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Abstract
Emotion on our face can determine our feelings, mental state and can directly impact our decisions. Humans are
subjected to undergo an emotional change in relation to their living environment and or at a present circumstance.
These emotions can be anger, disgust, fear, sadness, happiness, surprise or neutral. Due to the intricacy and nuance
of facial expressions and their relationship to emotions, accurate facial expression identification remains a difficult
undertaking. As a result, we provide an end-to-end system that uses residual blocks to identify emotions and improve
accuracy in this research field. After receiving a facial image, the framework returns its emotional state. The accuracy
obtained on the test set of FERGIT dataset (an extension of the FER2013 dataset with 49300 images) was 75%. This
proves the efficiency of the model in classifying facial emotions as this database poses a bunch of challenges such
as imbalanced data, intraclass variance, and occlusion. To ensure the performance of our model, we also tested it on
the CK+ database and its output accuracy was 97% on the test set.
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1. INTRODUCTION
Detecting a person’s emotions has become increasingly important in recent years. It has attracted interest, in
human emotion detection across a variety of areas including but not limited to human-computer [1], education,
and medicine. Interpersonal communication is impossible without emotions coming into play. In the daily
life of human communication, emotions play a significant role. Human emotional states can be gleaned from
spoken (verbal), and nonverbal information is collected by a variety of sensors. According to the 7-38-55
rule [2], verbal communication accounts for only 7% of all communication, whereas nonverbal components
of our daily conversation, such as voice tonality and body language, account for 38% and 55%, respectively.
Human emotions are exposed via changes on the face, voice intonation as well as body language. Studies have
proven that emotions expressed visually are most prominent which are displayed on individual faces. They
can be shown in a variety of ways, some of which are visible to the human eye and others that are not.

Emotion is a multidisciplinary area that includes psychology, computer science, and other disciplines. It can
be described in psychology terms as a psychological state that is associated with thoughts, feelings, behavioral
reactions, and a level of pleasure or dissatisfaction [3]. Whereas in the field of computer science, it may be
recognized in the form of image, audio, video, and text documents. Emotion analysis from any of those docu-
ment types is not easy. People communicate mostly through their emotional reactions which can be positive,
negative, or neutral. It is generally accepted that good emotions are conveyed as a variety of different adjectives
such as cheerful, happy, joy, excited, while negative emotions can be hate, anger, fear, depression, sadness and
so on. People spend the majority of their time posting and expressing their feelings on social media sites such
as Facebook, Instagram, and others [4]. They allow people to express their emotions in many different ways.

In our daily lives, we are faced with situations that affect our emotions. It has a significant impact on hu-
man cognitive functions such as perception, attention, learning, memory, reasoning, and problem-solving [5].
Among these, attention is the most impacted, both in terms of altering attention’s selectivity and in terms of
driving actions and behaviors. Human emotion can have a great impact on their health if poorly managed. It
weakens the immune system making it more susceptible to colds and other illnesses [6].

Deep learning’s growth has greatly improved the accuracy of facial expression identification tasks. Various
Convolutional Neural Network (CNN) models have recently been built to overcome problems with emotion
recognition from facial expressions. It is one of the leading networks in this field. A CNN architecture is
composed of convolutions, activations, and pooling layers. With the advancement of Artificial Intelligence
technologies such as pattern recognition and computer vision, computing terminal devices can now interpret
the changes in human expressions to a degree, allowing for greater diversity in human-computer communica-
tion [7]. In Facial Expression Recognition (FER), the major aim is to map distinct facial expressions to their
corresponding emotional states. It consists of extracting the features from the facial image and recognizing the
emotion presented. Before feeding facial images to a CNN or other different machine learning classifier, some
image processing techniques need to be done. Existing methods include discrete wavelet transform [8], linear
discriminant analysis [9], histogram equalization [10], histogram of gradients [11], viola-jones algorithm [12], etc.
When it comes to real conditions like occlusion and light, manual feature extraction has a good identification
capacity in specific special situations or laboratory environments, but it struggles when it comes to natural
conditions. Feature extraction approaches based on deep convolution neural networks have attracted a lot of
attention recently [13], and this has helped to improve facial emotion detection performance. Deep Residual
Network [14] (Deep ResNet) which was easier to train and optimize, has played amajor role in the field of image
recognition, introducing a novel approach to Deep Neural Network optimization.

Previous work on emotion recognition depended on a two-stage classical learning strategy. The first stage
consists of extracting features using image processing techniques. The second stage, on the other hand, relied
on the employment of a traditionalmachine learning classifier such as SupportVectorMachine (SVM) to detect
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emotions. FER has used a variety of methodologies to extract the visual highlights of picture layouts such as
weighted random forest (WRF) [15]. Hasani and Mahoor [16] utilized a novel network called ResNet-LSTM
to capture Spatio-temporal data, which combine lower highlights to LSTMs specifically. The deep learning
network has ended up as themost widely utilized strategy in FER due to its powerful feature extraction capacity.

Using histogram of oriented gradients (HOG) in the wavelet domain, Nigam et al. [11] proposed a four steps
process for efficient FER (face processing, domain transformation, feature extraction and expression recog-
nition). In the expression recognition part, the authors used a tree-based multi-class SVM to classify the
retrieved HOG features in discrete wavelet transform (DWT). The system was trained and tested with CK+,
JAFFE and Yale datasets. The accuracy observed in the test set of these three (3) datasets are 90%, 71.43% and
75% respectively.

Upon deeply analyzing the Facial Expression Recognition problem, Minaee et al. proposed the use of Atten-
tional Convolutional Neural Network [17] instead of adding layers/neurons. Aside from that, they also sug-
gested adding a visualization technique that can find important parts of the face that is necessary for detecting
different emotions based on the classifier’s output. Their architecture includes a feature extraction part and
spatial transformer network that takes the input and uses the affine transformation to wrap it to the output.
They achieved a validation accuracy of 70.02 per cent for the categorization of the 7 classes using the FER2013
dataset.

With the help of the ResidualMaskingNetwork [18], the authors focused on deep architecture with the attention
mechanism. They used a segmentation network to refine feature maps, by enabling the network to focus on
relevant information to make the correct decision. Their work was divided into 2 parts: the residual masking
block which contains a residual layer, and the ensemble method for the combination with 7 different CNNs.
In the end, they managed to get an overall accuracy of 74.14% on the test set of FER2013 dataset.

Pu and Zhu [19] developed a FER framework based on the combination of a feature extraction network and
pre-trained model. The feature extraction consists of supervised learning optical flow based on residual block.
The classifier is the Inception architecture. By experimenting with their method on CK+ and FER2013 datasets
they achieved the average accuracy of 95.74% and 73.11% respectively. In order to resolve the fact that CNNs
require a lot of computation resources to train and process emotional recognition, Chowanda [20] proposed a
separable CNN. In the experiment, a comparison of four networks has beenmade. Networks with and without
separable modules, using flatten and fully connected layers, and using global average pooling. Their proposed
architecture was faster, with fewer parameters and achieved an accuracy of 99.4% on the CK+ dataset.

Deep learning methods have recently sparked a lot of interest, and there is a lot of research going on using
deep learning methods to recognize emotions from facial expressions. However, this study proposes the accu-
rate identification of facial emotion using a deep residual-based neural network architecture model. ResNet
was chosen as the study’s foundation because residual-based network models have shown to be effective in a
variety of image recognition applications and have also overcome the problem of overfitting. In our work, we
used emotional expressions such as happiness, surprise, anger, sadness, disgust, neutral, and fear to pick up
emotional changes on individual faces. Furthermore, the main contribution of this work are:

1. Propose a lighter version of CNN using Residual Blocks with fewer number of trainable parameters com-
pared to over 23 millions for the original ResNet network.

2. Locate the best position to use the Residual Blocks to avoid overfitting, and finally get a satisfying perfor-
mance.

3. Show the important of using Residual Blocks compared to the architecture without them.
4. Weight the cross-entropy loss function in order to deal with imbalance problem that suffer the FERGIT
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Figure 1. Architecture model of the proposed framework.

dataset.
5. Confirm the validity of the model by the number of parameters, run-time, and accuracy recorded on the

Cohn–Kanade (CK+) and FERGIT datasets.

2. METHODS
In this section, we introduce our improved Convolution Neural Network with Residual Blocks. This model
is an end-to-end deep learning framework to classify emotions on human face. The model has a total of 7
blocks (3 Convolutional Blocks, 3 Residual Blocks and one Classification Block) in number. This study looked
at strategies that can be used indefinitely, such as CNN for quick and responsive systems with short processing
and reaction times.

2.1. Proposed model architecture
In our proposed architecture, the feature extraction part consists of twelve convolutional sub-blocks with a
Rectified Linear Unit (ReLU) activation function and a kernel initializer set to he_normal in the convolutional
layers. A Residual Block is added after every four convolutional layers. This block also called skip connection
or identity mapping consists of two convolutional layers, each one followed by a batch normalization layer,
and the results from all Residual Blocks are added to the previous convolution and activated. In the basic
network, each pair of a layer is followed by a batch normalization layer, max-pooling layer, and dropout layer.
They are then followed by a global average pooling layer and a dense layer as the output. In the final output
layer, we used the softmax activation function to perform the task of classifying the seven emotions. All details
expressed above can be observed in our proposed framework architecture below shown in Figure 1.

In our framework, we located the best positions to use the residual blocks by trial and error means. Thus,
the number of parameters has been reduced considerably compared to the original Deep ResNet [14], and the
network was fast to train, see Table 1.

2.1.1. Convolution
CNN because of its structure, is arguably the best suitable architecture to use when dealing with computer
vision tasks [21]. The basic operation is the convolution operation, it consists ofmerging two sets of information.
The convolutional layer’s job is to multiply the previous layer’s image pixels by a learnable convolutional kernel
at the corresponding place. And then, calculate the weighted sum of the multiplied results [22]. For the first
convolution operation, we applied a convolution filter (kernel) of size 5 × 5 with a stride of 1 and padding of
2, the latter is used to maintain the same shape of the input image. The output shape is obtained using this
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Table 1. Architecture detail

Layer (type) Output shape Param #

input (InputLayer) [(None, 48, 48, 1)] 0
conv2d_1 (Conv2D) (None, 48, 48, 16) 416
batch_normalization_1 (BatchNormalization) (None, 48, 48, 16) 64
conv2d_2 (Conv2D) (None, 48, 48, 16) 6416
batch_normalization_2 (BatchNormalization) (None, 48, 48, 16) 64
dropout_1 (Dropout) (None, 48, 48, 16) 0
conv2d_3 (Conv2D) (None, 48, 48, 32) 4640
batch_normalization_3 (BatchNormalization) (None, 48, 48, 32) 128
conv2d_4 (Conv2D) (None, 48, 48, 32) 9248
batch_normalization_4 (BatchNormalization) (None, 48, 48, 32) 128
max_pooling2d_1 (MaxPooling2D) (None, 24, 24, 32) 0
dropout_2 (Dropout) (None, 24, 24, 32) 0
conv2d_5 (Conv2D) (None, 24, 24, 32) 9248
batch_normalization_5 (BatchNormalization) (None, 24, 24, 32) 128
activation_1 (Activation) (None, 24, 24, 32) 0
conv2d_6 (Conv2D) (None, 24, 24, 32) 9248
batch_normalization_6 (BatchNormalization) (None, 24, 24, 32) 128
add_1 (Add) (None, 24, 24, 32) 0
activation_2 (Activation) (None, 24, 24, 32) 0
conv2d_7 (Conv2D) (None, 24, 24, 64) 18496
batch_normalization_7 (BatchNormalization) (None, 24, 24, 64) 256
conv2d_8 (Conv2D) (None, 24, 24, 64) 36928
batch_normalization_8 (BatchNormalization) (None, 24, 24, 64) 256
max_pooling2d_2 (MaxPooling2D) (None, 12, 12, 64) 0
dropout_3 (Dropout) (None, 12, 12, 64) 0
conv2d_9 (Conv2D) (None, 12, 12, 128) 73856
batch_normalization_9 (BatchNormalization) (None, 12, 12, 128) 512
conv2d_10 (Conv2D) (None, 12, 12, 128) 147584
batch_normalization_10 (BatchNormalization) (None, 12, 12, 128) 512
max_pooling2d_3 (MaxPooling2D) (None, 6, 6, 128) 0
dropout_4 (Dropout) (None, 6, 6, 128) 0
conv2d_11 (Conv2D) (None, 6, 6, 128) 147584
batch_normalization_11 (BatchNormalization) (None, 6, 6, 128) 512
activation_3 (Activation) (None, 6, 6, 128) 0
conv2d_12 (Conv2D) (None, 6, 6, 128) 147584
batch_normalization_12 (BatchNormalization) (None, 6, 6, 128) 512
add_2 (Add) (None, 6, 6, 128) 0
activation_4 (Activation) (None, 6, 6, 128) 0
conv2d_13 (Conv2D) (None, 6, 6, 256) 295168
batch_normalization_13 (BatchNormalization) (None, 6, 6, 256) 1024
conv2d_14 (Conv2D) (None, 6, 6, 256) 590080
batch_normalization_14 (BatchNormalization) (None, 6, 6, 256) 1024
max_pooling2d_4 (MaxPooling2D) (None, 3, 3, 256) 0
dropout_5 (Dropout) (None, 3, 3, 256) 0
conv2d_15 (Conv2D) (None, 3, 3, 512) 1180160
batch_normalization_15 (BatchNormalization) (None, 3, 3, 512) 2048
conv2d_16 (Conv2D) (None, 3, 3, 512) 2359808
batch_normalization_16 (BatchNomalization) (None, 3, 3, 512) 2048
max_pooling2d_5 (MaxPooling2D) (None, 1, 1, 512) 0
dropout_6 (Dropout) (None, 1, 1, 512) 0
conv2d_17 (Conv2D) (None, 1, 1, 512) 2359808
batch_normalization_17 (BatchNormalization) (None, 1, 1, 512) 2048
activation_5 (Activation) (None, 1, 1, 512) 0
conv2d_18 (Conv2D) (None, 1, 1, 512) 2359808
batch_normalization_18 (BatchNormalization) (None, 1, 1, 512) 2048
add_3 (Add) (None, 1, 1, 512) 0
activation_6 (Activation) (None, 1, 1, 512) 0
global_average_pooling2d_1 (GlobalAveragePooling2D) (None, 512) 0
dense_1 (Dense) (None, 7) 3591
activation_7 (Activation) (None, 7) 0

Total params: 9,773,111
Trainable params: 9,766,391
Non-trainable params: 6,720

formula:

𝑂𝑆 =
𝐼𝑆 − 𝐾𝑆 + 2𝑃

𝑆
+ 1 (1)
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Where 𝐼𝑆 represents the height, or width, assuming that height = width in this study; 𝐾𝑆 the shape one of the
kernel; 𝑃 is the padding (here a zero padding is applied) and 𝑆 represents the stride.
The input grayscale image of size 48 × 48 going through the first convolution layer will get the same output
shape of size 48 × 48 see details Equation (2).

𝑂𝑆 =
48 − 5 + 2 × 2

1
+ 1 =

47
1

+ 1 = 47 + 1 = 48 (2)

We started the convolution with 16 filters and increased it by 2 at each block with the final convolutional layer
having a filters size of 512. When convolving the first layer to output the feature map, the 5 × 5 kernel was
chosen to achieve a more detailed extraction of face expression of various scales, and also significantly reduce
the number of parameters. Themore wemove deeper, themore the convolution kernels get bigger, the stronger
the network learns feature, and the higher is the recognition accuracy. In this work, we havemoderately chosen
an appropriate number of filters after several trials that led to the reduction of the number of parameters, thus
reducing the computational time, and overfitting. The reason for not using that many filters are because, in
FER, the main parts where the networks should focus on are the mouth, towards the corners of the lips, the
nose, the eyebrows, the crow’s feet, the eyelids, and the eyes [23].

2.1.2. Rectified linear unit
The convolution operation given by the following formula:∑

𝑥 × 𝑘 + 𝑏 (3)

Where 𝑥 is the input, 𝑘 the weight and 𝑏 the bias. Equation (3) is linear, so it follows the mathematical rules:

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) (4)

𝑓 (𝛼𝑥) = 𝛼𝑥 (5)

Therefore, to avoid the entire network from collapsing into a single equivalent convolutional layer, the use of a
nonlinear activation function is needed [24]. Rectified Linear Unit (ReLU) [25], is one of themost used nonlinear
activation functions for convolution layers from studied literature [25]. Its function is :

𝑓 (𝑥) = 𝑚𝑎𝑥(0, 𝑥) (6)

Where 𝑥 is the input, and the result will be 0 if 𝑥 < 0 and 𝑥 if 𝑥 > 0. We used this activation function in our
study as we realized that the framework being deep, it reduces considerably the training time.

2.1.3. Initializers
Bias in the neural network is like a constant in a linear function, and research has proved that it plays an impor-
tant role in a Convolutional Neural Network. It helps the model to match the given data better by adjusting the
output [26]. The goal of initializing the weights and bias is to keep layer activation outputs from bursting or dis-
appearing during a deep neural network forward pass [27], because if it does happen, the gradients will be either
too large or too tiny, causing the network to converge slowly or to not converge at all. He Normal [28] weight
initialization has been used in this study. In this case, the weights are randomly initialized and multiplied by
the following formula: √

2
𝑠𝑖𝑧𝑒_𝑙 − 1

(7)

Where 𝑠𝑖𝑧𝑒_𝑙 − 1 is the size of the layer 𝑙 − 1. This strategy ensures that the weights are neither too large nor
too small. The biases are initialized to zero since it’s the common technique and it proved to be efficient.
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2.1.4. Batch-normalization
Batch-Normalization (BN) is a regularization technique [29] that speeds up and stabilizes the training of Deep
Neural Networks (DNN). BN avoids the problem of massive gradient updates, which cause divergent loss and
uncontrollable activation as network depth increases. As a result, it entails using the current batch’s mean and
variance to normalize activation vectors from hidden layers [30]. In this research, we placed the BN layer after
the activation in the simple Convolutional Blocks and before the activation in the Residual blocks, see Figure 1.

2.1.5. Max pooling
Pooling is performed to reduce the dimensionality of the convolved image [24]. By applying pooling operation,
we reduce the number of parameters and fight against overfitting. Max pooling concerns taking the maximum
pixels in the size of the given windows [31]. During this process, the model does not learn. In our work, we
took a 2 × 2 window size and strides of 2 for the whole max-pooling layers. The output size is also given by
the Equation (1), where padding is 0. Using these parameters, we divide the height and width of each feature
map by 2.

2.1.6. Dropout
Dropout [32]is by far the most used Deep Neural Network regularization approach. It boosts the accuracy of
the model and avoids overfitting. The idea of using dropout is to randomly prevent some neurons at one step
to fire with a frequency of rate 𝑝 [33], while the other neurons are scaled up by 1/(1− 𝑝) so that the sum inside
the neuron remains unchanged. The same neuron can be actif at the next step and so on so forth. 𝑝 is the
hyper-parameter of the dropout layer, in our study we found out that the best value of 𝑝 is 0.3 for the early
layers of the feature extraction part and 0.4 for the last Convolutional Block.

2.1.7. Residual block
The Residual Block also known as identity shortcut connection was used in our study. It has a function of

𝐻 (𝑥) = 𝑅(𝑥) + 𝑥 (8)

Where 𝐻 (𝑥) represents the output learning, 𝑥 is the input and 𝑅(𝑥) is the residual layer [14]. The advantage of
this network in our study is that it reduced considerably the loss during the training and increased the accuracy
on the test set. The residual block is used to solve the problem of vanishing gradients. By skipping some
connections, we will allow the back-propagation towards the entire network and so give better performance.
In our implementation, we discovered that using the shortcut branch of 1 × 1 convolution is not suitable as it
does not help to reduce the overfitting, see Figure 1.

2.1.8. Global average pooling
Most of the research in CNN use flatten layer [34] to wrap up into a 1D vector the extracted features from
previous convolutional layers and forward them to the fully connected layers. Global Average Pooling is a
pooling technique used to substitute fully connected layers in traditional CNNs [22]. In this study using the
average pooling layer, the resulting vector, the average of each feature map is fed directly into the softmax layer
instead of constructing fully connected layers on top of the feature maps.

2.2. Data description
In this study, we mainly used the FERGIT dataset which is a combination of the FER-2013 and muxspace
datasets. The FER2013 database was collected from the internet, and most pictures were captured in the wild
using search engine research. It appears to be a low human FER system with an accuracy of about 65% [35].
The FERGIT dataset comprises 49,300 detected faces in a grayscale of 48-by-48 pixels. The images shown in
Figure 2 are sample emotions from the FER2013 dataset.

The FER2013 has many problems itself, thus making it very difficult for deep learning architecture to achieve
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Figure 2. The seven expressions included in the FER-2013 dataset (anger, fear, happiness, sadness, surprise, disgust, and neutral).

better results with its data. Some major issues are imbalanced data, intra-class variation, and occlusion. The
FERGIT database is a largely imbalanced dataset, in the training data, classes have huge different number of
samples. the happy emotion has more than 13 thousand samples, whereas the disgust has just six hundred
samples see Figure 3.

The intra-class variation is the variance within the same class. Minimizing intra-class variation whiles max-
imizing inter-class variation has a significant effect on classification. Variations, uncontrolled illusions, and
occlusions are problems that face recognition systems face in real-life applications [36]. These problems lead to
accuracy degradation compared to dataset experimental test performance. A facial occlusion posture is one
of several potential stances in which something blocks (occludes) a portion of a person’s face, such as their
hand. Occlusion might be caused by one or both hands being immediately on or in front of the face. Likewise,
hair, caps, and sunglasses are all common items that obstruct the view of the face. Despite occlusion posing a
challenge to face recognition, they could potentially yield valuable information because people face using their
hands when communicating via gestures.

2.3. Data preprocessing
First, we arbitrarily partitioned the training information into three parts: 44,370 faces (90% of the dataset)
were used for preparing our model, 2465 (5% of the dataset) faces for validation, and 2465 (5% of the dataset)
faces for testing, as detailed in Figure 4. The size of the dataset is relatively small; therefore, there is a need to
augment the dataset to create new data that the model has not seen before from the training set.

Since the FERGIT dataset only contains facial images [35], no face detection, localization, cropping, or face
alignment were performed during data preparation for the training. We only performed those steps when
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Figure 3. Data distribution among the 7 emotions.

Figure 4. Data split into training, validation and testing sets.

testing with a personal image. Data augmentation improves and enhances training dataset’s image size and
quality via suitable techniques [37]. The problem of overfitting that is common from the lack of sufficient data
is reduced through data augmentation [38]. This research uses data augmentation to transform an image to its
original state and train the CNN architecture.

The data augmentation is done by applying the geometrical transformation by first creating a new set of the
horizontally flipped datasets, image rotation, shift, and zoom, among other transformation operations [37], and
adjusting the brightness to create new images of the same face. The images are also normalized to make the
pixel values range from 0 to 1. The provided images are then ready to be used to train the model.
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2.4. Training phase
In this work, the models were trained on google colab pro with GPU availability, and they were implemented
using Keras2 and Python3. The training was conducted in two phases. We trained the network with a deep
Convolutional Neural Network without Residual Blocks in the first phase. Then after noticing that the accu-
racy is not increasing that much, we added a residual block to help the network generalize well and improve
the success rate. The two models were allowed to train for 100 epochs with a batch size of 64. The optimizer
used to train the models is the Nadam [39] based on the stochastic gradient descent algorithm, with a learning
rate of 0.001, beta_1 parameter value of 0.9, beta_2 is 0.999. and the loss function used is the categorical cross-
entropy [40] function since we have a model with more than two outputs. For this work, having a problem of
imbalance data, we highly weighted the classes with few number of samples and gave small weights to those
with big number of samples. The learning rate is regulated during the training by the callback class ReduceL-
ROnPlateau [41] implemented in the Keras library. This class has the particularity to update the learning to the
minimum value (min_lr = 0.0000001) when there is no improvement of the validation accuracy and will stop
the training after 15 epochs. We chose 15 epochs to allow the training to last for a long time. Another callback
class used is the EarlyStopping [42]. The patience here is set to 30, and finally, we used the ModelCheckpoint
to save the model after each improvement of the validation accuracy.

3. RESULTS
The training process of the twomodels respectively the basic CNN and ResNet based CNNon FERGIT dataset,
and the ResNet based CNN on CK+ dataset took only 119 minutes of total training time with colab pro (K80
GPUs, 25GB RAM).

3.1. Performance Analysis
To efficiently evaluate the performance of our model, several metrics have been taken into account. They
are precision, recall, F1-Score and accuracy. The recall also called sensitivity is the true positive rate. The
precision is to give details about what is the proportion of the correctly predicted positive. The balance of
these two metrics is given by the f1-score metrics. Accuracy, the most used metric for classification tasks, is
used to find what is the correctly predicted positive and negative in the total test set. Details of the equations
are given below:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (9)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (10)

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (11)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (12)

Where (𝑇𝑃) represents True Positives or where predictions for each emotion were accurately identified. (𝑇𝑁)
represents True Negatives or where the model properly rejected a class prediction. (𝐹𝑃) represents False
Positives or where predictions for a certain class were wrongly recognized. (𝐹𝑁) represents False Negatives
or where the model erroneously rejected for a certain class. The confusion matrix is an important tool for
efficiency estimation as it gives a direct comparison of the real and predicted labels.

The first attempt using the basic Deep Neural Network gave an accuracy of 75% on the training data and
73.7% on the validation data. There was no overfitting of the model as, after each convolutional layer, batch
normalization is added to ensure that the weights are re-centered. But we realized that even after training the
model for more epochs, lasting for only 44 minutes, the maximum accuracy was 75%, and the model gave a
74% success rate on the test set, as mentioned in Table 2.

http://dx.doi.org/10.20517/ir.2021.16


Bah et al. Intell Robot 2022;2(1):72­88 I http://dx.doi.org/10.20517/ir.2021.16         Page 82

Table 2. Basic model classification performance test results on FERGIT

Precision Recall F1-Score Support

Angry 0.64 0.49 0.56 260
Disgust 0.75 0.57 0.65 37
Fear 0.6 0.44 0.51 257
Happy 0.89 0.93 0.91 735
Sad 0.54 0.62 0.57 304
Surprise 0.76 0.73 0.75 218
Neutral 0.75 0.82 0.78 654

Accuracy 0.74 2465
Run time 44 min

Table 3. ResNet based model classification performance test results on FERGIT

Precision Recall F1-Score Support

Angry 0.62 0.54 0.58 260
Disgust 0.71 0.54 0.62 37
Fear 0.62 0.44 0.51 257
Happy 0.89 0.92 0.9 735
Sad 0.55 0.56 0.55 304
Surprise 0.76 0.79 0.77 218
Neutral 0.75 0.84 0.79 654

Accuracy 0.75 2465
Run time 48 min

To improve the success rate and at the same time reduce the loss, we used residual blocks, which proved to be
efficient as the accuracy increased to 86% on the training data, and we finally got an accuracy of 75% on the
test set as shown in Table 3. This training took more time, running for 48 minutes.

The model does well on disgust, happiness, surprise, and neutral or contempt expressions during the two
phases. Despite the very imbalanced training data that is alleviated with class-weighting loss -the happy label
has around 30% of the test split- our model’s overall performance was quite good, as presented in the confusion
matrix (See Figure 5). It can be seen that the residual-based network balanced the performance versus the basic
network that biased more on the neutral and happy classes. In both cases, 93% of the images labelled happy
were truly predicted while the prediction of fear was not good, barely 50% for the residual-based model. This
is due to the mislabeling of most of the images.

3.2. Accuracy and loss during training
For the first attempt with the basic network, we observe that the model is learning very well in the training
data and generalizing to the validation data of the FERGIT database. There was no overfitting during 100
training epochs, but the overall accuracy did not increase much, and the network did not stop the training.
We increased the number of epochs to seek better performance, but the network stuck to 75%, the best the
model could achieve. And which evaluated to the test set it achieved a perfect accuracy of 74%. The loss rate
was 0.48% on the train set, 0.79% on the validation set, and 0.7% on the test set. See Figure 6.

In the second experiment, the accuracy increased a little bit with the help of the residual blocks. Using them
allowed the model to propagate to the early layers and adjust all the weights to get a better result. We observe
that after 35 epochs, the model was not generalizing well anymore. Nonetheless, we did not discontinue train-
ing because the training loss rapidly decreased while the validation loss was stable. However, the accuracy, on
the other hand, was increasing. The model achieved a training accuracy of 86%, validation accuracy of 74%,
and test accuracy of 75%. And the loss rate was 0.2% on the train set, 0.82% on the validation set and 0.8% on
the test set, See Figure 7.
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Figure 5. Confusion matrix for the FER showing the prediction accuracy of the emotional expressions using the proposed architecture with
residual blocks (left) and the basic architecture (right).

Figure 6. The accuracy and the loss of the training and validation data of FERGIT on the basic model over 100 epochs.

To validate our network’s capability of fast generalization and giving the best accuracy, we also trained it on
the CK+ database [43]. The CK+ database is relatively small, with 981 samples well partitioned with seven
classifications of emotions: Angry, Disgust, Fear, Happy, Sadness, Surprise, and Contempt [43]. Using dropout
layers helped the model train on a very small dataset (see Figure 8). Themodel achieved competitive results on
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Figure 7. The accuracy and the loss of the training and validation data of FERGIT on the ResNet based model over 100 epochs.

Figure 8. The accuracy and the loss of the training and validation data of CK+ on the basic model over 100 epochs.

CK+, 97%. See Table 4. These results express the superiority of the presented methodology compared to best
results with CNN architectures such as Pu [19] who achieved an accuracy of 95.74%, and Cheng [44] achieved
success rate of 94.4%. See Table 5.

4. DISCUSSION
Our CNN FER model, which is based on ResNet, took 48 minutes to learn multiple facial images and then
distinguish between seven (7) emotions, although the number of parameters is relatively big (9,766,391 pa-
rameters). The traditional CNN on the other hand took 44 minutes to run 100 epochs, but without improving
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Table 4. ResNet based model classification performance test results on CK+

Precision Recall F1-Score Support

Anger 1.00 1.00 1.00 14
Contempt 1.00 0.6 0.75 5
Disgust 1.00 0.94 0.97 18
Fear 0.88 1.00 0.93 7
Happy 0.91 1.00 0.95 21
Sadness 1.00 1.00 1.00 9
Surprise 1.00 1.00 1.00 25

Accuracy 0.97 99
Run time 29 min

Table 5. Comparison with other CNN based models results on CK+

Methodology Accuracy (%)

Diff ResNet [19] 95.74
Improved VGG-19 [44] 96
Ours 97

Figure 9. Framework testing on an individual pose

much in terms of accuracy. The goal is to build a robust and accurate model. Therefore, looking at Table 2
and Table 3, we observe that for the two models the precisions of all the labels are over 50%, this is to say
that for each emotion at least 50% time the model is giving a good prediction. The harmonic mean of these
of the recall and precision hereafter referred to as the f1-score, is utilized to determine how well the model
performs in terms of facial emotion detection. The value of the f1-score in both cases is 65%, that value is very
acceptable regarding how complex the dataset is. Finally, given that the Residual based model has a large 1%
plus, accuracy was the metric that helped us identify the optimal model.

We experimented on posed images of an individual to test how well our system recognizes facial expressions
that have been previously trained. The first step is to apply some pre-processing such as face detection and face
cropping on these images. The image is reshaped to (48,48,1) to have the same shape as the model is trained
on, then we use the model for the prediction as shown in Figure 9.

On this prediction, the model did very well with a high percentage of confidentiality (86%), which shows
how efficient our framework is. Therefore, the model gave wrong predictions on some labels, but with a low
percentage (40%), it’s due to the resemblance of emotions, sees Figure 10. For example, here, the individual
was asked to pose disgust, but the model predicted neutral. And as already mentioned, the FERGIT dataset
has a lot of mis-classified emotions.
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Figure 10. Wrong prediction on the individual facial image.

5. CONCLUSIONS
This paper proposes a novel model of improved CNN architecture with Residual Blocks for Facial Expression
Recognition. We evaluated the model on two datasets and compare it to a network without Residual Blocks.
The results proved that the proposed architecture performed verywell with an accuracy level of 75%onFERGIT
challenging dataset. With a relatively big number of parameters (9,766,391), the model achieved a state-of-the-
art result in 48 min after running for 100 epochs.This study dataset was augmented to generate similar images
so that themodel can quickly detect the emotion on the face . Hence, our proposedmodel shows an overfitting
issue during training, affecting the classification. In the future, we look forward to reducing the overfitting and
increasing the performance by usingmore image pre-processing and data enhancement to tackle the occlusion
problem. Also, introduce hybrid loss function to handle the intraclass variation problem, and work more on
the CNN architecture like using evolutionary computation algorithms to find the best model and optimize the
parameters.
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