
Munjal et al. Rare Dis Orphan Drugs J 2022;1:6
DOI: 10.20517/rdodj.2021.05

Rare Disease and 
Orphan Drugs Journal

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 
International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, 
adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as 

long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

www.rdodjournal.com

Open AccessReview

Lysosomal storage disorders with neurological 
manifestations
Vikas Munjal1, Maria T. Clarke2, Joshua Vignolles-Jeong1, Jasmine A. Valencia2, Meika Travis1, Lluis 
Samaranch1

1Department of Neurological Surgery, The Ohio State University, 410 W 10th Ave, Columbus, OH 43210, USA.
2Department of Surgery, University of California San Francisco, 400 Parnassus Ave, San Francisco, CA 94103, USA.

Correspondence to: Prof. Lluis Samaranch, Department of Neurological Surgery, The Ohio State University, 410 W 10th Ave, 
Columbus, OH 43210, USA. E-mail: lluis.samaranch@osumc.edu

How to cite this article: Munjal V, Clarke MT, Vignolles-Jeong J, Valencia JA, Travis M, Samaranch L. Lysosomal storage 
disorders with neurological manifestations. Rare Dis Orphan Drugs J 2022;1:6. https://dx.doi.org/10.20517/rdodj.2021.05

Received: 26 Nov 2021  First Decision: 29 Jan 2022  Revised: 24 Feb 2022  Accepted: 16 Mar 2022  Published: 8 Apr 2022

Academic Editor: Daniel Scherman  Copy Editor: Jia-Xin Zhang  Production Editor: Jia-Xin Zhang

Abstract
Lysosomal storage disorders (LSDs) constitute a large group of rare, multisystemic, progressive, inherited 
disorders of metabolism. The aberrant metabolic processes often lead to the cellular accumulation of incompletely 
metabolized macromolecules or their metabolic byproducts. Most of the patients affected by LSD can experience a 
variety of neurological presentations including, but not limited to, psychiatric complications, seizures, and/or 
developmental delays. The onset of symptoms can range from birth to adulthood, and disease severity can vary. 
Since there is significant overlap in the symptomatology of LSDs, diagnosis is typically confirmed through 
biochemical and molecular assays. There are currently no approved cures for any LSDs; however, in most cases, 
treatment of symptoms can lead to better outcomes and improvements in quality of life. The use of hematopoietic 
stem cell transplantation, enzyme replacement or substrate reduction therapy, and viral vector gene transfer is the 
subject of many ongoing and completed clinical trials. In this mini review, we provide an overview of LSDs with 
neurological manifestations, describe the current endeavors in alleviating peripheral symptoms and discuss 
effective therapeutics strategies.
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OVERVIEW OF LYSOSOMAL STORAGE DISORDERS
Lysosomal storage disorders (LSD) are characterized by the accumulation of toxic substrates in the cells due 
to mutations in genes encoding lysosomal proteins[1]. There are over seventy distinct disorders classified as 
LSDs, many of them having an affected lysosomal hydrolase enzyme which is directly implicated in the 
aberrant processing and degradation of the accumulating substrates[1,2]. Others are due to mutations on 
lysosomal membrane proteins or proteins involved in the transport of lysosomal enzymes[1]. In addition to 
the specific mutation involved, oxidative stress and inflammation are also key in LSD pathophysiology and 
define its progression. Autoimmune responses to specific accumulated macromolecules or metabolites, as 
well as neuroinflammation-driven microglial activation and astrogliosis, cause activation of apoptotic 
mechanisms leading to irreversible cellular damage and organ dysfunction[3,4].

Most LSDs are monogenic, autosomal recessive disorders, although three of them (Fabry, Danon, and 
Hunter syndromes) are X-linked recessive. A study of the Australian population estimated that collectively, 
LSDs have a combined prevalence of 1 per 7700 live births, but individually are rare-to-ultra-rare; Gaucher 
disease is the most common LSD, with a prevalence of 1 per 57,000 while sialidosis has the lowest estimated 
prevalence with 1 in 4.2 million[5]. Despite the global distribution of LSDs, some syndromes cluster in high-
risk populations. For example, the Ashkenazi Jewish population has a higher prevalence of Gaucher, Tay-
Sachs, and Niemann-Pick diseases[6], Scandinavian and Russian populations have an increased frequency of 
Hurler syndrome, and Finnish populations have a higher incidence of aspartylglucosaminuria or neuronal 
ceroid lipofuscinosis[7,8]. However, these prevalence statistics most likely represent an underestimation of 
their true magnitude due to the frequent misdiagnosis or underdiagnosis that occurs in LSDs[9]. This, in 
combination with the clinical heterogenicity even within the same disorder, is a significant complication for 
epidemiological studies in LSD, leading to poor or incomplete data that do not reflect the real-world impact 
of these diseases in the community.

A few LSDs do have treatment options, including both enzyme replacement therapies (ERTs), which can 
alleviate some symptoms by providing the missing enzyme[10-12], and substrate reduction therapy (SRT), 
which can reduce the amount of accumulated toxic substrate by decreasing its biosynthesis[13]. Although 
ERT is often a viable option for the treatment of peripheral organs of non-neurological LSDs, it is not an 
option for LSDs with neurological involvement because of the inability of most of the enzyhmes to cross the 
blood-brain-barrier (BBB). Cerebrospinal fluid (CSF) delivery of the enzymes has emerged as a solution to 
circumvent the BBB[14], and several clinical trials have been initiated to test safety and efficacy. Current data 
show some degree of effect in MSP and CLN clinical trials, although efficacy is limited if not treated in very 
early stages. An alternative to rescue or restore the loss-of-function in LSDs with neurological involvement 
is gene therapy. Adeno-associated viruses (AAVs) are the most common vector used to direct the 
expression of the therapeutic transgene into the central nervous system (CNS)[15], and several clinical trials 
are in progress to probe the safety and efficacy of rescuing the enzymatic activity[16]. In addition to bypassing 
the BBB, one of the advantages of the CNS delivery of viral vectors is axonal transport, the capacity of the 
viral particles to be transported from the injection site to distal interconnected structures[17-19]. Axonal 
transport facilitates broader distribution of the therapeutic into cortical and subcortical structures of brain 
compared to ERT injections into the CSF of brain parenchyma[20].

CLINICAL FEATURES AND NEUROLOGICAL MANIFESTATIONS
The inability of lysosomes to perform their physiological function because of an enzyme deficiency is the 
common feature of all LSDs. There is a great degree of variability in age of onset and clinical manifestations, 
depending on the accumulating substrate involved, which complicates efforts to standardize the clinical 
features [Table 1]. Common clinical features include physical development delay, difficulty of breathing, 
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Table 1. A collection of neuropathic lysosomal storage disorders

Disease Defective protein Neurological clinical 
signs Gene (locus) OMIM

Aspartylglucosaminuria Aspartylglucosaminidase ES, DD AGA (4q34.3) 208400

Fabry disease Alpha-galactosidase CC, CAT, LK, DF, CV, DP, 
PN

GLA (Xq22.1) 301500

Farber disease Acid ceramidase DD ASAH1 (8p22) 228000

Fucosidosis α-L-fucosidase MS, ES, DD FUCA1 (1p36.11) 230000

Galactosialidosis Protective protein cathepsin A OA, MS, DF, AX, DD CTSA (20q13.12) 256540

Gaucher disease Type II Glucocerebrosidase MS, DF, DD GBA (1q22) 230900 
231000

Gaucher disease Types III Glucocerebrosidase OA, MS, AX, ES, DP, DD GBA (1q22) 230900 
231000

Glycogenosis II/Pompe disease α-Glucosidase DD GAA (17q25.3) 232300

GM1 gangliosidosis (Types I, II, III) GM1-β-galactosidase OA, CA, AX, ES, DP, DD GLB1 (3p22.3) 230500 
230600 
230650

GM2 gangliosidosis, AB variant GM2 activator protein MS, CA, AX, ES, DP GM2A (5q33.1) 272750

GM2 gangliosidosis, Sandhoff variant β-Hexoaminidase A + B OA, MS, MC, CA, AX, ES, 
DP

HEXB (5q13.3) 268800

GM2 gangliosidosis, Tay-Sachs variant β-Hexosaminidase A OA, MS, MC, CA, AX, ES, 
DP, DD

HEXA (15q23) 272800

Krabbe disease Galactocerebrosidase LK, MC, PN, AX, ES, DP, 
DD

GALC (14q31.3) 245200

Metachromatic leukodystrophy Arylsulfatase A LK, DF, PN, CA, AX, DP, 
DD

ARSA (22q13.33) 250100

MPS I (Hurler, Scheie, Hurler-Scheie) α-L-iduronidase CC, DF, DD IDUA (4p16.3) 607014 
607015 
607016

MPS II (Hunter) Iduronate-2-sulfatase DP, DD, DF, OA, MS, MC IDS (Xq28) 309900

MPS III A (Sanfilippo) heparan N-sulfatase DP, DD, DF, OA, MS, MC SGSH (17q25.3) 252900

MPS III B α-N-Ac-glucosaminidase DP, DD, DF, OA, MS, MC NAGLU (17q21.2) 252920

MPS III C heparan-α-glucosaminide N-
acetyltransferase

DP, DD, DF, OA, MS, MC HGSNAT (8p11.21-
p11.1)

252930

MPS III D N-acetylglucosamine 6-sulfatase DP, DD, DF, OA, MS, MC GNS (12q14.3) 252940

MPS IV A (Morquio A) N-acetylgalactosamine 6-sulfatase OA, CC, DF, DD GALNS (16q24.3) 253000

MPS IV B Beta-galactosidase OA, CC, DD GLB1 (3p22.3) 253010

MPS VI (Maroteaux-Lamy) Arylsulfatase B CC, DD ARSB (5q14.1) 253200

MPS VII (Sly) Beta-glucuronidase OA, DD GUSB (7q11.21) 253220

Mucolipidosis II UDP-N-Ac-glucosaminyl 
phosphotransferase

OA, CC, DF, CA, DD GNPTAB (12q23.2) 252500

Mucolipidosis IV Mucolipin 1 CC, AX, DD MCOLN1 (19p13.2) 252650

Multiple sulfatase deficiency Sulfatase modifier protein PN, DD SUMF1 (3p26.1) 272200

Neuronal Ceroid Lipofuscinosis 1 Palmitoyl-protein thioesterase 1 OA, RP, MS, CA, AX, DP, 
DD

PPT1 (1p34.2) 256730

Neuronal Ceroid Lipofuscinosis 2 Tripeptidyl peptidase 1 OA, RP, MS, CA, AX, DP, 
DD

TPP1 (11p15.4) 204500

Niemann-Pick type A (Neurovisceral Type) Sphingomyelinase OA, DD SMPD1 (11p15.4) 257200

Niemann-Pick type B (Visceral Type) Sphingomyelinase OA, DD SMPD1 
(11P15.4)

607616

Niemann-Pick type C1 NPC1 OA, MS, AX, ES, DP, DD NPC1 (18q11.2) 257220

Niemann-Pick type C2 NPC2 OA, MS, AX, ES, DP, DD NPC1 (18q11.2) 607625

Saposin defect, Gaucher type Saposin C OA, MS, AX, ES, DP, DD PSAP (10q22.1) 610539

Saposin defect, generalized type Prosaposin AX, CA, DD PSAP (10q22.1) 611721

Saposin defect, MLD type Saposin B LK, DF, PN, CA, AX, DP, 
DD

PSAP (10q22.1) 249900
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Schindler disease α-N-acetylgalactosaminidase OA, MS, ES, DD NAGA (22q13.2) 609241

Sialic acid storage disease, infantile (ISSD), 
adult (Salla)

Sialin OA (ISSD), AX (Salla), DD SLC17A5 (6q13) 604369

Sialidosis Sialidase OA, CAT, MS, AX, ES, DD NEU1 (6p21.33) 256550

Wolman disease/CESD Acid lipase AX, DP, DD LIPA (10q23.31) 278000

α-Mannosidosis α-Mannosidase CC, CAT, DF, ES, DD MAN2B1 (19p13.13) 248500

β-Mannosidosis β-Mannosidase DF, ES, DD MANBA (4q24) 248510

OA: Optic Atrophy; RP: retinitis pigmentosa; CC: corneal clouding; CAT: cataracts; LK: leukodystrophy; MS: myoclonic seizures; DF: deafness; MC: 
macrocephaly; PN: peripheral neuropathy; CA: cortical atrophy; CV: cerebrovascular events; DD: developmental delay; DP: dementia psychosis.

“cherry-red spot”, deafness, bone deformities, hydrops, seizures, and ataxia[21]. The onset of symptoms varies 
greatly, from birth to late adolescence and adulthood[21]. Many patients with LSDs are born with no 
apparent pathological phenotype for several months after birth, until hepatosplenomegaly or 
cardiomyopathy is evident, generally in non-neuropathic types[21]. Types with predominant neuropathic 
involvement are often associated with cognitive and motor developmental delay[22], leading to mental 
retardation, progressive neurodegeneration, and premature death[23]. Even then, these distinctions are not 
always clear. Gaucher’s disease, for example, exemplifies the wide array of clinical manifestations associated 
with LSDs. Type I patients have no neurological symptoms, while type II and III patients can experience 
ataxia, myoclonic seizures, deafness, dementia, and psychosis[21,24]. This variability in clinical features is 
related to the particular defect of the malfunctioning  enzyme and the accumulating substrate. In the case of 
Gaucher, glucosylceramides (GCS) accumulate due to deficiency in glucocerebrosidase activity[25], and 
different origins of GCS cause different clinical manifestations and disease progression. In the brain, GCS 
are derived primarily from gangliosides, while in peripheral organs, GCS are derived from the breakdown of 
blood cells. Type I maintains sufficient residual enzyme activity in the brain to avoid ganglioside GCS 
accumulation, while types II and III patients show lower residual enzymatic activity in the brain and GCS 
accumulation inside the neurons leading to aberrant inflammatory and apoptotic responses[24]. GM1 and 
GM2 gangliosidosis and metachromatic leukodystrophy (MLD) are typically associated with more severe 
neurologic outcomes, including visual loss, cerebellar atrophy associated with ataxia, seizures, and 
peripheral neuropathy[21]. Type A and Type B Niemann-Pick disease (NPD-A and NPD-B, respectively) are 
another notable example of a pair of LSDs that share a common deficient enzyme, acid sphingomyelinase 
(ASM), which is crucial in sphingolipid homeostasis and membrane turnover, but presents with different 
symptomatology[26]. Individuals with both NPD-A and NPD-B exhibit hepatosplenomegaly, progressive 
lung disease, and failure to gain weight[27,28], and develop large, lipid-laden foam cells accumulate in affected 
organs as a result of sphingolipid backup[29]. Involvement of the central nervous system in enzyme 
deficiency is the primary distinguishing feature between NPD-A and NPD-B; NPD-A is also characterized 
by rapidly progressive neurodegeneration. Most infants with NPD-A are diagnosed early in their first year 
of life, do not meet critical developmental milestones, and typically do not survive past their third year of 
life[27,30]. In stark contrast, patients with NPD-B display no signs of central nervous system involvement and 
often live into adulthood with medical management of peripheral symptoms. Small deletions or nonsense 
mutations in the ASM polypeptide, as well as missense mutations in the gene encoding the production of 
the acid sphingomyelinase, cause Type A. In Type B, a separate missense mutation produces defective acid 
sphingomyelinase with minimal residual activity, leading to the nonneuronopathic presentation of the 
disease[31]. While results from clinical trials have demonstrated that ERT can address the peripheral 
pathology of NPD[32,33], potential gene therapy treatments to address the CNS pathology seen in NPD-A are 
in the pre-clinical stages[34].
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Age-of-onset of the disease phenotype also has a significant impact on both severity and progression of the 
disease, generally led by the genomic background or the causal mutations involved in the disease.  Fabry 
disease, for example, is an X-linked LSD caused by deficiency of the enzyme alpha-galactosidase, which 
results in the accumulation of globotriaosylceramide in the brain, liver, skin, heart, and kidneys[35]. In early-
onset Fabry disease, patients typically show hallmark symptoms including angiokeratoma, hypohidrosis, 
corneal opacities, and neuropathic pain, often in the form of acroparesthesias[35,36], while late-onset patients 
may instead present severe renal, cardiac, and vascular manifestations as the disease progresses[37]. Especially 
in young/early-onset patients, LSDs are also often misdiagnosed as psychiatric disorders due to the presence 
of similar symptoms such as anxiety, restlessness, aggression, and increased sensitivity to touch[38]. As the 
disease progresses, other psychiatric symptoms start to be more evident, like hallucinations, psychosis, and 
dementia[38]. In patients with late-onset Tay Sachs Disease, up to 20%-40% of affected individuals will 
present with psychiatric symptoms years before the onset of motor deficits[39]. Infantile diagnoses of MLD 
present with motor symptoms such as gait instability and loss of motor developmental milestones, while 
adults with MLD demonstrate behavioral disturbances and dementia, which may be mistakenly diagnosed 
as psychosis[40]. Patients with Niemann-Pick Type C (NP-C) may develop neuropsychiatric symptoms at any 
point in their disease progression, including agitations, sleep disorders, and depression[41].

Despite advances in the identification and treatment of LSDs, affected individuals are often diagnosed with 
a psychiatric disorder without appropriate follow-up for their underlying disease. One study reported an 
average delay of 6.2 years between initial symptom presentation and diagnosis in patients with NP-C, as the 
majority of patients who presented with psychosis as their initial symptom of disease did not demonstrate 
any neurological exam abnormalities and were given a diagnosis of schizophrenia or other forms of 
psychosis[42]. Individuals who are being evaluated for a psychiatric disorder, particularly those who also 
present with motor deficits or who do not respond to standard psychiatric management, may greatly benefit 
from a rigorous metabolic work-up[38].

DIAGNOSIS, GENETIC TESTING AND METABOLOMICS
Antecedents of the disease in the family (proband), or positive screening of family members (carrier) can 
increase the identification of presymptomatic individuals through prenatal testing or newborn screening, 
but most often, the lack of symptoms, especially in the carriers, causes diagnostic confirmation to occur 
after multiple organs have been irreversibly damaged and therefore therapeutic interventions are less 
efficacious[43]. Early identification of positive cases at prodromal stages would facilitate the design and 
execution of a clinical management plan when the therapeutic intervention has a better chance of 
success[44]. However, the ethical dimension of early-in-life screening programs is still an active discussion 
among genetic counselors, health-care professionals, and health policymakers[45].

In general, the onset of symptoms may present anywhere between infancy and later adulthood and continue 
worsening over time, chronifying the disease or causing death[21]. Although mutational and enzymatic 
analyses stablish the diagnostic in all cases, biochemical markers in presymptomatic individuals can predict 
cases in some LSD. For example, the mucopolysaccharidoses group of LSDs, increased urinary excretion of 
glycosaminoglycans can be detected, while increased levels of oligosaccharides will be detected in the urine 
of patients in the oligosaccharidoses group[46]. In Pompe Disease, increased blood levels of creatine kinase 
can be found, while patients with Gaucher or Niemann-Pick C Disease may demonstrate elevated levels of 
chitotriosidase in serum[46]. Currently, measurement of lysosomal enzyme activity can reliably diagnose 
most LSDs by identifying a severe deficiency. Fluorometry[47,48], tandem mass spectrometry[49,50], and 
radioactive assays are the principal techniques for enzymatic activity assessment. However, these assays can 
be tissue-dependent, leading to false-negative results if the wrong specimen is used in the assay[51]. Also, it is 
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important to know that the complete absence of lysosomal enzyme activity generally leads to an LSD 
diagnosis, but conversely, normal lysosomal enzyme activity is not enough to discard LSD diagnosis if there 
is a clinical phenotype suggestive of LSD[46]. In certain variant forms of GM2 gangliosidosis, Krabbe disease, 
MLD, and Gaucher disease, enzyme levels could be normal, but disease phenotype may surface due to a 
defect in saposins, a group of glycoproteins that activate lysosomal hydrolases related to sphingolipid 
metabolism[52].

Genetic confirmatory analysis is being utilized with increasing frequency as laboratory techniques and 
bioinformatic data management are advancing. Conventional methods for genetic confirmation of LSDs 
like MLPA, RFPL, or Sanger sequencing are limited by the fact that they analyze a single mutation at a time. 
Modern techniques like next-generation sequencing (NGS), including whole-genome sequencing and 
whole-exome sequencing, can identify causal genetic variants of the monogenic disease, including 
neurometabolic disease streamlining the mutation screening in the diagnostic process[53]. These high-
throughput DNA sequencing technologies are time and cost-effective and can interrogate a large number of 
genes in a single reaction[54,55]. For example, in 2013, Hoffman and colleagues concluded that NGS can be 
superior in identifying Tay-Sachs Disease carriers compared to traditional enzyme and genotype analyses 
which can be limited by both false positives and negatives[56], and in 2016, Yoshida and colleagues 
demonstrated the application of NGS in prenatal diagnosis of Gaucher disease even in the absence of prior 
genetic information from the family[57].

New challenges have been introduced as these high-throughput technologies advance. Higher sophistication 
of laboratory techniques, including new reagents and new equipment, is needed, but the biggest challenge 
lies at the bioinformatic level, which includes a new requirement for ‘big data’ management and accessible 
data interpretation[58]. Certainly, new intersections between different specialties like informatics, statistics, 
and biology, as well as new emerging fields of science like data mining or artificial intelligence, are 
facilitating the accessibility of these new techniques to the clinic. Genetic counseling is also an important 
consideration of these new techniques, especially in LSDs[59]. Counseling for families with LSD generally 
include education of the disease, inheritance patterns, recurrence risks, and implications of the diagnosis, 
progression, and needs for ongoing medical and family management. Currently, no curative therapies are 
approved, with current disease management primarily focusing on the control of symptoms in LSD patients 
via ERT. Counseling and carrier screening are essential in the management and mitigation of the incidence 
and prevalence of theses genetic disorders. One successful example of management through genetic 
counseling is in the Ashkenazi Jewish population[60], where carrier screening in individuals with Ashkenazi 
ancestry resulted in a dramatic decrease in the incidence of some LSD, including Tay Sachs, Canavan, 
Gaucher, or Niemann-Pick[61,62].

AVAILABLE TREATMENT AND CLINICAL TRIALS FOR LSD WITH CNS INVOLVEMENT
Several symptomatic treatment options are available for LSDs. Enzymatic or protein deficiencies can be 
restored by cellular or recombinant proteins like hematopoietic stem cells transplantation (HSCT) or ERT, 
respectively, and the buildup of metabolites can be reduced through SRT. Biological treatments can be 
combined with physical and occupational therapy to improve outcomes[63].

Hematopoietic stem cells transplantation
In use for over 20 years, HSCT originally involved bone marrow transplantation and has advanced to using 
unrelated umbilical cord blood as a source of stem cells[64-66]. HSCT is primarily performed in patients with 
mucopolysaccharidoses and leukodystrophies and ultimately functions as an ERT. Healthy engrafted donor 
cells not only provide a continuous endogenous supply of enzyme in the extracellular space and into the 
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blood circulation, but also microglia derived from the donor stem cells can migrate to the brain and secrete 
functional enzyme in the CNS improving neurocognitive function and quality of life[67]. HSCT is the gold 
standard treatment in young Hurler’s syndrome patients with mild to no cognitive impairment, showing a 
significant reduction in mortality[65,68,69]. Important limitations are associated with this technique, including 
graft failure and high morbidity and mortality rates.  Leukocyte enzyme levels may also not reach target 
levels for several years, potentially limiting the effectiveness of this treatment modality in patients with 
rapidly progressing disease. Additionally, in treated Hurler’s syndrome patients, skeletal complications 
continue to develop, and the majority of the patient will require surgical intervention[65,66,70].

Enzyme replacement therapy
ERT has been shown to be an effective therapy in ameliorating the visceral, hematological, and biochemical 
manifestations for some LSDs, substantially improving the patient quality of life. Treatments for Gaucher, 
Fabry, MPS, and Pompe diseases are a clear example of successful ERT. Weekly or bimonthly intravenous 
injections provide broad biodistribution of the recombinant enzyme that is internalized by cells and 
conducted to the lysosomal compartment. This internalization is mediated by mannose or the mannose-6-
phosphate receptor following the endocytic route and rescuing the lysosomal enzyme deficit. Despite the 
successes of ERT, the production of IgG antibodies against recombinant enzyme (anti-drug antibodies) can 
lead to diminished activity or cellular uptake[71]. However, recent studies reported the benefit of the immune 
tolerance induction in some patients[72]. This technique aims to diminish the development or minimize the 
consequences of the response against the ERT, especially in cross-reactive immunologic material -negative 
or null patients[73,74]. Another major limitation is the inability of intravenously administered functional 
enzyme to cross the BBB. This is especially problematic given that about two-thirds of LSDs present with 
neurologic symptoms[75]. Current research is focused on ensuring the accessibility of the CNS to treatment 
modalities, including modifications to the enzyme that allow passage through the BBB, delivering a high 
intravenous dose of enzyme, or intrathecal injections[75].

Substrate reduction therapy
SRT aims to mitigate the effects of substrate accumulation. SRT uses small molecules to inhibit the 
biosynthesis of compounds that are accumulating problematic levels in the absence of functional lysosomal 
enzyme[76,77]. In Gaucher disease, accumulation of glucosylceramide can be targeted with miglustat, an oral 
glucosylceramide synthase inhibitor. This decreased rate of accumulation allows residual enzyme activity to 
more effectively clear lysosomal stores of glucosylceramide, slowing disease progression[78]. Miglustat has 
also demonstrated similar efficacy in the treatment of NPD-C, with the potential for extending patients’ 
lives[79]. More recently, eliglustat, a more potent ceramide-mimetic inhibitor that demonstrated less severe 
side effects than miglustat, was developed. Unfortunately, eliglustat does not cross the BBB, limiting its 
efficacy in treating the neuropathic types of Gaucher disease[80,81]. SRT and ERT can be used in conjunction 
with other therapies, including each other. In Fabry disease mouse models, the therapeutic effect of the 
combination of SRT and ERT was found to be additive and complementary[82]. The combination treatment 
may allow for reduced frequency of ERT, potentially leading to an increase in quality of life due to 
decreased dependency on enzyme infusions[83]. This combination of treatments could be beneficial for 
patients who demonstrate a complete absence of enzymatic activity.

Gene therapy
Gene therapy has seen substantial improvement in recent years, especially for LSDs. With this approach, 
functional copies of defective genes are introduced into the human cells to treat or prevent diseases. This 
“genome editing” technique can be performed ex-vivo or in-vivo. Adeno-associated viral vectors (AAV) and 
retroviral vectors have been extensively used in pre-clinical studies of LSDs with CNS implications like 
mucopolysaccharidosis types I[84], III[85], and VII[86], Krabbe disease[87], metachromatic leukodystrophy[88], 
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Niemann-Pick[34], ceroid lipofuscinosis[89], or GM1 gangliosidosis[90]. One major benefit of gene therapy over 
ERT is that gene therapy is administered in a single dose. During transfection, the new genetic material is 
introduced into the cell, engaging existing cellular machinery to produce the protein of intereste, with the 
goal of restoring missing functionality. These vectors can be introduced intravenously, although, for 
neuropathic LSD, parenchymal or intraventricular/intrathecal have been demonstrated to have better 
results[16,91,92]. As with other systemic approaches, the ability to cross the BBB is also an important limitation 
for vector distribution into the brain. Since AAV serotype 9 is the only vector capable of crossing the BBB, it 
is currently the only viable option for AAV-based systemically administered therapy[93,94]. To achieve 
significant and widespread effect in the CNS after systemic delivery, large volumes of the viral vector are 
required, and these high doses have been associated with sensory neuron toxicity in some cases[95,96]. In 
contrast, CSF delivery needs less total load of viral vector to achieve significant levels of transduction in the 
brain and spinal cord[94,97], but recently, dorsal root ganglia histopathology with no clinical signs has also 
been reported in a meta-analysis in non-human primates[98]. Parenchymal delivery, although technically 
more invasive, has so far shown no adverse effects related to transgene-overexpression and remains the 
platform of choice in multiple clinical trials. Once in the brain, there are two characteristics differentiate 
gene therapy from other therapeutic approaches: axonal transport and the bystander effect. Axonal 
transport is the property by which viral particles use the projections between neurons to travel to different 
brain structures, increasing the distribution beyond the injection site[17,99]. Convection enhanced delivery is a 
bulk-flow mechanism used to convey and distribute macromolecules into brain parenchymal tissue 
improving the local distribution into the injection site and reducing the off-target delivery[100,101]. Altogether, 
this efficient local transduction improves the distal transduction by reaching a larger number of projections. 
Because most affected enzymes in CNS-involved LSDs are secreted, treatments benefit from the cross-
correction of bystander cells. Once some of the cells are transduced by the vectors, functional enzymes are 
produced then secreted and internalized by mannose-6-phosphate receptors-mediated endocytosis by other 
neighboring enzyme-deficient cells[102], enhancing the distribution of the therapeutic effect into cells that 
were not transduced[34,103]. Multiple examples define the proof-of-concept for this therapeutic approach in 
LSDs,[104-106] but without doubt, from the early mouse models for Mucopolysaccharidosis[107] to the current 
large animal models for LSDs[108-110], the existence of a large selection of animal models propelled the better 
understanding of the underlying disease mechanisms, accelerating the pre-clinical development[111]. 
However, species-specific differences in cellular metabolism are the basis of differences in the pathological 
phenotype that sometimes do not effectively recapitulate what is seen in patients, especially in CNS, where 
brain complexity can be challenging to model in animals.

Because of the poor efficacy in the CNS of the available therapies, including systemic ERT, most of the 
current clinical trials involve the use of gene therapy to correct neurological defects. Detailed information of 
the clinical trials is available through clincialtrials.gov, and the most recent active trials for lysosomal storage 
disorders with neurological deficits are summarized in Table 2.

ONGOING DEVELOPMENT: NEW APPROACHES, NEW HOPES
A wide collection of studies continues to examine the utility of AAV and its related variants in the treatment 
of neuropathic LSD. New natural capsids are being discovered by high-throughput screening or isolated 
from other vertebrate species that are under investigation for potential therapeutic use. Novel capsids are 
also being engineered by rational design or directed evolution. One notable example is the discovery of 
AAV-PHP.B, an engineered capsid identified by Cre recombination-based AAV targeted evolution, a 
directed evolution method that uses Cre/lox technology[112], and is capable of crossing the BBB and 
transducing the CNS[113]. More recently, barcoded rational AAV vector evolution optimized a screening 
process used to identify the optimal capsid from multiple rounds to a single in vivo screening round[114].
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Table 2. Active clinical trials for neuropathic lysosomal storage disorders

Disease Vector Phase NCT Number Status

Fabry AAV Phase 1/2 NCT04455230 Recruiting

Fabry AAV2/6 Phase 1/2 NCT04046224 Recruiting

Fabry AAV 4D-310 Phase 1/2 NCT04519749 Recruiting

Fabry Lentiviral-HSC GT Phase 1/2 NCT03454893 Recruiting

Fabry Lentiviral-HSC GT Phase 1 NCT02800070 Active, not recruiting

GM1 Gangliosidosis AAVrh.10 Phase1/2 NCT04273269 Recruiting

GM1 Gangliosidosis AAVHu68 Phase 1/2 NCT04713475 Recruiting

GM1 Gangliosidosis Type II Aav9 Phase 1/2 NCT03952637 Recruiting

GM2 Gangliosidosis (Inftantile-Onset) AAV9 Phase 1/2 NCT04798235 Recruiting

Krabbe HSC GT + AAVrh10 Phase 1/2 NCT04693598 Recruiting

Krabbe (Early infantile) AAVHu68 Phase 1/2 NCT04771416 Recruiting

Late Juvenile Metachromatic Leukodystrophy Lentiviral-HSC GT Phase 3 NCT04283227 Recruiting

Metachromatic Leukodystrophy Lentiviral-HSC GT Phase 2 NCT03392987 Active, not recruiting

Metachromatic Leukodystrophy Lentiviral-HSC GT Phase 1/2 NCT01560182 Active, not recruiting

Metachromatic Leukodystrophy Lentiviral-HSC GT Phase 1/2 NCT02559830 Recruiting

MPS Type I rAAV9 Phase 1/2 NCT03580083 Recruiting

MPS Type I Lentiviral-HSC GT Phase 1/2 NCT03488394 Active, not recruiting

MPS Type I ZFN-AAV Phase 1/2 NCT02702115 Active, not recruiting

MPS Type I Autologous Plasmablasts Phase 1/2 NCT04284254 Not yet recruiting

MPS Type II AAV9 Phase 1/2 NCT04573023 Recruiting

MPS Type II rAAV9 Phase 1/2 NCT03566043 Recruiting

MPS Type IIa AAVrh10 Phase 2/3 NCT03612869 Active, not recruiting

MPS Type IIIa scAAV9 Phase 1/2 NCT04088734 Recruiting

MPS Type IIIa Lentiviral-HSC GT Phase 1/2 NCT04201405 Active, not recruiting

MPS Type IIIa scAAV9 Phase1/2 NCT02716246 Recruiting

MPS Type IIIb rAAV9 Phase 1/2 NCT03315182 Active, not recruiting

MPS Type IV AAV2/8 Phase 1/2 NCT03173521 Recruiting

Neuronal Ceroid Lipofuscinosis 3 scAAV9 Phase 1/2 NCT03770572 Active, not recruiting

Neuronal Ceroid Lipofuscinosis 6 scAAV9 Phase 1/2 NCT02725580 Active, not recruiting

Neuronal Ceroid Lipofuscinosis 7 rAAV9 Phase 1 NCT04737460 Recruiting

Pompe (Late-onset) AAV Phase 1/2 NCT04093349 Recruiting

Pompe (Late-Onset) AAV8 Phase 1/2 NCT04174105 Recruiting

Pompe (Late-Onset) AAV9 Phase 1 NCT02240407 Active, not recruiting

Sandhoff AAVrh.8 Phase 1 NCT04669535 Recruiting

Tay-Sachs AAVrh.8 Phase 1 NCT04669535 Recruiting

While AAV-based technologies seek to circumvent an aberrant mutation, other investigational strategies 
aim to precisely manipulate the patient genome. Currently, meganucleases, zinc finger nucleases, TALENs, 
and CRISPR/Cas can modulate gene expression by modifying DNA, RNA, or transcription factors. Zinc 
finger nucleases (ZFNs), engineered proteins comprised of the non-specific cleavage domain of FokI 
endonuclease and zinc finger proteins[115], showed promising results in hemophilia animal models[116,117], and 
lead to the initiation of phase 1 clinical trial (NCT02695160). Following this development, ZFNs have been 
tested in models of Gaucher disease, Fabry disease, MPS type I, and MPS type II, with the administration of 
AAV8-ZFNs and AAV8 carrying the gene for the relevant lysosomal enzyme to animal models[118-120], and in 
MSP type I a first-in-human clinical trial (NCT02702115). Clustered Regularly Interspaced Short 
Palindromic Repeats (CRISPR) has also garnered much attention in the field of gene editing. On the 
therapeutic level, this molecular technology utilizes the RNA-mediated adaptive immune system found in 
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bacteria to modify, remove, or add genes in vivo[121,122]. An experiment utilizing an intravenously 
administered novel AAV8 system carrying CRISPR to insert a promoterless α-l-iduronidase (IDUA) cDNA 
sequence into the albumin locus of hepatocytes in MPS type I-affected neonatal and adult mice resulted in 
IDUA activity in the brain and reduction of pathology in peripheral organs, as well as notable behavioral 
improvements, learning ability, and restored memory functionality[123]. A similar strategy was used in 
models of Tay-Sachs and Sandhoff diseases[124], and in NPC1 mouse model to assess its treatment potential 
in Niemann-Pick disease type C. The study showed robust base editing in brain, liver, heart, retina, and 
skeletal muscle cells, leading to a 9.2% increase in lifespan and higher Purkinje neuron survival[125].

Crossing the BBB remains a difficult challenge in searching for effective pharmacological candidates for 
CNS therapy. Currently, new low molecular weight therapeutic drugs are under development to enhance 
their interaction with luminal receptors to cross the BBB, like the IgG-IDS fusion protein that showed high 
penetrance into the brain and spinal cord after intravenously injected in the MSP Type I mouse 
model[126,127]. Other pharmacological strategies to efficiently access the CNS include nanotechnologies like 
nanoparticles-based polymers and lipid nanoparticles. Nanoparticles formulated with polylactide-
coglycolide (PLGA) showed efficient BBB crossing in MPS type I model and suggest a possible intervention 
with PLGA loaded with rhGAA (human acid α-glucosidase) [128,129].

As prenatal genetic diagnostics continue to advance in safety and accessibility, the possibility of early 
diagnosis and intervention of LSDs is becoming a reality. Several studies have now examined in utero 
ERT[130], in utero hematopoietic stem cell therapy[130-132], early gene therapy[133-136], and gene editing[137] for the 
treatment of various lysosomal storage disorders. Benefits of targeting the disease in utero include small fetal 
size, the tolerant fetal immune system, the presence of highly proliferative and developing stem/progenitor 
cells, and the potential to treat diseases in which devastating pathology begins prior to birth. The studies 
tend to target LSDs that have multi-organ dysfunction and in utero or perinatal morbidity and mortality, 
such as MPS type I, MPS type VII, and neuronopathic Gaucher disease. Results from these studies have 
contributed to the first-in-human fetal ERT clinical trial for the treatment of MPS types I, II, IVa, VI, VII, 
infantile-onset Pompe disease, Neuronopathic Gaucher Disease (types 2 and 3), and Wolman disease 
(NCT04532047).

CONCLUSION
Overall, LSDs are multisystemic diseases with a very heterogeneous clinical etiopathology in which 
progression, complexity, and severity are defined by very diverse factors like genetic background or residual 
levels of enzymatic activity. New developments, especially in gene therapy, have the potential to improve the 
efficacy of these interventions by increasing levels of enzymatic expression, both systemically and cellularly, 
but early diagnosis and pre-symptomatic intervention are essential to ensure therapeutic benefits for those 
with neurological involvement before irreversible neurological consequences appear. This underscores the 
need for cost-effective, universal newborn screening by which patients can be rapidly identified and treated.
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