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Abstract
Polycystic ovary syndrome (PCOS) is a complex disorder with a great heterogeneity of signs and symptoms. 
However, hyperandrogenism is considered a hallmark of PCOS, presented by most affected women. Women with 
PCOS are at high risk of developing type 2 diabetes mellitus (T2DM), which is associated with insulin resistance 
(IR) and hyperinsulinemia. In turn, hyperinsulinemia interferes with the androgen production by ovarian cells, and 
worsens the hyperandrogenism, initiating a feedback cycle. Women with PCOS are also at a greater risk of 
developing obesity. Indeed, a dysfunctional adipose tissue in obesity contributes to T2DM in PCOS by affecting 
insulin action and secretion through multiple mechanisms, such as lipotoxicity, inflammation, and adipokine 
signaling. Therefore, obesity-disrupted adipose tissue can be seen as an important target for T2DM development in 
women with PCOS. Because adipose tissue can be positively affected by non-pharmacological and easily accessible 
strategies such as physical exercise, this review provides a comprehensive summary of the benefits of physical 
exercise to improve adipose tissue health and decrease the risk of obesity and T2DM in women with PCOS.
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INTRODUCTION
Polycystic Ovary Syndrome (PCOS) is a reproductive disorder that affects up to 10%-13% of women in 
reproductive age[1,2]. Due to the heterogeneity of signs and symptoms, the diagnosis of PCOS can be 
challenging. Accordingly, although other criteria have been described, the recently published 
2023 Evidence-based Guideline for the Assessment and Management of PCOS[1] endorses the Rotterdam 
criteria as the gold standard for clinical diagnosis. This requires the presence of at least two of the following 
three findings: (1) Oligo- and/or anovulation; (2) Clinical and/or biochemical hyperandrogenism; and (3) 
Polycystic ovaries on ultrasound after exclusion of other etiologies[3]. In addition, since the anti-Müllerian 
hormone (AMH) secretion by ovarian follicles is elevated in women with PCOS[4], this guideline also 
includes AMH determination as an alternative diagnostic method for ultrasonography[1].

Hyperandrogenism is the most common PCOS clinical finding, present in more than 80% of all PCOS-
affected women[5]. This includes elevated levels of testosterone (T), bioavailable free T, and free androgen 
index, as well as elevated androstenedione and dehydroepiandrosterone sulfate (DHEA-S)[5]. The etiology of 
hyperandrogenism in PCOS is not completely understood, but two distinct pathways might contribute to 
the high androgen secretion: (1) dysfunction of the hypothalamic-pituitary-gonadal axis and (2) the effect of 
high insulin levels on androgen synthesis by ovarian cells. PCOS is implicated in an increased GnRH pulse 
frequency and amplitude by hypothalamic neurons, which in turn increases the frequency and amplitude of 
luteinizing hormone (LH) pulses and reduces follicular-stimulating hormone (FSH) secretion. As a result, 
the LH hyperstimulation of ovarian theca cells increases the secretion of T and androstenedione, which 
inhibits folliculogenesis, promotes the accumulation of small follicles and leads to high AMH production[5].

Several comorbidities are associated with PCOS, including hirsutism, alopecia, and acne[6], which, possibly 
due to the damage to personal image, contribute to the development of psychological pathologies, including 
anxiety and depression[1,7]. Furthermore, women with PCOS also have an increased risk for metabolic 
conditions such as insulin resistance (IR) and type 2 diabetes mellitus (T2DM). High androgen levels in 
PCOS are implicated in IR and hyperinsulinemia[8,9], and, at the same time, insulin may affect ovarian 
morphology and function by enhancing androgen synthesis, therefore establishing a vicious cycle between 
PCOS and T2DM[6]. Hyperandrogenism may also disturb adipose tissue metabolism through adipocyte 
hypertrophy, increasing the prevalence of obesity in women with PCOS[10,11]. A dysfunctional adipose tissue 
increases the release of free fatty acids (FFA), proinflammatory cytokines, and dysregulated adipokines, 
which might lead to IR, β cell dysfunction, and T2DM[12]. Although even lean women with PCOS are more 
predisposed to develop T2DM, this risk can be 4-fold higher in women with obesity[13,14]; therefore, adipose 
tissue is an important key for the pathogenesis of T2DM in PCOS.

Many benefits can be obtained through physical exercise, including a reduction in fat mass, an 
improvement in adipokines and lipid profiles, and an improvement in insulin sensitivity[15,16]. Therefore, the 
promotion of healthier adipose tissue by practicing physical exercise may be considered a non-
pharmacological and easily accessible strategy to mitigate obesity and T2DM in women with PCOS. Thus, 
the purpose of this review is to provide a comprehensive summary of the benefits of physical exercise to 
improve adipose tissue health and decrease the risk of obesity and T2DM in women with PCOS.

THE RELATION BETWEEN PCOS AND T2DM
IR is found in 80% of women with PCOS independent of the BMI and leads to a compensatory increased 
insulin secretion[8,9]. Hyperinsulinemia, in turn, affects ovarian morphology and function. Insulin can mimic 
LH stimulation of ovarian theca cells and potentialize theca cells’ sensitivity to LH[17,18]. Consequently, the 
synergism of LH and insulin stimulates the androgen syntheses by ovarian theca cells, further aggravating 



Page 3 of Santos et al. Metab Target Organ Damage. 2025;5:11 https://dx.doi.org/10.20517/mtod.2024.97 18

hyperandrogenism. In addition, while hyperinsulinemia enhances androgen production, it decreases sex 
hormone binding globulin (SHGB) synthesis, resulting in increased total and free T, and consequently 
disrupts follicle development[5]. Therefore, while hyperandrogenism predisposes IR in PCOS, 
hyperinsulinemia worsens the high levels of androgens.

Thus, decreasing insulin levels in women with PCOS contributes to reducing androgen and increasing 
SHBG levels, improving the metabolism and demonstrating the stimulatory relationship between the high 
insulin levels and androgen release in PCOS[19]. Hyperinsulinemia also disrupts ovarian follicular 
development, resulting in premature luteinization, through a FSH-induced upregulation of LH receptors in 
granulosa cells[5]. This may collaborate with the clustering of small follicles in the periphery of the ovary, 
giving it a polycystic morphology[20].

The relationship between PCOS and IR has already been proven in several studies[8,17,18,21]. In women with 
PCOS, IR is frequently associated with β cell dysfunction[22,23]. The insulin gene promoter presents an 
androgen-responsive element that binds to the androgen receptor (AR), and its stimulation by 
hyperandrogenism in PCOS increases the transcription of the insulin gene and, hence, insulin secretion[24]. 
Moreover, the high androgen levels in PCOS disrupt the mitochondrial function of pancreatic islets[25], and 
women with PCOS show increased production of reactive oxygen species (ROS) and oxidative stress, which 
is inversely correlated with the β cell function[26]. Interestingly, the intrauterine hyperandrogenism that 
contributes to the increased risk of developing PCOS in daughters from mothers with PCOS increases the 
number of β cells, the islet expression of AR and other genes related to β cell function, resulting in increased 
insulin secretion under euglycemic conditions. This programs a disrupted β cell environment that 
contributes to the altered insulin secretion in PCOS[27].

Women with PCOS have a 2-to-3-fold higher prevalence of obesity, dyslipidemia, and non-alcoholic fatty 
liver disease (NAFLD), which contributes to an increased risk of developing T2DM[28,29], that mirrors PCOS 
features such as IR, impaired β cell function, and high body weight[30]. T2DM is the most prevalent type of 
diabetes, accounting for more than 95% of all cases[31]. During its pathogenesis, defects in the insulin 
signaling cascade impair glucose uptake in insulin-sensitive tissues such as skeletal muscle and adipose 
tissue. At this point, β cells augment insulin secretion as a compensatory response to this IR, temporarily 
maintaining normal glucose levels. However, continuous and high demands for insulin prejudice β cell 
secretory capacity, eventually leading to β cell failure and apoptosis. Therefore, insufficient secretion and 
defective action of insulin leads to glucose accumulation in the bloodstream in T2DM, and dysregulation of 
metabolic processes such as hepatic gluconeogenesis that aggravates hyperglycemia[12].

Preventing and treating T2DM is fundamental to avoiding micro and macrovascular complications. High 
glucose levels can affect microvasculature through the formation of advanced glycation products (AGE), 
oxidative stress, and inflammation, resulting in diabetic microangiopathy (retinopathy, nephropathy, 
neuropathy), and eventually leading to macrovascular complications such as systemic hypertension[32]. 
Unfortunately, according to the last International Diabetes Federation Atlas[33], T2DM prevalence is 
predicted to increase from 10.5% (536.6 million) of the global adult population in 2021 to 12.2% 
(783.2 million) in 2024. Such progression is related to lifestyle changes in modern societies, with increasing 
sedentary behaviors and declining nutritional quality that includes high consumption of processed meat 
and sugar-sweetened beverages, resulting in greater obesity prevalence[34,35].

Even though lean women with PCOS have a high risk of T2DM compared to controls[36], this is remarkably 
increased by a high BMI, as women with PCOS who are obese have a 4-fold increased risk of developing 
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T2DM compared to normal-weight women with PCOS[13,14]. In this regard, the 2023 International PCOS 
Guideline warns that women with PCOS have an increased risk of impaired fasting glucose, impaired 
glucose tolerance, and T2DM. Therefore, it is strongly recommended that all women with PCOS should be 
carefully screened for T2DM regardless of age and BMI, with regular intervals of oral glucose tolerance 
test[1,37].

Additionally, both women with a previous history of gestational diabetes[38,39] and those with type 1 diabetes 
mellitus (T1DM) and T2DM have greater risk of developing PCOS and the evaluation of PCOS in these 
women should be considered[1]. In a study with premenopausal women with T2DM, authors found that 82% 
had polycystic ovaries and 52% presented PCOS symptoms such as cutaneous hyperandrogenism and/or 
menstrual disturbances[40]. Likewise, the prevalence of PCOS in women with T2DM was around 21% in a 
meta-analysis study[41]. Although there is an increase in the IR in the peripheral tissues of women with 
PCOS (i.e., skeletal muscle and adipose tissue), the ovary remains sensitive to the gonadotropin-like action 
of insulin and its consequent stimulation of androgen synthesis[28,42], which will act on target organs as a 
classical feature of PCOS.

GENETICS OF PCOS AND T2DM
PCOS is strongly influenced by genetics, with nearly 70% of daughters from PCOS mothers manifesting 
PCOS symptoms[43]. The genetic inheritance of PCOS is supported by evidence showing that fathers and 
brothers of women with PCOS may have a higher prevalence of metabolic disorders, T2DM, and 
hypertension[1]. A recent bioinformatic analysis compared two datasets that contained genetic information 
on T2DM and PCOS (GSE10946 and GSE18732 datasets, respectively). The analysis resulted in four 
common genes differently expressed in both diseases (BIRC3, DEPTOR, TNNL3, ADRA2A). These genes 
are respectively related to smooth muscle contraction, channel inhibitor activity, apoptosis, and tumor 
necrosis factor α (TNFα) signaling pathways[44].

Shaaban et al. found some associations between PCOS and polymorphisms in genes related to secretion and 
signaling of insulin, including insulin receptor (INSR) gene, adiponectin gene (ADIPOQ), PPARG, calpain 
protein (CAPN10), a cysteine protease that participates in proinsulin processing, and melatonin receptors 
(MTNR1A and MTNR1B)[45]. These melatonin receptors are expressed in pancreatic islets whose 
polymorphisms are related to IR and lower β cell function. On the other hand, the importance of the INSR 
substrate 1 and 2 (IRS1/2) gene to PCOS pathophysiology does not have the same replicability, and the 
relevance of the insulin gene is controversial[45].

Despite the strong genetic inheritance in PCOS pathophysiology, its etiology is multifaceted and might 
involve epigenetic and environmental clues. In this regard, the PCOS-like reproductive and metabolic traits 
induced by the prenatal androgenization of mice can be detected in the third offspring (F3) generation, 
which presents increased fat mass, larger adipocytes, and altered adipogenesis - markers of metabolic 
dysfunction that indicate IR[43]. This metabolic disturbance was related to a transgenerational change in the 
oocyte gene expression[43]. In women, it is proposed that the unfavorable in utero environment of patients 
with PCOS, marked by high androgens and AMH levels, has a fetal programming effect, predisposing the 
offspring to develop PCOS[43,46,47]. This is possibly due to epigenetic changes in DNA methylation that can 
also be transgenerationally transmitted[48-51]. Thereafter, bad lifestyle habits such as poor-quality diet, 
sedentary lifestyle, stress, and endocrine disruptors trigger the onset of PCOS symptoms in the daughters of 
mothers with PCOS[50,52].
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T2DM is referred to as a polygenic disorder[53], with a strong familial inheritance of 58%-65% relative risk for 
T2DM in monozygotic twins and 16%-30% in dizygotic twins[54]. Several gene polymorphisms were found to 
be associated with T2DM pathogenesis, including the rs7903146 polymorphism in the TCF7L2 gene[55], a 
major regulator of insulin secretion that influences the insulin transcriptional network[56]. This 
polymorphism was associated with a 41% increased risk for T2DM, becoming the single gene variant with 
higher association with T2DM[57]. In fact, the strongest associations were identified in genes that are related 
to secretion and action of insulin, or even incretin response; however, a large number of identified single-
nucleotide polymorphisms (SNPs) are not associated with any of these actions, but with cellular signaling, 
cell cycle, mitosis, apoptosis and some other functions, reinforcing the complex polygenicity of genetic 
predisposition of T2DM[54].

ADIPOSE TISSUE: A COMMON PLAYER IN PCOS AND T2DM TEAMS
Adipose tissue is no longer seen only as a place to store fat to be mobilized in periods of energetic needs. In 
fact, adipose tissue is a very heterogeneous group of tissues with an intense plasticity potential, and it can act 
as a key metabolic regulator in whole-body physiology[58]. Far beyond the basic classification of adipose 
tissue in white adipose tissue (WAT - the professional of energy storage) and brown adipose tissue (BAT - 
the thermogenesis promoter)[59], adipose tissue depots have an important endocrine function by releasing 
multiple peptide hormones (adipokines) that regulate several functions such as systemic metabolic state, 
appetite, and inflammatory response[60].

WAT expansion is determined by the balance between adipocyte hyperplasia (adipogenesis), fat synthesis 
through adipocyte hypertrophy (lipogenesis), and fat breakdown (lipolysis)[59]. Excessive caloric intake 
combined with sedentary behavior results in a positive energy balance where these excess calories will be 
stored in WAT, causing its expansion and leading to obesity[61,62]. However, while high levels of 
adipogenesis, mainly in subcutaneous WAT (sWAT), are more associated with a healthier metabolic status, 
high levels of lipogenesis, mainly in visceral WAT (vWAT) depots, induce a WAT remodeling with 
enlarged adipocytes and increased intracellular lipid droplets, associated with a proinflammatory status and 
systemic IR[62,63].

In addition, genetic aspects also play a crucial role in the obesity process. Although there are rare cases of 
monogenic obesity, inherited with a Mendelian pattern, obesity is seen as a polygenic disease in the same 
way as T2DM, where hundreds of polymorphisms in key genes might contribute to obesity development[64]. 
Some genes whose polymorphisms showed important associations with obesity include: the β-3 adrenergic 
receptor gene (ADRB3) that stimulates lipid mobilization in WAT[65], melanocortin-4 receptor (MC4R) that 
regulates food intake and energy homeostasis[66], obesity-associated gene (FTO) associated with fat 
accumulation[67], and much more.

The pathological WAT remodeling process is characterized by rapid and disorganized growth of existing 
adipocytes, which eventually undergo hypoxia considering the rate-limited angiogenesis process, leading to 
adipocyte inflammation and death[68]. This induces macrophage recruitment and infiltration in WAT, 
accentuating the inflammation through the release of proinflammatory cytokines. Additionally, an intense 
fibrosis process is seen in obesity[68]. This dysfunctional WAT releases many molecules involved in the IR of 
tissues such as skeletal muscle, liver, and WAT itself[12]. Individuals with obesity have increased serum levels 
of FFA that can lead to intracellular accumulation of diacylglycerol (DAG) and ceramide, promoting 
damage by oxidative stress and inhibitory phosphorylation of IRS1/2, impairing insulin signaling[12].
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In the liver, the increased lipid availability and the presence of inflammatory mediators are the genesis of 
NAFLD, since lipids are stored as hepatic triglycerides, leading to hepatic steatosis, or undergo 
mitochondrial oxidation, which may increase the production of ROS and oxidative stress. Additionally, 
DAG formation, as an intermediate molecule in triglyceride synthesis, contributes to hepatic IR through the 
activation of PKC and inhibition of IRS1/2[69]. Although NAFLD’s contribution to T2DM and metabolic 
syndrome is not yet completely clear, it involves the hepatic IR, leading to altered lipoproteins and increased 
VLDL production, increased lipogenesis and gluconeogenesis which augments hepatic glucose output[69]. In 
the same way, in pancreatic β cells, chronic exposure to FFA like palmitate induces intracellular lipid 
accumulation, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress, leading 
to reduced insulin secretion and apoptosis[70,71].

WAT from lean individuals releases high levels of adiponectin (an insulin-sensitizing adipokine); however, 
the WAT from individuals with obesity decreases adiponectin production and increases the production of 
leptin and inflammatory cytokines such as TNFα and IL-1β[72,73]. Leptin acts mainly in the central nervous 
system, modulating appetite, but in β cells, it can inhibit insulin secretion[74]. TNFα is a well-known factor 
that interferes with insulin cascade by affecting IRS1/2[75] and promotes β cell apoptosis[76]. Additionally, β 
cell exposure to IL-1β also induces apoptosis, mediated by the JNK pathway[11]. Together, all those obesity-
induced mechanisms contribute to the insufficient production and deficient action of insulin observed in 
T2DM pathophysiology[77].

The occurrence of PCOS can also be linked to functional abnormalities in WAT since androgen excess can 
induce adipocyte hypertrophy[9,78]. Women with PCOS (BMI between 20-35 kg/m2) exhibited lower 
ADIPOQ expression in sWAT, higher central fat mass and sWAT adipocyte area compared to women 
without PCOS. Additionally, only in women with PCOS was adipocyte area positively correlated with T 
serum levels[79]. Moreover, women with PCOS exhibited lower expression of GLUT4 and IRS1, as well as 
higher levels of oxidative stress in vWAT, which correlated with waist circumference (WC) and homeostatic 
model assessment for insulin resistance (HOMA-IR) index[80]. A PCOS rat model, treated with 
dihydrotestosterone (DHT) for 90 days, showed increased food intake, body weight, and vWAT 
hypertrophy in contrast to control group, as well as decreased mitochondrial content in visceral and 
sWAT[10]. In another study, DHT-treated mice showed increased body weight, retroperitoneal vWAT and 
BAT weights however, those parameters were prevented by the transplantation of WAT from AR knockout 
mice[81].

As we see, PCOS shares common aspects with T2DM pathophysiology and, given the PCOS’ effects on 
WAT expansion, dysfunctional WAT in cases of obesity and/or PCOS might be an important element in 
understanding how these three conditions are related [Figure 1]. Therefore, promoting healthy body 
composition and improving glucose metabolism are primary actions for managing obesity and the risk of 
T2DM in women with PCOS.

PHYSICAL EXERCISE IN PCOS: LOOKING AT OBESITY AND T2DM
The adoption of a balanced diet and regular physical exercise has been extensively recommended to 
improve anthropometric, metabolic, and hormonal parameters, as well as lowering T2DM risk[82] and 
improving ovarian functions[83,84]. The benefits of dietary modifications for weight loss and glycemic control 
in women with PCOS have been discussed in previous studies[1,82,85]. Here, we focus on the favorable effects 
of physical exercise on body composition, glucose metabolism, and T2DM.
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Figure 1. Connections between PCOS, obesity and T2DM. PCOS can influence the development of obesity and T2DM. 
Hyperandrogenism found in women with PCOS may induce the WAT remodeling process and, in the presence of genetic predisposition, 
poor dietary choices, and a sedentary lifestyle, it can lead to obesity. An obesity-disrupted WAT can contribute to T2DM development 
through mechanisms such as inflammation, lipotoxicity, and adipokine signaling. Insulin resistance found in T2DM, and enhanced by 
hyperandrogenism in PCOS, induces a compensatory response of pancreatic β cells to secrete more insulin. Hyperinsulinemia affects 
ovarian morphology and function, reinforcing hyperandrogenism in PCOS. In that scenario, the practice of physical exercise can help in 
the mitigation of obesity and T2DM in women with PCOS. PCOS: Polycystic ovary syndrome; T2DM: type 2 diabetes mellitus; WAT: 
white adipose tissue; FFA: free fatty acids.

The number of studies that investigated the effects of physical exercise in women with PCOS has increased 
over the years. In recent research conducted in the electronic databases of PubMed from inception to 
September 2024 using keywords PCOS and physical exercise or physical activity, 982 manuscripts were 
found. When the keywords obesity or diabetes were included, 526 and 352 manuscripts were found, 
respectively [Figure 2]. These data highlight the relevance of physical exercise in the management of PCOS 
and how much progress we have made in knowledge on the subject.

Since 2000, more than 630 systematic reviews and meta-analyses about PCOS have been published, most of 
them with a focus on lifestyle and pharmacological interventions to improve metabolic, hormonal profile 
and ovarian function. Regarding physical exercise, both aerobic and resistance exercises can positively 
impact BMI, WC, body fat, and glucose metabolism in women with PCOS[82,86-88].

Results from the systematic review and meta-analysis conducted by Kite et al. found reductions in BMI with 
aerobic exercise in women with BMI ≥ 30 kg/m2[87]. They also observed reductions in WC and body fat, 
suggesting that exercise promotes favorable changes to body composition in women with PCOS and obesity 
compared to those receiving no intervention. Fasting blood glucose did not change, but fasting insulin and 
HOMA-IR were reduced following exercise, with no evidence of change in the control groups.
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Figure 2. Number of manuscripts published with the descriptors PCOS, physical exercise/physical activity, obesity, and diabetes in the 
electronic databases of PubMed since 1952. PCOS: Polycystic ovary syndrome.

When different intensities of aerobic exercise were compared, Patten et al. reported small improvements in 
BMI and WC only after aerobic vigorous-intensity continuous training 70% to 90% of maximum heart rate 
(HRmax) or 60% to 85% maximum oxygen uptake (VO2max) compared with [moderate-intensity 
continuous training (MICT) 55% to 70% HRmax or 40% to 60% VO2max] or high-intensity interval 
training (HIIT) (≥ 90% HRmax or ≥ 85% VO2max)[89]. Decreases in BMI were more evident when exercise 
was complemented with dietary intervention, and positive effects in WC or other markers of body 
composition, including increased lean mass and decreased adiposity, can occur without changes in body 
weight. Aerobic vigorous-intensity continuous training and resistance exercise also resulted in 
improvement of IR as indicated by moderate decreases in HOMA-IR.

In another systematic review and meta-analysis, Breyley-Smith et al. showed that both aerobic MICT and 
HIIT reduced WC in women with PCOS[90]. However, only MICT led to a statistically significant benefit. As 
discussed by the authors, despite the small magnitude of exercise effect alone, the results support the use of 
aerobic exercise as a strategy to control central obesity in women with PCOS.

Almenning et al. showed that HIIT for 10 weeks improved IR in women with PCOS compared with the 
non-exercise group[84]. This response was not observed with resistance exercise (strength training). Body 
weight or WC did not change in any group, but fat percentage decreased after both exercise types. Both 
body and visceral fat percentages were positively correlated with HOMA-IR before and after physical 
exercises, showing the connection between adiposity and IR. Additionally, with HIIT, Mohammadi et al. 
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found decreased BMI, waist-to-hip ratio, visceral fat, fasting insulin, and IR[91]. Collectively, these results 
revealed that variation of aerobic exercise such as HIIT is interesting to include in the exercise routine of 
women with PCOS because it offers good results for BMI, adiposity, and IR with less exercise time 
commitment.

Recently, Ruiz-González et al. showed that strategies that combined diet with weight loss drugs were the 
most likely to result in BMI reduction, followed by exercise combined with diet and weight loss drugs, and 
exercise combined with diet and ovulation inducers[92]. In this research, the authors included aerobic MICT, 
resistance exercise, and a combination of both types.

Moderate-to-high intensity aerobic exercise has been frequently used to prevent metabolic complications, 
reestablish ovulation, and increase the likelihood of pregnancy[84]. In addition, aerobic exercise increases 
cardiorespiratory fitness, reduces total cholesterol, low-density lipoprotein cholesterol (LDL-C), and 
triglycerides, and increases high-density lipoprotein cholesterol (HDL-C) in women with PCOS[91,93-95].

Although aerobic exercise is often prescribed for women with PCOS, it is important to consider practicing 
resistance exercise since it can improve body composition, glucose metabolism, and sexual 
dysfunction[84,86,96,97]. According to Kogure et al., women with PCOS who did resistance exercise did not 
change their BMI, but reduced WC and fasting glucose levels and increased lean muscle mass compared 
with the baseline values[86]. Vizza et al. also found a reduction in WC, an increase in lean mass and fat-free 
mass, and an improvement in glycosylated hemoglobin (HbA1c) compared with the control group[96]. 
However, they did not observe changes in fat mass or percent of body fat in HOMA-IR2 and fasting insulin. 
On the other hand, Saremi and Yaghoubi and Kite et al. reported better fasting insulin in women with 
PCOS compared to control[87,98].

Kite et al. reinforced that resistance exercise may be beneficial for women with PCOS because it also 
improves triglycerides, total cholesterol, and LDL-C[98,99]. Furthermore, just like aerobic exercises, resistance 
exercises also reduce total cholesterol and LDL-C in high-fat diet-induced obese mice[100]. These effects are 
crucial for reducing cardiometabolic risk associated with PCOS. However, as discussed by Kite et al., it is 
still necessary to expand the number of studies with resistance exercise to better elucidate the effects of this 
type of exercise, since the studies published have used small samples with heterogenous characteristics and 
different exercise prescriptions[99]. Table 1 shows the effects of aerobic and resistance exercises for the 
prevention of obesity and T2DM, as well as for the reduction of cardiometabolic risk in women with PCOS.

EXERCISE-INDUCED ADAPTATIONS TO ADIPOSE TISSUE
The connection between adipose tissue and chronic diseases such as T2DM is clearly demonstrated in the 
literature. The excess of adipose tissue and the expansion of adipose tissue in non-adipose tissue modify the 
production of chemical molecules, resulting in systemic inflammation and adverse influence on energy 
homeostasis, metabolism, insulin sensitivity, and inflammation[12,101].

On the other hand, physical exercise improves the handling of lipid excess and promotes healthy adipose 
tissue[15] functioning as a metabolic guardian against the development of T2DM. De Glisezinski et al. 
showed that moderate aerobic exercise increases the rate of lipolysis in human adipose tissue, decreasing the 
triacylglycerols stored[16]. The augmented lipolytic activity was also observed in women with PCOS and 
obesity, which could favor weight loss through aerobic exercise[102]. In addition, aerobic exercise improves 
lipid oxidation in the skeletal muscle of individuals and animals due to an increase in the activity of 
oxidative enzymes, expression of triglyceride and fatty acid transport proteins, and higher mitochondrial 
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Table 1. Effects of physical exercise against the development of obesity and T2DM

Aerobic exercise Resistance exercise

↓ BMI ↔/↓ BMI

↓ WC ↓ WC

↓ Body/visceral fat ↔/↓ Body fat

↔/↓ Fasting glucose ↑ Lean muscle mass

↓ Fasting insulin ↓ Fasting glucose

↓ Insulin resistance ↔/↓ Fasting insulin

↓ Total cholesterol ↓ HbA1c

↓ LDL-C and triglycerides ↔/↓ Insulin resistance

↑ HDL-C ↓ Total cholesterol

↑ Cardiorespiratory fitness ↓ LDL-C and triglycerides

↑: Increase; ↓: decrease; ↔: unchanged. Aerobic and resistance exercises induce changes in body composition and glucose metabolism that are 
involved in the prevention of obesity and T2DM, as well as in the reduction of cardiometabolic risk in women with PCOS. BMI: Body mass index; 
WC: waist circumference; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; HbA1c: glycosylated 
hemoglobin; T2DM: type 2 diabetes mellitus.

density and capillarization[103-105].

Resistance exercise can also increase lipid oxidation in skeletal muscle, favoring the reduction of body 
adiposity in humans[106,107]. Polak et al. showed that the resistance exercise increased the responsiveness to 
the beta-adrenergic receptor stimulation of lipolysis and anti-lipolytic action of catecholamines via alpha-
adrenergic 2A receptor in subjects with obesity[108]. They also found better whole-body and adipose tissue 
insulin responsiveness.

In previous reports, our group showed in animals that the WAT remodeling induced by aerobic exercise is 
associated with the prevention of obesity and IR[109,110]. Using a diet-induced obesity and IR animal model, 
we found lower vWAT in trained mice, which was associated with increased lipolytic activity, reduced 
lipogenic capacity, and increased activity of enzymes responsible for lipid oxidation[109]. In addition, we 
observed a reduction in insulin signaling proteins and an increase in the expression of lipolysis signaling 
proteins in the sWAT[110]. These results revealed that aerobic exercise favored fat oxidation instead of fat 
storage, which is pivotal to preventing IR and T2DM.

Functional BAT is important for metabolic and cardiovascular health and has therefore been investigated as 
a potential therapeutic target for obesity, T2DM, and cardiovascular diseases[111]. Chondronikola et al. 
showed that BAT activation in healthy individuals increased insulin sensitivity[112]. In obese or aged animals, 
BAT activation or transplantation normalized glucose tolerance and IR[113,114].

Despite being the most metabolically active adipose deposit, the effect of physical exercise on BAT is still 
controversial. Vidal and Stanford reported that the thermogenic activity of BAT can increase, reduce, or 
remain unchanged after aerobic physical exercise[115]. These responses depend on the physical exercise 
protocol, the experimental model investigated, and the ambient temperature at which the physical exercise 
was performed. In addition, Wang et al. observed that trained mice fed a high-fat diet had better insulin 
action, IL-6 and TNFα levels, increased thermogenic activity and multilocular adipocytes in the BAT[116]. In 
humans, moderate aerobic exercise but not HIIT improved glucose metabolism in the BAT[117]. However, 
Martinez-Tellez et al. showed no effect of combined aerobic and resistance exercises on BAT volume or 
glucose uptake in humans[118]. As discussed by Lehnig & Stanford[119], physical exercise itself is a type of heat 
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production and is less likely to enhance thermogenesis by BAT.

Recruitment of beige adipocytes can contribute to the enhancement of energy metabolism because they 
function similarly to brown adipocytes in energy generation in the form of heat[120]. In a previous study, 
Otero-Díaz et al. showed that 12 weeks of aerobic exercise increased the expression of brown and beige 
genes in abdominal sWAT of non-diabetic individuals with different BMIs (normal, overweight and with 
obesity)[121]. Recently, Chou et al. found that only aerobic exercise upregulated thermogenic gene 
expressions in epididymal vWAT of mice with obesity, which was associated with increased circulating 
irisin[100]. Increased irisin concentration was also observed after resistance exercise in individuals with 
overweight and obesity[122]. In addition to stimulating WAT browning, irisin also enhances glucose uptake in 
the BAT[123] and fatty acid oxidation[124], which can positively contribute to preventing IR and T2DM in 
women with PCOS.

In addition to irisin secretion, exercise-induced adaptation in skeletal muscle also resulted in increasedβ-
aminoisobutyric acid (BAIBA) and fibroblast growth factor 21 (FGF21), which are associated with the 
induction of browning in the WAT. These effects are responsible for improvements in glucose disposal, 
fatty acid oxidation, and lipolysis, which are important for the prevention and treatment of T2DM[125,126].

Physical exercise improves the adipocytes’ function by modulating the secretion of peptides and non-
peptides, which have endocrine, paracrine, and systemic actions. Adiponectin is one of the adipokines that 
have been investigated the most, and its actions contribute to alleviating IR by stimulating lipid oxidation 
and anti-inflammatory responses[127]. Some studies found that circulating adiponectin increased after 
exercise[128,129], while others showed no changes after exercise[130,131]. Circulating adiponectin also increased 
after aerobic exercise in rodents[132,133] and in patients who have pre-diabetes or T2DM[134]. In addition, the 
adiponectin concentration increased in trained women with PCOS with HIIT exercise for 12 weeks[81].

Reduction in adipose tissue mass in rodents and humans leads to a decrease in leptin concentrations[135]. 
Lower leptin concentration increases tissue sensitivity to insulin and reduces intracellular lipid contents by 
AMPK activation and signaling mediators of the central nervous system[136]. Aerobic exercise decreased 
serum leptin levels in both lean and individuals with obesity[137,138] and in women with PCOS[139]. 
Furthermore, reductions in leptin concentration were observed after three different protocols of resistance 
exercise in humans (hypertrophy, strength, and muscular endurance) compared to baseline[140], and in 
young females with obesity trained with both HIIT and plyometric training[141]. Conversely, Almenning et 
al. showed that neither resistance training (strength) nor HIIT changed the levels of leptin and adiponectin 
in women with PCOS[84]. In animals fed a cafeteria diet, aerobic exercise prevented hyperleptinemia, which 
is associated with the development of leptin resistance[121].

Despite the positive effects of resistance exercise, the data set in humans suggests that endurance exercise 
appears to be more effective in decreasing body fat mass and adipocyte size, increasing fatty acid 
mobilization and oxidation during and post-exercise, and modulating adipokine secretion[142].

Increased levels of inflammatory cytokines such as TNFα and IL-6 are associated with adipose hypertrophy 
and IR and can modulate ovarian follicular function[142]. Aerobic exercise can counteract the inflammatory 
status of women with PCOS[143]. In a previous study, Dantas et al. demonstrated that aerobic exercise 
decreased IL-6 and TNFα in overweight/obese women with PCOS[144]. The effects of different types of 
exercise on inflammatory markers in women with PCOS were elucidated in a recent systematic review and 
meta-analysis conducted by Hafizi Moori et al., revealing that both aerobic and resistance exercises can be 
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effective in decreasing inflammatory markers and increasing anti-inflammatory markers, which is crucial to 
protect women with PCOS against T2DM and cardiovascular risk[145].

PHYSICAL EXERCISE RECOMMENDATIONS
According to Patten et al., a minimum of 120 min per week of aerobic vigorous-intensity continuous 
exercise over 10-12 weeks is necessary for health improvements[89]. Due to the positive effects of resistance 
training, it could be considered for women with PCOS. Furthermore, they recommended that women 
should sustain this level of exercise for continued health maintenance.

The results of a systematic review and meta-analysis conducted by Ruiz-González et al. reinforce the 
importance of reaching a minimum of 150 min of weekly exercise[92]. Health benefits were obtained from 4 
weeks to 12 months of interventions based on resistance exercise and its combination with continuous and 
HIIT aerobic exercise.

T h e  2023 Evidence-based Guideline for the Assessment and Management of PCOS[1] r e c o m m e n d e d  a  
minimum of 150 to 300 min of moderate-intensity exercise or 75 to 150 min of vigorous-intensity aerobic 
exercise per week for the prevention of weight gain and maintenance of health, and a minimum of 
250 min/week of moderate-intensity exercise or 150 min/week of vigorous intensities for promotion of 
modest weight loss and prevention of weight regain. In any case, muscle-strengthening activities (e.g., 
resistance/flexibility) are recommended on two non-consecutive days per week.

It is important to keep in mind that physical exercise and a healthy diet combination can amplify the 
positive effects on body composition and glucose metabolism. Regarding the first, exercise prescription 
should be done by physical education professionals who will  the intervention characteristics to each 
woman. They can also supervise the exercise session to optimize results safely and promote better 
adherence.

CONCLUSION
Obesity is a central condition, although not in all cases, for the development of T2DM in women with 
PCOS. This relationship seems linear, but the interconnections between the diseases are quite complex, and 
frequently include the dysfunction of adipose tissue. Aerobic and resistance physical exercises, in 
combination with a balanced diet, are very powerful tools that promote adipose tissue health, consequently 
preventing and treating obesity and T2DM in women with PCOS.
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