100
◦C for 0.5 h with posterior air cooling. The samples were then aged at 750 ◦C for 12 h, followed by air cooling.
The microstructures of these alloys were characterized by optical microscopy (OM, Olympus P4000). High-
temperature tensile tests at 650 ◦Cwere performed on a TSMTEM6.504 universal testingmachine with a strain
rate of 10−3𝑠−1. It is noted that the heat treatment was performed at 750 ◦C, and no phase transition occurred
at 650 ◦C, so the microstructures could remain stable at 650 ◦C for a long time. Thus, the microstructures at
room temperature were used to establish linkage with the yield strength at 650 ◦C.

Data preprocessing
All microstructures were binarized by an image processing technique named Otsu’s threshold processing [55].
This technique is a nonparametric and unsupervised method of automatic threshold selection for picture seg-
mentation. It selects a threshold automatically from a gray level histogram, and the threshold is equal to
the one specific pixel value 𝑓 (𝑖), which is determined by the maximum variance of the foreground and back-
ground pixels [56]. Moreover, the discrete microstructures were transformed to a uniform dimension using the
transform.rescale(·) function in the scikit-image library to ensure that one pixel corresponds to an actual size
of 0.6504𝜇𝑚, as shown in Figure 1. It can be seen that the austenite phase and ferrite phase in the original
microstructure are well separated by black and white pixels, and the noise points (gray texture) are completely
eliminated.

To eliminate the impact of data magnitude differences on the performance of the model, before establishing
the SP linkage by a ML model, all of the microstructural features (low-dimensional representativeness of the
microstructures) 𝒙 were normalized using �̃� = (𝒙 − 𝜇)/𝜀, where 𝜇 and 𝜀 denote the mean and variance,
respectively.

Extracting microstructural information
The circular sample, as displayed in Figure 2A, may rotate during OM characterization, leading to inconsistent
statistics of the same microstructure in different reference frames. To filter out the dependence of the statistics
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Figure 1. Experimental microstructures and corresponding binary results for Alloy 1. The magnification of the microscope and the number
of microstructures at each magnification is listed at the top, while the grid number is given at the bottom.

Figure 2. Example of a microstructure and corresponding autocorrelations: (A) schematic diagram of sample preparation; (B) binarized
micrograph; (C) autocorrelations of the black phase; and (D) enlarged drawing of the central domain in (C) labeled by the dotted black
circle.

on the observer reference frame, we employed rotationally invariant two-point statistics (RI2SS) to capture the
important structural details [23]. For a certain local state ℎ (ferrite phase, ℎ = 0; austenite phase, ℎ = 1), the
microstructure function 𝑚ℎ

𝒔 representing the volume fraction of local state ℎ in the location of 𝒔 should be
calculated firstly. The two-point statistics is mathematically expressed as

𝑓 ℎℎ
′

𝒕 =
1
|𝑺𝒕 |

∑
𝒔

𝑚ℎ
𝒔𝑚

ℎ′
𝒔+𝒕 (2)

where 𝒕 is the discretized vector placed in microstructure and |𝑺𝒕 | denotes the total number of valid trials
associated with discrete vector 𝒕. In this work, we only calculated two-point autocorrelation statistics of the
black phase in the microstructure, as shown in Figure 2B, which can be obtained when ℎ = ℎ′. Notedly, the
RI2SS of the microstructure is further calculated, as shown in Figure 2C and D. For convenience, all of the
statistics are referred to as autocorrelations. The peak value of Figure 2C represents the volume fraction of
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the target phase, and the main spatial features (average size and shape distribution of the phase, etc.) of the
microstructure are contained in the central area that is enlarged in Figure 2D. In addition, the invariant value
in the blue area is approximately equal to the square of the peak and represents redundant information.

PCA was used to reduce the dimensionality of autocorrelations. One can obtain principal component scores
(PCs), i.e., low-dimensional features of a microstructure, through projecting its autocorrelations into a new
space supported by several orthogonal basis vectors. The vectors are ordered and selected according to their
explained variance that reflects themain variation of the samples. Mathematically, the original autocorrelations
can be reconstructed by

𝑓
11,( 𝑗)
𝒕 =

𝑚𝑖𝑛{(𝐽−1),𝑅}∑
𝑖=1

𝛼
( 𝑗)
𝑖 𝜙11

𝑖 + 𝑓𝒕 (3)

where 𝑓
11,( 𝑗)
𝒕 represents the autocorrelations of the 𝑗 th microstructure. 𝑓𝒕 = 1

𝐽

∑𝐽
𝑗=1 𝑓

11,( 𝑗)
𝒕 , where 𝑓𝒕 and 𝐽

denote the ensemble average and number of all of the autocorrelations. 𝛼( 𝑗)
𝑖 and 𝜙11

𝑖 represent the 𝑖th PCs of
the 𝑗 th member and the 𝑖th basis vector, respectively. 𝑅 is the dimensionality of autocorrelations. As the main
parameter, 𝛼𝑖 participates in the subsequent analysis and modeling.

Modeling and evaluation
Weused a classicalML regressionmodel, Ridge regression [57], to build the SP linkage. By imposing the penalty
𝛼∥𝝎∥2

2, Ridge can solve some problems of ordinary least squares. Mathematically, the objective function of
Ridge is to minimize a penalized residual sum of squares:

𝑚𝑖𝑛
𝝎

∥𝒙𝝎 − 𝒚∥2
2 + 𝛼∥𝝎∥2

2 (4)

where 𝒙 and 𝒚 are the inputted features and outputted yield strength in this study. 𝛼 is the complexity parameter
that controls the amount of shrinkage: the larger is the value of 𝛼, the greater is the amount of shrinkage. Thus,
the coefficients become more robust to collinearity. 𝝎 represents the coefficients of 𝒙. The Ridge models in
this work were trained by calling the scikit-learn library in Python 3.7 [58]. All of the models keep the default
hyperparameters.

The performance of these models was quantified by root mean square error (𝑅𝑀𝑆𝐸) and determined coeffi-

cient (𝑅2), which are given as 𝑅𝑀𝑆𝐸 =
√

1
𝑀

∑𝑚
𝑖=1 (𝑦𝑖 − 𝑦𝑖)2 and 𝑅2 = 1 −

∑𝑚
𝑖=1 (𝑦𝑖−𝑦𝑖)

2∑𝑚
𝑖=1 (𝑦𝑖−�̄�)

2 , where 𝑦𝑖 and 𝑦𝑖 are the

experimental and predicted yield strength, respectively, and �̄� = 1
𝑀

∑𝑚
𝑖=1 𝑦𝑖 denotes the average of 𝑀 samples.

The smaller the 𝑅𝑀𝑆𝐸 is, and the closer 𝑅2 gets to 1, the higher the prediction accuracy. In addition, the
leave-one-out cross-validation (LOOCV) approach was employed to evaluate 𝑅𝑀𝑆𝐸 and 𝑅2.

SCHEME
We propose a data-driven scheme for building SP linkage including five modularity: dataset preparation, data
preprocessing, microstructural information extraction, microstructural information optimization, and SP link-
age construction [Figure 3]. All parameters and corresponding explanations are listed in Table 2. The details
of applying this scheme to the Ferrite steels are as follows:

1) Creating experimental dataset 𝑫 (𝒙𝑺,𝑴 , 𝒚) by following the procedure mentioned above. The subscripts 𝑺
and𝑴 label the size of themicrostructures and the number of SVEs under different 𝑆. Here, 𝑺 = {𝑆 |𝑆5𝑋 , 𝑆10𝑋 , 𝑆20𝑋 , 𝑆50𝑋 ,

𝑆100𝑋 }, 𝑴 = {𝑀𝑆 |3, 5, 15, 40, 80}. The dataset includes 5 × 143 microstructures and yield strength for the five
alloys. For distinguishment, 𝑀𝑆 denotes the maximum number of samples in a subset with a specific size 𝑆,
and 𝑚 represents the number of randomly selected samples in the subset, here 𝑚 ≤ 𝑀𝑆 .
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Figure 3. Scheme of optimizing microstructural information and constructing SP linkage. Note that the arrows with a colored filling point to
the modeling path of SP linkage, and the arrow with dotted lines represents that the ML modeling is also used to determine the optimized
𝑆∗, 𝑀 ∗

𝑆∗ , and the threshold of 𝜖 . SP: Construction of the structure-property; PCA: principal component analysis.

2) Preprocessingmicrostructure and property data byOtsu’s threshold processing and normalization operation
mentioned above.

3) Extracting quantitative information of all microstructures by RI2SS.

4) Optimizing microstructural information to represent the structural features in the whole sample for each
alloy. This procedure includes two sub-paths labeled by the colored arrows in the orange box in Figure 3:

a) Constructing RVE set (confirming the size and number of the included SVEs). We randomly selected
different numbers 𝑚 of SVEs with a certain size 𝑆 to form a subset, calculated their average autocorrelations
(simple arithmetic average of the autocorrelations of the all SVEs) 𝑓𝑆𝑉𝐸 (𝑆, 𝑚), and then projected all possible
𝑓𝑆𝑉𝐸 into a PCA space to obtain corresponding low-dimensional features 𝛼𝑚

𝑆 . The two distances (𝑑𝑛𝑜𝑟𝑆,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

and 𝑑𝑛𝑜𝑟𝑆,𝑡𝑎𝑟𝑔𝑒𝑡) expressed by Equation (5) and (6) were next calculated, and the convergence along different 𝑆
(interclass) and 𝑚 (intraclass) was assessed to confirm the optimal size 𝑆∗ of SVEs for constructing an RVE set.
It is easy to understand that the locations of the SVEs with 𝑆 larger than 𝑆∗ will be clustered in the PCA space.

𝑑𝑛𝑜𝑟𝑆,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 =
1
𝑚

𝑚∑
𝑗=1

√√√√√ 3∑
𝑖=1

(
𝛼𝑚
𝑖,𝑆 −

1
𝑚

∑𝑀𝑆
𝑚 𝛼𝑚

𝑆

)2(
𝛼𝑖,𝑚𝑎𝑥 − 𝛼𝑖,𝑚𝑖𝑛

)2 (5)
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Table 2. Parameters used in this study and corresponding explanation list

Parameters Explanation

𝒕 Random vector thrown into a microstructure

ℎ, ℎ′ Local state of interest (austenite phase and ferrite phase in our case)

ℎ 𝑓 𝑗 One-point statistics of local state ℎ

𝒔 Cell node indexed the spatial domain of a microstructure

|𝑺𝒕 | The total number of valid trials associated with discrete vector 𝒕

𝑚ℎ
𝒔 Microstructure function representing the volume fraction of local state ℎ in the location of 𝒔

𝑓 ℎℎ′
𝒕 Two-point cross-correlation statistics of local state ℎ and ℎ′

𝑓 ℎℎ
𝒕 Two-point autocorrelation statistics of local state ℎ and ℎ′

𝑡𝑐 Coherence length of a realistic structure

𝜖 Tolerance factor related to redundant information in two-point statistics.

𝑗 The number of a microstructure sample or two-point statistics in a set

𝐽 The number of all two-point statistics in a set

𝑓 (𝑖) Pixel value in a digital microstructure

𝒙 Inputted feature array of the ML model

𝒚 Outputted property array of the ML model

𝑦𝑖 Predicted property of the 𝑖th sample by the ML model

�̄� The average property of the samples

𝜇 Mean of inputted features

𝜀 Variance of inputted features

𝜎 Yield strength at 650◦C

𝝎 The coefficients of 𝒙 fitted by Ridge model

𝛼 The complexity parameter that controls the amount of shrinkage in Ridge model

𝛼
( 𝑗)
𝑖 The 𝑖th PC score of the 𝑗th SVEs

𝜙11
𝑖 The 𝑖th PC basis vector

𝑓𝒕 The ensemble average of the two-point statistics

𝑅 The dimensionality of the two-point statistics

𝑫 The experimental dataset in this study

𝑺 The set of true size of the SVEs, i.e., 𝑺 = {𝑆 |𝑆5𝑋 , 𝑆10𝑋 , 𝑆20𝑋 , 𝑆50𝑋 , 𝑆100𝑋 }

𝑆∗ The optimal size of the SVEs in an RVE set

𝑴 The set of the number of SVEs with different sizes, i.e., 𝑴 = {𝑀𝑆 |3, 5, 15, 40, 80}

𝑀 ∗
𝑆∗ The optimal number of the SVEs in an RVE set

𝑚 The number of randomly selected samples in the subset, here 𝑚 ≤ 𝑀𝑆

𝑛 The number of primary grains in the PFMmodel

𝛾4 Anisotropy coefficient of the solid-liquid interfacial energy in PFMmodel

Δ𝑇 Nucleation supercooling in PFMmodel

𝑃𝒕 Pair correlation function of a microstructure

𝐷𝑠 Root-mean-square error between the two-point statistics of each SVE and the target ensemble-averaged statistics

𝑑𝑛𝑜𝑟𝑆,𝑡𝑎𝑟𝑔𝑒𝑡 =
1
𝑚

𝑚∑
𝑗=1

√√√√√ 3∑
𝑖=1

(
𝛼𝑚
𝑖,𝑆 − 𝛼3

𝑆5𝑋

)2(
𝛼𝑖,𝑚𝑎𝑥 − 𝛼𝑖,𝑚𝑖𝑛

)2 (6)

where 𝛼𝑖,𝑚𝑎𝑥 = max{𝛼(1)
𝑖,𝑆 , · · · , 𝛼

(𝑚)
𝑖,𝑆 }, 𝛼𝑖,𝑚𝑖𝑛 = min{𝛼(1)

𝑖,𝑆 , · · · , 𝛼
(𝑚)
𝑖,𝑆 }. The smaller 𝑑𝑛𝑜𝑟𝑆,𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 is, the closer the

position of the autocorrelations of the SVEs in PCA space is to that of their ensemble average. A similar
relationship applies to 𝑑𝑛𝑜𝑟𝑆,𝑡𝑎𝑟𝑔𝑒𝑡 , except that the object of comparison becomes the target autocorrelations that
are obtained by averaging autocorrelations of the large domains with a size of 𝑆5𝑋 . It is noted that these large
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domains here were selected because they contained sufficient structural features that are independent of their
location in the sample, as shown in Figure 1.

We also propose a novel method called ”recursive addition” to confirm the optimal number 𝑀∗
𝑆∗ of SVEs for

constructing an RVE set. When one gradually introduces a new SVE, the average autocorrelations will also
include more and more structural information. If the diversity of the structural features in these SVEs is
saturated enough to match the entire material sample, the locations of the 𝑓𝑆𝑉𝐸 (𝑆∗, 𝑚) will gather in a small
area in the PCA space. In other words, the distance between two adjacent points in the space will stabilize
around a sufficiently small value. This distance can be mathematically expressed as

𝑑���𝛼𝐽
𝑆∗−𝛼

𝐽−1
𝑆∗

��� =
√√√√√ 3∑

𝑖=1

(
𝛼𝐽
𝑖,𝑆∗ − 𝛼𝐽−1

𝑖,𝑆∗

)2(
𝛼𝑖,𝑚𝑎𝑥 − 𝛼𝑖,𝑚𝑖𝑛

)2 (7)

b) Removing redundant information of the autocorrelations. We truncated the autocorrelations in the con-
structed RVE set by controlling the different maximum lengths of 𝒕 and then observed the variation of their
variance in PCA space to explore the threshold of 𝜖 defined by Equation (1). Finally, the structural information
that contains the least redundancy is retained.

5) Establishing SP linkage. By inputting the low-dimensional features of the RVEs for the five alloys, we trained
a Ridge regression model and assessed its accuracy in predicting yield strength. It is noted that this process
was also used to validate the reliability of the methods proposed in Procedure (4).

This scheme shown in Figure 3 was also performed on the dendrite solidification data from PFM for Al-Cu
alloys and experimental data ofNi-Fe-based superalloys. The reliability and generalization ability of the scheme
were also considered in this study.

RESULTS
Construction of RVE set
Following the workflow shown in Figure 3, we traversed all possible combinations with the variation of 𝑆 and
𝑚 in the SVE pool, calculated their average autocorrelations 𝑓𝑆𝑉𝐸 (𝑆, 𝑚), and then employed PCA to extract
their low-dimensional features 𝛼𝑚

𝑆 , where 𝑆 ∈ 𝑺, 𝑚 ≤ 𝑀𝑆 , and 𝑀𝑆 ∈ 𝑴. It is noted that all of the features were
grouped into five clusters according to the different sizes of SVEs, and their distributions in the PCA space are
shown in Figure 4. It can be observed that, for a small 𝑆 (𝑆50𝑋 or 𝑆100𝑋 ), the larger𝑚 is, the more concentrated
the distribution of sample points are and the further away 𝛼𝑚

𝑆 is from 𝛼3
𝑆5𝑋

, indicating that more structural
features are included, but still not enough to match that of a larger microstructure. For a large 𝑆 (𝑆5𝑋 , 𝑆10𝑋 ,
or 𝑆20𝑋 ), all of the points appear to be centrally distributed in a small region, which demonstrates that the
structural diversity included in the extracted information represents a saturation.

To quantify the interclass and intraclass convergence observed above, we used Equation (5) and (6) to calculate
the normalized average distances, 𝑑𝑛𝑜𝑟𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 and 𝑑

𝑛𝑜𝑟
𝑡𝑎𝑟𝑔𝑒𝑡 . Figure 5A explains the calculation principle of the single

distance 𝑑𝑛𝑜𝑟𝐽 ; the red star point named target is associated with 𝛼3
𝑆5𝑋

. The variation of these two distances with
the size and number of SVEs is given in Figure 5B. It can be seen that 𝑑𝑛𝑜𝑟𝑡𝑎𝑟𝑔𝑒𝑡 quickly declines and gradually
converges in the range of less than 0.1 as the size of SVEs increases. Thus, the minimum size of SVE that can
be used to construct an RVE set is determined as 𝑆∗ = 𝑆20𝑋 . When 𝑆 > 𝑆20𝑋 , the decrease rate of 𝑑𝑛𝑜𝑟𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 is
first fast, then slow, and finally approaches 0, indicating that the structural information contained in the SVEs
reaches saturation. However, what needs to be emphasized is that the calculation for 𝑑𝑛𝑜𝑟𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 is based on a
premise of the SVE pool, which is inconsistent with the requirement of low cost and the fact that there are only
several SVEs in experiments. Therefore, the volume of the RVE set needs to be determined separately.
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Figure 4. The distribution of the averaged autocorrelations of a certain number SVEs in the PCA space. The PCs are grouped into five
clusters that are distinguished by the size 𝑆 of these SVEs: (A) 𝑆5𝑋 and 𝑆10𝑋 ; (B) 𝑆20𝑋 ; (C) 𝑆50𝑋 ; and (D) 𝑆100𝑋 .

Figure 5. Evaluation of convergence and reliability of ensemble averaged autocorrelations: (A) schematic diagram of evaluation metrics,
𝑑𝑛𝑜𝑟
𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 and 𝑑𝑛𝑜𝑟

𝐽,𝑡𝑎𝑟𝑔𝑒𝑡 ; and (B) comparison between the two averaged metrics.

As for the volume of the RVE set, we propose a novelmethod named recursive addition based on Euler distance
in the PCA space. Figure 6B explains the rationality of the method by using a defined distance, 𝑑���𝜶𝑱

𝑺∗−𝜶
𝑱−1
𝑺∗

���,
which is mathematically expressed by Equation (7). Here, 𝑆∗ represents the optimal size of the SVEs in the
RVE set, while 𝜶 𝒋

𝑺∗ and 𝜶 𝒋−1
𝑺∗ are the PC features of the 𝑗 th and ( 𝑗 − 1)th SVEs added gradually. It is easy to

understand that 𝑑���𝜶𝑱
𝑺∗−𝜶

𝑱−1
𝑺∗

��� will gradually decrease and eventually stabilize in an acceptable range when the

new members are added continuously, as shown in the green shaded area in Figure 6B. We started from the
five SVEs with the size of 𝑆20𝑋 for the alloys, then ran PCA on the autocorrelations of these microstructures to
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Figure 6. (A,C-F) Distance 𝑑���𝜶𝑱
𝑺∗ −𝜶𝑱−1

𝑺∗

��� as a function of the number of SVEs by recursively adding five experimental samples for Alloys 1-5; (B)

the application diagram of the distance.

obtain low-dimensional features 𝛼0
𝑆20𝑋

, and subsequently projected a new SVE into the PCA space to get 𝛼1
𝑆20𝑋

.
We next calculated 𝑑���𝛼1

𝑆20𝑋
−𝛼0

𝑆20𝑋

���, repeating the above steps several times for each alloy. To produce reliable and

non-random results, we performed this recursive addition method 100 times to assess the mean and standard
deviation of 𝑑���𝛼1

𝑆20𝑋
−𝛼0

𝑆20𝑋

���. Figure 6(A, C-F) displays the variation of the distance as the number of additions

increases for the five alloys. It can be found that 𝑑���𝛼𝐽
𝑆20𝑋

−𝛼𝐽−1
𝑆20𝑋

��� quickly declines followed by a slow reduction.

The distances for the alloys finally converge to less than 0.05. As pointed from the vertical arrows shown in
the Figures, we determined to use six members to construct an RVE set, and the structural features contained
in the set can consistently represent that of the whole sample.

Construction of structureproperty linkage
We then employed Ridge regression to extract SP linkage. The inputs of the model are the low-dimensional
features (𝛼6

𝑆20𝑋
) of the constructed RVE set for the five experimental alloys, and the output is yield strength.

LOOCV was used to assess the prediction accuracy. For comparison, we also built three other Ridge models
using different sets of inputs (𝛼2

𝑆20𝑋
, 𝛼10

𝑆20𝑋
, and 𝛼3

𝑆5𝑋
) obtained from the average autocorrelations of 2 and 10

SVEs with size of 𝑆20𝑋 and 3 SVEs with size of 𝑆5𝑋 , respectively. To avoid randomness, the selection procedure
of these SVEs was repeated 100 times. Figure 7A and B exhibits the distribution of 𝛼2

𝑆20𝑋
, 𝛼6

𝑆20𝑋
, 𝛼10

𝑆20𝑋
(hollow

points), and 𝛼3
𝑆5𝑋

(solid points) in the PCA space. It can be observed that there is always a hollow point
occupying a position further away from the solid point for each alloy. After verification, we found that this
isolated point is associated with 𝛼2

𝑆20𝑋
, which is consistent with the results shown in Figure 6. In Figure 7C, it

can be seen that the accuracies of the models with the input of 𝛼6
𝑆20𝑋

, 𝛼10
𝑆20𝑋

, and 𝛼3
𝑆5𝑋

are extremely close to
each other (𝑅2 are 0.8430, 0.8680, and 0.8652, respectively), which is improved by at least 28.57% compared
with the model inputting 𝛼2

𝑆20𝑋
. Figure 7D compares the experimentally measured yield strength and the

ones predicted by the model inputting 𝛼6
𝑆20𝑋

from the RVE set. The diagonal distribution between them also
indicates the high accuracy of the model. The mean absolute error (MAE) is less than 10 MPa (embedding
subgraph in Figure 7D), which demonstrates that the structural information contained in our constructed RVE
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Figure 7. Distribution of the alloys #1-#5 in the PCA space and prediction accuracy (𝑅2 and 𝑅𝑀𝑆𝐸) for the yield strength: (A) distribution
along PC1 and PC2 vectors; (B) distribution along PC2 and PC3 vectors; (C) 𝑅2 and 𝑅𝑀𝑆𝐸 ; and (D) comparison between predictions and
experiments. The embedding sub-plot in (D) shows their difference for the five alloys.

set can be mapped to the macroscopic mechanical property of the whole sample.

To verify the generalization ability of the proposed method in constructing the RVE set, we performed this
method on a dataset of dendrite solidification of Al-Cu alloys simulated by PFM [59–63]. The parameters of PFM
are listed in Table S1. The dataset includes 48 microstructures that are produced by controlling solidification
parameters including the number of primary grains (𝑛), anisotropy coefficient of the solid-liquid interfacial
energy (𝛾4), and nucleation supercooling (Δ𝑇). From the results shown in Figure S1, it can be observed that
the difference of these microstructures comes from the grain morphology and volume fraction of the solid
phase. RI2SS and PCA were then employed to extract their average autocorrelations and low-dimensional
features. The distribution of the features is shown in Figure S2. Combined with the results of Figures S1 and
S2, we demonstrated that the microstructures distinguished by Δ𝑇 and 𝛾4 placed along PC1 and PC2 vectors,
respectively, indicating that the first two PCs reflect the variation of volume fraction and grain morphology.
Through applying the recursive addition method, as shown in Figure S3, an RVE set consisting of six SVEs
was constructed. The established PS linkage shown in Figure S4 also reveals the reliability of this RVE set in
extracting sufficient structural features. More importantly, the successful application of the proposed method
on the simulation dataset proves its credibility and universality.

Identification of Redundant statistics
Two-point statistical autocorrelations contain valuable information concentrated in the central area and vast
redundant information in the peripheral area. Following the procedures shown in Figure 3, we truncated the
autocorrelations of the microstructures in the RVE set, as displayed in Figure 8A. The maximum modulus of
the vector 𝒕 is labeled as | 𝒕 |𝑚𝑎𝑥. Using the truncated autocorrelations with a certain | 𝒕 |𝑚𝑎𝑥 (20-100 pixels) for
the five alloys, we created a PCA space and projected these statistics into the space, and then examined the
variation of PC variance, as shown in Figure 8B and C. As | 𝒕 |𝑚𝑎𝑥 decreases, the cumulative variance of the first
three PCs does not change significantly and that of the first two PCs increases slightly. When | 𝒕 |𝑚𝑎𝑥 reduces
from 100 to 50 pixels, the individual variance of PC1 declines slowly and that of PC2 rapidly rises. When | 𝒕 |𝑚𝑎𝑥

continues to be reduced, their tendencies reverse. Different from the first two PCs, the trend of individual
variance of PC3 is inconsistent with that of | 𝒕 |𝑚𝑎𝑥 . Combining with Equation (3), we further investigated
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Figure 8. Variation of autocorrelations and PC variance with different lengths of |𝒕 |𝑚𝑎𝑥 : (A) the autocorrelations of Alloy 1; (B) cumulative
variance for the first three PC3; and (C) individual variance for PC2 and PC3.

variation of the first PC basis vectors (𝜙11
1 and 𝜙11

2 ) with the truncation of | 𝒕 |𝑚𝑎𝑥 . Figure S5 demonstrates that,
when | 𝒕 |𝑚𝑎𝑥 ≥ 50 pixels, if PC1 increases, the peak value of the autocorrelations that is strongly associated
with the volume fraction of the austenite phase will also increase. In other words, PC1 reflects the volume
fraction. As for PC2, it mainly relates to the peak value and the size of the central area, indicating that PC2
determines the volume fraction, average size, and distribution of the austenite phase. When | 𝒕 |𝑚𝑎𝑥 < 50 pixels,
PC1 is not only correlated with phase volume fraction but also related to the average size of the phase, and
PC2 does not contain the information about phase distribution as it does before. Therefore, we hypothesized
that the effective information in the autocorrelations is removed when | 𝒕 |𝑚𝑎𝑥 < 50 pixels, leading to a change
in physical meaning of the low-dimensional features and a mutation in PC variance.

While removing redundancy in statistical autocorrelations, the distribution of the SVEs in the RVE set in the
PCA space was also altered, as shown in Figure S6. When | 𝒕 |𝑚𝑎𝑥 ≥ 50 pixels, the low-dimensional features
hardly change during truncating while obvious changes of them can be observed in the case of | 𝒕 |𝑚𝑎𝑥 < 50
pixels. We quantified the distances between these low-dimensional points and their centroid for each alloy, and
then the variance of the distances was labeled as intraclass variance, while the interclass variance represented
that between the centroids for the five alloys. Figure 9A visualizes the two variances as a function of | 𝒕 |𝑚𝑎𝑥 .
When | 𝒕 |𝑚𝑎𝑥 reduces from 100 to 50 pixels, intraclass variance slightly decreases and interclass variance varies in
an inverse tendency, as indicated by the dotted arrows. It is easily understood that the discrepancy of the curves
shown in Figure 9B within the same class (a certain alloy) is dominated by the external redundancy included
in the autocorrelations compared with that in different classes (different alloys), whose difference is mainly
determined by the central areas of the autocorrelations. The two variances compete with each other, resulting
in little variation in the overall population (orange line in Figure 8B). When | 𝒕 |𝑚𝑎𝑥 < 50 pixels, the valuable
information in the central area starts to be eliminated, the interclass and intraclass variances both increase, and
the overall variation is also intensified (orange line in Figure 8B). Therefore, these results prove our hypothesis
above, i.e., the critical length of | 𝒕 | that distinguishes valuable information and redundant information is 50
pixels for our microstructures.
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Figure 9. Variation of intraclass variance, interclass variance and 𝑑𝑛𝑜𝑟
𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 with different lengths of |𝒕 |𝑚𝑎𝑥 for the five alloys: (A) intraclass

variance and interclass variance; and (B) 𝑑𝑛𝑜𝑟
𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 . Three quantitative metrics were calculated from the scatter plots of the low-dimensional

features, as shown in Figure S6.

Figure 10. Variation of
��𝑃|𝒕 | − 𝑃2

0

�� and the model accuracy with the change of the different lengths of |𝒕 |𝑚𝑎𝑥 : (A)
��𝑃|𝒕 | − 𝑃2

0

��; (B) 𝑅2 and 𝑅𝑀𝑆𝐸 ;
and (C) comparison between predictions and experiments. The embedded subgraph shows that the prediction errors of the five alloys are
within ±6.28 MPa.

Improvement of structureproperty linkage
Tolerance factor 𝜖 defines a length scale feature of microstructure called coherence length 𝑡𝑐 by Equation (1).
However, the certain threshold of 𝜖 is still unknown. An excessively large 𝜖 will mislead the choice of 𝑡𝑐 and
may lead to a failure of SP linkage. This section is mainly devoted to confirming a precise threshold to improve
the built SP linkage.

By calculating pair correlation function (PCF) of the average autocorrelations in the RVE set, we modified
the left-hand side of Equation (1) as ⟨𝑃( 𝑗)

| 𝒕 | − (𝑃( 𝑗)
0 )2⟩ [23]. For convenience, the item is simply expressed as��𝑃| 𝒕 | − 𝑃2

0

��. Obviously, it is a function of | 𝒕 |. Figure 10A gives the variation of
��𝑃| 𝒕 | − 𝑃2

0

�� as a function of | 𝒕 |𝑚𝑎𝑥

for the five alloys. When | 𝒕 |𝑚𝑎𝑥 ≥ 50 pixels, all of the curves present a plateau. At this point, the values of��𝑃| 𝒕 | − 𝑃2
0

�� are less than a threshold of 0.005; thus, the critical 𝑡𝑐 was confirmed to be 50 pixels (32.52 𝜇𝑚).
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Using the autocorrelations with different | 𝒕 |𝑚𝑎𝑥 (20-100 pixels), we established several SP linkages by Ridge
regression and employed LOOCV to evaluate their accuracies, as shown in Figure 10B. 𝑅𝑀𝑆𝐸 of the model
for | 𝒕 |𝑚𝑎𝑥 = 𝑡𝑐 reduces by 9.67% compared with that for | 𝒕 |𝑚𝑎𝑥 = 100 pixels (no truncation), and 𝑅2 increases
by 2.62%. When | 𝒕 |𝑚𝑎𝑥 < 𝑡𝑐 , the performance of the models starts to deteriorate. The results of the best model
are highlighted by red and cyan solid points in Figure 10B, and the predictions agree well with the experiments
shown in Figure 10C. The embedded subgraph shows that the MAE between the predicted value and the
experimental one is within 6.28 MPa, which is reduced by 37.2% compared with the results in Figure 7D.

We further employed the procedure in Figure 3 on a Ni-Fe-based superalloy dataset to explore the impact of
redundancy removement on the accuracy of SP linkage and the threshold 𝜖 . The dataset was collected from [54].
It is noted that the microstructures shown in Figure S7 are extremely different from our experimental ones
shown in Figure 1 in terms of morphology. Extraction of low-dimensional features and construction of SP
linkage on this superalloy dataset are visualized in Figures S8 and S9. Eventually, the accuracy of the models
along with the change of | 𝒕 |𝑚𝑎𝑥 trends similar to Figure 10B, and the threshold 𝜖 that is used to determine 𝑡𝑐 is
also less than 0.005, demonstrating the reliability and university of this threshold in confirming the coherence
length of experimental microstructure and assisting in establishing SP linkages.

DISCUSSION
Advantages of the quantitative metrics based on PCA
Quantitative comparison between two microstructures has always been a fascinating issue. To complete this
task, Niezgoda et al. developed a metric 𝐷𝑠 to reflect the root-mean-square error between the two-point
statistics of each SVE and the target ensemble-averaged statistics, where 𝑠 is the size of the selected SVEs [28].
When the errors for all SVEs are small and close to each other, the amount of information included in the two-
point statistics of these SVEs will be saturated and independent of the size and number of the SVEs. Niezgoda
et al. used 𝐷𝑠 to successfully construct an RVE set that can be used to predict mechanical properties in a
computationally economical manner [22]. Figure S10E provides the variation of 𝐷𝑠 with the change of | 𝒕 |𝑚𝑎𝑥 in
the autocorrelations. Obviously, 𝐷𝑠 is strongly correlated with | 𝒕 |𝑚𝑎𝑥 . In other words, even for the same group
of microstructures, 𝐷𝑠 fails to provide a specific and valuable reference for different operators. In addition,
as for two SVEs 𝑚 ( 𝑗) and 𝑚 (𝑘) located at different spatial positions of the same sample, the two elements 𝑓

( 𝑗)
𝒔0

and 𝑓 (𝑘)𝒔0 in their autocorrelations 𝑓
( 𝑗)
𝒕 and 𝑓 (𝑘)𝒕 have no specific physical meanings except that the peak values

𝑓
( 𝑗)
0 and 𝑓 (𝑘)0 represent volume fraction of the local state of interest, where the superscripts 𝑗 and 𝑘 label the
two SVEs. Therefore, the error metric produced by two autocorrelations can only reflect the average degree
of similarity in morphology pattern of them, but it fails to rigorously measure the distinguishment in physical
features of the microstructures.

Our proposed quantitative metrics based on PCA successfully overcome the defects above. From Equation (5)
- (7), we can find that the metrics are distance measurement between the low-dimensional features 𝛼( 𝑗)

𝑖 and
𝛼(𝑘)
𝑖 of 𝑚 ( 𝑗) and 𝑚 (𝑘) . Generally, the first several PCs have interpretable physical meanings [29,34,43]. For the

constructed RVE set in the present study, 𝛼1 represents the volume fraction of the austenitic phase and 𝛼2 quan-
tifies the average size and distribution of this phase (a detailed understanding is provided in Figure S5). Thus,
the metrics based on PCA can rigorously measure the degree of similarity in physical features of microstruc-
tures. In addition, when | 𝒕 |𝑚𝑎𝑥 > 𝑡𝑐 , themetrics are independent of | 𝒕 |𝑚𝑎𝑥 , which can be demonstrated from the
results in Figure S6. The reason is that the valuable information contained in autocorrelations is compressed
to the first several PCs, while the lower-ranked PCs containing a large amount of redundant information are
forcibly truncated, resulting in the invariance of the low-dimensional features. Therefore, the quantitative
metrics based on PCA have the advantage of reliability and robustness in measuring the similarity of physical
features of microstructures.
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In summary, the differences between our metrics and 𝐷𝑠 show up in three ways: (1) In form, 𝐷𝑠 reflects
the distance between two selected two-point statistics, while our metrics reflect the discrepancy between the
low-dimensional PC features. (2) In physical meaning, 𝐷𝑠 can only reflect the average degree of similarity in
morphology pattern of the two-point statistics, while the rigorous measurement of the distance in physical
features (phase volume fraction, average grain size, etc.) of the microstructures can also be addressed by our
metrics. (3) In stability, 𝐷𝑠 is strongly affected by the dimensionality of the two-point statistics, while our
metrics are only related to the microstructures.

Advantages and limitations of the method of optimizing microstructural information
Optimization of microstructural information in this study includes two aspects: construction of RVE set and
removement of redundancy. There are two premises for an RVE set: (1) the size of members is large enough to
ensure statistical homogeneity in the spatial distribution of structural features that can be mapped to macro-
scopic mechanical properties; and (2) the dispersion of structural features in the RVE set should match the
entire material sample [28]. The microstructures contained in the RVE set are independent of their size and lo-
cation in the samples [Figure 4 and 5], which meets the first condition. The RVE set absorbs enough structural
features that its average autocorrelations converge in PCA space [Figure 6], indicating the second condition
has been met. In addition, the method was successfully applied to the datasets of experimental ferrite steels,
dendrite solidification of Al-Cu alloys simulated by PFM and experimental Ni-Fe-based superalloys collected
in the literature, and SP linkage with high precision was established by Ridge regression. These impressive
results demonstrate the advantages of scientific nature, reliability, and universality.

The developed method is an improved version of the average approximation method to construct an RVE set,
which is also not readily applicable to the samples with microstructure gradients, for instance, some additively
manufactured samples with coarse columnar grains where the “average grain size” characteristic is meaning-
less [64], the samples with high inhomogeneity in size or distribution of the thermodynamic phases where the
average treatment loses the local variation nature of the structure [65], and so on. A rough solution to obtain
the statistical information of the overall sample from the SVEs with local gradients is reserving all the original
two-point statistics of the SVEs. Nevertheless, dimensional disasters are beyond the scope of conventional di-
mensionality reduction algorithms, such as PCA. If one insists on extracting two-point statistics of the sample
by ensemble averaging the statistics from multiple SVEs, the long-range correlations may be missed. In other
words, the SVEs size used to construct an RVE set must exceed the coherence length of the microstructure
when the long-range order plays a significant role in the physics of the system [28]. Therefore, the construction
of RVE for the samples with microstructure gradients or inhomogeneity remains a challenging task, which is
one of the active areas that we will investigate in the future.

Another interesting topic in this study is the tolerance factor 𝜖 that is used to determine the coherence length
𝑡𝑐 , as expressed by Equation (1). From the Equation, one can see that, once 𝑡𝑐 is determined, the values of
autocorrelations with | 𝒕 | greater than 𝑡𝑐 will fluctuate within a short interval [

(
ℎ 𝑓 𝑗

)2 − 𝜖,
(
ℎ 𝑓 𝑗

)2 + 𝜖]. As for
a microstructure with time dependence and strongly coupled and long-range phenomena such as diffusion,
𝑡𝑐 must change over time, and so does the size of RVE [66]. However, the interval length 2𝜖 above is a scalar
related to twice the margin of the error limitation between autocorrelations and volume fraction squared when
| 𝒕 | is larger than 𝑡𝑐 , which is independent of time. In other words, evolution time and long-range phenomena
may have a significant effect on 𝑡𝑐 but not 𝜖 . Based on the aging microstructures of ferrite steels and the
creep microstructures of the collected Ni-Fe-based superalloys, we confirmed the critical threshold of 𝜖 to
be 0.005 when the main statistical information remained. To verify the inference that 𝜖 may be also suitable
for the evolving microstructures with long-range diffusion, a case about the coarsening process of the poly-
disperse particle during evolution was used. Our previous work investigated the effects of two characters of
the particle cluster, i.e., particle number (𝑁𝑐) and particle density in a cluster, on the kinetics of transient
coarsening [67]. The microstructures in Figure 3 by Wang et al. were used to analyze the problem above [67].

http://dx.doi.org/10.20517/jmi.2022.05


Hu et al. J Mater Inf 2022;2:5 I http://dx.doi.org/10.20517/jmi.2022.05 Page 17 of 21

Figure S11 provides these microstructures (with four groups of different combinations of 𝑁𝑐 and 𝜌𝑐), and the
variation of pair correlation function 𝑃| 𝒕 | with different | 𝒕 |𝑚𝑎𝑥 ; the detailed calculation process is also illustrated
in Figure S11. For each group of the parameters, 𝑡𝑐 was determined by locating the minimal | 𝒕 |𝑚𝑎𝑥 when 𝑃| 𝒕 |
curves appear platform. Interestingly, as shown in Figure S12, even if 𝑡𝑐 changes with different degrees over
evolving time,

��𝑃| 𝒕 |≥𝑡𝑐 − 𝑃2
0

��, i.e., 𝜖 , is still at a low level (< 0.005), indicating 𝑡𝑐 is affected by the solute diffusion
during evolving and 𝜖 is indeed independent of evolving time or long-range diffusion. Additionally, 𝜖 of 0.005
may be a generalized metric to determine 𝑡𝑐 of a microstructure, which can be demonstrated from the results
shown in Figure 10, Figure S9, and the gray shadow area in Figure S11.

Application prospects and limitations for the proposed scheme
In the practical application of the proposed scheme, flexible feature selection is allowed, such as the addition
of other necessary factors in addition to the low-dimensional PC features of microstructures. The factors here
can be directly measured from the material samples or filtered by feature engineering. The factors that may
be important to the yield strength (grain size, precipitated phase, dislocation, etc.) were indeed ignored in our
study, resulting in a seemingly ”capped” predictability of the final model even with the optimized parameter
selection, i.e., 𝑅2 value of < 90%. Strictly speaking, these factors should be incorporated into our scheme to
produce a more scientific and robust SP linkage. However, one main contribution of this research is to pro-
vide a practical computing strategy for constructing an RVE set. The size and number of small sub-domains in
the microstructures is the final optimization objective. Our scheme successfully addressed this goal, although
the established SP linkage could be further improved by considering more factors. If readers attempt to use
the scheme to predict the mechanical properties of interest related to microstructures, more characterization
and/or measurements conducted with expert knowledges are suggested to obtain sufficient inputs of the ML
model. It is important to note that these supplementary factors and low-dimensional PC features can be com-
bined to train an ML model, as done in this study. The only effort required is to increase the number of input
features.

A major strength of the proposed scheme comes from its ability to extract reliable low-dimensional features
by optimizing structural information in an RVE set. Using the features, one can place the microstructures into
correct classes by flexibly combining supervised or semi-supervised ML algorithms to study the relationship
between structural features and resulting properties for a special material system such as Ag-Al-Cu ternary eu-
tectic alloys or superalloys with multiple strengthening patterns [40,43,68]. Therefore, the scheme can accelerate
and improve the procedure of microstructure classification. In addition, our previous study proved that intro-
ducing two-point statistical information on microstructures can enhance PSP linkages, which may be further
improved by the scheme in this study [7]. We believe that it is competent to predict mechanical properties for
most material systems, especially in the case of long-term service in a harsh experimental environment [31–33].
Unfortunately, to our best knowledge, there is no effort to apply two-point statistical information to realize
the goal of alloy design. Molkeri et al. proved that explicit incorporation of microstructure knowledge in
the materials design framework can significantly enhance the materials optimization process [8], and we pre-
viously developed an iterative strategy to search ultra-strength martensitic stainless steels in a global-oriented
manner [48]. These two studies provide confidence that our scheme [Figure 3], combined with the previously
proposed iteration strategy, can be applied to rapidly discover new alloys in experiments. In conclusion, there
is a broad application prospect of our scheme in microstructure classification, property prediction, and reverse
engineering for designing new materials.

CONCLUSIONS
Wepropose a novel scheme to construct SP linkage by optimizingmicrostructure information, which is achieved
via employing RI2SS, PCA, and Ridge regression. A small experimental dataset for ferrite steels was created.
We designed reliable and robust distance metrics, 𝑑𝑛𝑜𝑟𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 , 𝑑

𝑛𝑜𝑟
𝑡𝑎𝑟𝑔𝑒𝑡 , and 𝑑����𝛼 𝑗

𝑆∗−𝛼
𝑗−1
𝑆∗

����, to quantify the optimal size
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(𝑆20𝑋 ) and number (6) of members in the RVE set. While constructing the set, an innovative method called re-
cursive addition was developed. The primary SP linkage keeps a high accuracy (𝑅2 = 0.8680,𝑀𝐴𝐸 < 10MPa).
After removing redundant information in the autocorrelations, the accuracy was obviously improved by 37.2%
(𝑅2 = 0.8941, 𝑀𝐴𝐸 < 6.28MPa). As another contribution of this work, the threshold of tolerance factor 𝜖
that determines the coherence length in a microstructure was confirmed to be 0.005. Finally, the scientific na-
ture, reliability, and universality of this scheme were proved by performing experiments on two other datasets
(dendrite solidification data of Al-Cu alloys simulated by PFM and experimental Ni-Fe-based superalloys data
collected in the literature). More importantly, broad application prospects in microstructure classification,
property prediction, and alloy design are expected for the scheme.
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