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Abstract
The dielectric elastomer actuator (DEA) is one type of emerging soft actuator that has the attractive features of 
large actuation strains, high energy density, and inherent compliance, which is desirable for novel bio-inspired and 
soft robotic applications. Due to their inherent elasticity, when stimulated by an alternating current voltage with 
a frequency matching the natural frequency of the DEA system, the DEAs can exhibit resonant responses which 
maximize the oscillation amplitude. Silicone elastomers are widely utilized for resonant actuation applications 
for their reduced viscous damping hence better dynamic performance compared to VHB elastomers. However, 
the low pre-stretch ratios adopted by silicone elastomers could induce loss-of-tension of the mem-branes in 
high amplitude oscillations, yet its effects on the dynamic responses of a DEA are not fully understood. By using 
a numerical dynamic model, this work studies the effects of the loss-of-tension on the frequency response of 
the antagonistic pure-shear DEAs. A subharmonic frequency response curve isolated from the main response 
branch is uncovered for the first time in a parametrically forced DEA system, which causes a sudden jump in the 
oscillation amplitude and serves as a severe threat to the dynamic stability and controllability of the DEA system. 
By using a global analysis method, the evolution of the isolated response curve against the excitation components 
and system physical parameters is also investigated numerically.
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INTRODUCTION
Dielectric elastomer actuators (DEAs) are an emerging type of soft actuator that possess several advantages 
over conventional actuators in terms of large actuation strain, high theoretical efficiency, inherent 
compliance, and low cost[1,2]. An idealized DEA consists of two pieces of compliant electrodes with one 
layer of dielectric elastomer in between. When a voltage is applied across the electrodes, opposing charges 
are accumulated on the two sides of the membrane, which cause it to contract in thickness and expand in 
area. Many configurations of DEAs have been proposed; for instance, stacked DEAs[3], conical DEAs[4,5], 
rolled DEAs[6,7], and the dielectric elastomer minimum energy structures[8,9]. Many robotic applications 
based on DEAs have been developed in soft robotic locomotion[10-16], fluidic pumps[17,18], and grippers[19,20].

Pure-shear DEAs represent one class of planar and linear DE actuation system that utilizes the active 
area expansion of the membrane in one planar direction as the output. Such a design has a compact 
configuration which is desirable for many applications in robotics such as a flexible morphing wing[21], a 
vibration shaker[22], and a fishlike airship[23]. In order to maintain the tension on the membrane, one end 
of it is usually fixed while the opposing end is typically attached to a biasing mass[24-26] or an equivalent 
force[27], a spring[28-30], an antagonistic pure-shear DEA[31,32], or a bistable mechanism[33,34].

Large actuation strains of the DEAs can reduce the system complexity and robot size (i.e., no strain 
amplification mechanism required) and also increase the range of motion of the robot designs. Hence, 
several works have focused on optimizing the quasi-static linear actuation strains of the pure-shear DEAs. 
Lu et al.[35] utilized the anisotropic pre-stretch and stiff fiber constraints to achieve an output strain up to 
142%. By using the same anisotropic pre-stretch principle and adding an optimal mass to the membrane, a 
maximum actuation strain over 500% was documented by Goh et al.[26].

Due to the inherent elasticity, when stimulated by an alternating current (AC) voltage signal, the DEAs can 
generate oscillatory motions. As the excitation frequency approaches the natural frequency of the DEA 
system, it can exhibit a dramatic increase in its oscillation amplitude. This soft oscillation technology can 
have advantages over other conventional rigid mechanical oscillators in terms of inherent compliance, 
which can be readily integrated with soft robotic systems to allow active vibration control and dynamic 
robotic locomotion[36]. As a result, more works have been concerned with the nonlinear dynamics of the 
pure-shear DEAs.

For example, Li et al.[37] have extensively investigated the nonlinear dynamics of pure-shear DEAs with 
specific focus on the effects of biasing elements, membrane strain-stiffing[29], and the viscosity-induced 
drifting[38]. Zhang et al.[27,39] studied the effects of dissipating factors of a pure-shear DEA (viscous damping 
and leakage current) on its dynamic responses. By using an antagonistic pure-shear DEA configuration, 
Zhang et al.[40] also investigated the loss-of-tension due to the large deformation of the membranes during 
vibrations and demonstrated that the loss-of-tension can be eliminated by increasing the pre-stretch ratio.

However, although loss-of-tension in pure-shear DEAs has been demonstrated, no work has looked at 
the effects of loss-of-tension on the frequency responses of such actuators. For silicone elastomers, which 
usually adopt low pre-stretch ratios (typically between 1-2; e.g., 1.0 in[14], 1.02 in[15], or 1.2 in[19]) and exhibit 
low viscous damping[18,41,42], loss-of-tension could be expected in high-amplitude vibrations, particularly 
near the resonance of the system where amplitude can be dramatically increased. Hence in this work, by 
adopting the antagonistic pure-shear DEA configuration, we use a numerical model to analyze the effects 
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of the loss-of-tension mechanism on the nonlinear dynamic response of the DEA under low pre-stretch 
conditions. From this, we uncover the resonant responses that are detached from the main response branch 
- these isolated resonant responses cannot be detected by conventional continuation methods but, once 
triggered, they will cause a sudden change in the oscillation amplitude and response phase, which serves as 
a real threat to the dynamic stability and controllability of such DEA systems; hence they demand careful 
and dedicated investigation.

The rest of this paper is structured as follows. In section DYNAMIC MODELLING, the DEA structure is 
introduced and the governing dynamic equations are developed. In section RESULTS AND DISCUSSION, 
the nonlinear dynamics and resonances due to loss-of-tension are investigated in the subsection Nonlinear 
dynamic response. A parametric study is then conducted in the subsection Parametric study which studies 
the effects of the forcing parameters and physical system parameters on the frequency responses. Finally, 
conclusions are drawn in section CONCLUSION.

DYNAMIC MODELLING
System overview and actuation principle
The basic structure of the antagonistic pure-shear DEA is shown in Figure 1A. The undeformed DE 
membrane has the dimensions of L1, L2, and L3 in direction 1, 2, and 3, respectively. Two identical DE 
membranes, I and II, are pre-stretched along direction 1 by λ p and then bonded to the constraint frames. 
One mass, M, is attached to one end of each membrane and is constrained to allow only horizontal 
translation (i.e., no vertical motion, hence neglecting gravitational force). In its passive equilibrium (no 
actuation voltage applied), the mass is balanced in the center by the tensile forces of the two membranes, 
FI and FII. The actuation principle of the antagonistic pure-shear DEA relies on the force balance of the two 
membranes on the mass. When a voltage, Φ , is applied across the electrodes of DEA I, the electrostatic 
pressure, induced by the electric field, reduces the tension on membrane I, FI. The force imbalance leads 
to a translation of the mass along direction 1 until another force balance is achieved between the two 
membranes, as is shown in Figure 1A. The stretch ratios of membranes I and II during deformation, λ I and 
λ II, are defined as the ratios of the deformed lengths in direction 1 and the initial length, L1.

Equation of motion
The equation of motion that describes the dynamic responses of this system has been described in detail 
in previous studies[24,26,36,40,43]. Hence, in this work, the development of the equation of motion is introduced 
briefly and the final equation used for the rest of the study is given in the end of this subsection.

The two DE membranes and mass are considered separately at this stage with the subsystem membrane I 
being investigated first. A thermodynamic framework is adopted, which indicates that the variation of the 
free energy of the DE during actuation is equal to the work done jointly by the voltage, tensile force, the 
viscous damping, and the inertial force of the membrane.

To derive this model, it is assumed that a voltage, T I, is applied across the compliant electrodes of the 
membrane and a charge, QI, is built on the electrodes. A tensile force, P, is applied to the membrane in 
direction 1. The membrane material is assumed to have a density, ρ , and a viscous damping coefficient, c. 
For an infinitesimal variation of δλ I, by conservation of energy

(1)

where W is the Helmholtz free energy density, and can be expressed using the Gent model[44] as
  (2)
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where μ  is the shear modulus of the material, J is the constant relating to the limiting stretch, DI is the 
electric displacement of membrane I and is given as , and ε  is the permittivity.

Note that the Helmholtz free energy density equation given here is simplified due to there being no stretch 
in direction 2 on the DE membrane.

By partially differentiating equation 2 with respect to λ I and substituting to equation 1, one can obtain the 
expression for the tensile force, which is written as

(3)

It is worth noting that a membrane is a type of element that can only withstand tension in direction 1 by 
neglecting the effects of shear stress in the membrane due to the sufficiently high area-to-thickness ratio. 
Hence if the tensional force on the membrane in the deformation direction becomes zero, the membrane 
loses tension in this direction, as illustrated in Figure 1B and C. However, this phenomenon cannot be 
captured by the well-developed continuous force-stretch function in equation 3, for instance, when λ I < 1, 
the tensile force, P, becomes a finite negative value, which cannot be true. Note that in previous antagonistic 
pure-shear DEA studies, P was considered as a continuous function in the region-of-interest as the pre-
stretch value was usually sufficiently large so that λ I remains > 1. However, in this study, where a low pre-
stretch value is used, the deformation, particularly at high-amplitude vibrations near the resonance of the 
system, can be large enough to cause loss-of-tension on the DE membrane which creates non-smoothness 
in the force function thus discontinuity in the stiffness. To take this effect in to account, a piecewise force 
function is used in this work, and is written as
     FI = P(λ I, Φ I), (λ I, Φ I) > 0     (4a)
     FI = 0, (λ I, Φ I) ≤ 0   (4b)
where FI is the true tensile force in membrane I.

Due to the constraint applied to the two DE membranes, the stretch of membrane II can be written as
	 	 	 	 	 λII = 2λ p - λ I     (5)

Figure 1. (A) Schematic diagram of the antagonistic pure-shear DEA and its actuation principle. (B) Demonstration of loss-of-tension in 
the membrane induced by large deformation (λ  < 1). (C) Force balance analysis on membrane I, mass M, and membrane II.



Cao et al. Soft Sci 2021;1:1  I  http://dx.doi.org/10.20517/ss.2021.01                                                                                Page 5

Then the true tensile force, FII, can be obtained by substituting equation 5 into 4, and is given as
    FII = P(2λ p - λ I, Φ II), P(2λ p - λ I, Φ II) > 0    (6a)
    FII = 0, (2λ p - λ I, Φ II) ≤ 0      (6b)

where Φ II, is the voltage applied to membrane II.

The equation of motion for the mass can be obtained as
      (7)

By performing nondimensionalization and neglecting the inertia force of the membranes by assuming 
a sufficiently large M compared to the mass of the membrane, ρL1L2L3, the equation of motion can be 
rewritten as

      (8)
where

    fI = p(λ I, Φ I), (λ I, Φ I) > 0    (9a)
    fI = 0, (λ I, Φ I) ≤ 0    (9b)
    fII = p(2λ p - λ I, Φ II), (2λ p - λ I, Φ II) > 0    (9c)
    fII = 0, (2λ p - λ I, Φ II) ≤ 0     (9d)
      (9e)

 is the non-dimensional time,  is the non-dimensional voltage,  is the 
non-dimensional damping coefficient.

Figure 2A shows examples of the total force exerted on the mass, ft = -fI + fII, against the stretch offset from 
its passive equilibrium (with no actuation voltage), Δλ I = λ I - λ p. Note from Figure 2A that, as the pre-
stretch is greater than 1.0, discontinuity is created when either fI or fII becomes zero, which corresponds 
to λ I and λ II = 1, respectively. It is noteworthy that, in the region where -(λ p - 1) < Δλ I < (λ p - 1), the 
system appears to be “stiffer” (the slope is steeper) than other regions as the two membranes act on the 
mass antagonistically in this region. As a voltage is applied to membrane I, the discontinuity points do 

Figure 2. Force-displacement relationship of the antagonistic pure-shear DEA. (A) Total force vs. stretch offset with pre-stretch λp = 1.0, 
1.02, and 1.05. ϕ I  = ϕ II  = 0 in all three cases. (B) Total force vs. stretch offset with non-dimensional voltage ϕ I  = 0, 0.2, and 0.3. λp = 1.02 
and ϕ II  = 0 in all three cases.
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not necessarily correspond to λ I and λ II = 1, as illustrated in Figure 2B. It can be noted that the leftmost 
discontinuity is shifting to the right as the voltage increases and the force-displacement function is no 
longer symmetrical around the passive equilibrium (origin in Figure 2).

In this work, the Gent model parameters (μ  and J) are determined based on the previous studies on the 
silicone elastomer ELASTOSIL (Wacker Chemie AG)[42,45,46] and is given as μ  = 400 kPa and J = 16. The 
dimension of the elastomer is defined as L1 = 20 mm, L2 = 200 mm, and L3 = 0.1 mm. The mass M is 
chosen as 50 g. The permittivity, ε , is a product of the absolute permittivity of a vacuum and the relative 
permittivity of the dielectric elastomer and is given as ε  = 2.48 × 10-11 F/m. 

By solving the nondimensionalized equation of motion, equation 8, numerically in MATLAB (MathWorks), 
the dynamic performance of the DEA system under parametric mechanisms of excitation is investigated 
systemically in the following sections.

RESULTS AND DISCUSSION
Nonlinear dynamic responses
In this section, the nonlinear dynamic responses of the pure-shear DEA under AC voltage excitation 
are investigated. In this study, only membrane I is subject to a time-varying voltage excitation, while no 
actuation voltage is applied to membrane II. The forcing term of this system, , as described in equation 
9e, is a function of the displacement, λ I, hence this system is excited parametrically[47]. It is noteworthy that 
the forcing term is also a function of the square of the voltage input. Therefore, for an non-dimensional AC 

voltage signal given as ϕ I = ϕ DC + ϕ AC cos(ωeτ), where ϕ DC and ϕ AC are the non-dimensional direct current 

(DC) and AC voltage amplitudes respectively and  is the non-dimensional angular excitation 
frequency, the force experienced by the moving mass is proportional to (following the authors’ previous 
work[46])

      (10)
where

        (11a)
     Eb = 2ϕ DCϕ AC   (11b)

        (11c)

From equation 10 it can be noted that the voltage forcing term contains one constant biasing component 
and two time-varying components, one at the excitation frequency and the second at twice the input 
frequency. As such, when the excitation frequency is close to either the natural frequency of the DEA 
system or half of its value, resonances can be observed[42,48], which are termed primary harmonic resonance 
and super-harmonic resonance, respectively. It is worth noting that both the DC and AC voltage amplitudes 
contribute to the biasing forcing component, Ea. As a result, varying either ϕ AC or ϕ DC could result in a 
change in the biasing excitation component, which then leads to a shift in the equilibrium point, and 
hence the resonant behavior. To analyze the dynamic responses of the DEA system consistently, the biasing 
forcing term, Ea, AC to DC amplitude ratio, ADR = ϕ AC/ϕ DC and the excitation frequency, ω e, are considered 
as three independent variables. In this section, the frequency response of the DEA system is investigated 
by varying the excitation frequency while fixing the Ea value at 0.22, and two ADR values of 0.6 and 1.0 are 
chosen for comparison. In these two cases, the amplitudes for Eb are 0.041 and 0.053 respectively, while Ec 
is changed from 0.006 to 0.013 as ADR is increased from 0.6 to 1.0. It can be noted that, even though the 
biasing forcing amplitude Ea remains unchanged, the increase in ADR in fact increases the amplitudes of 
the two time-varying forcing components. The results of these increments will lead to a higher resonance 
amplitude of the DEA and can also lead to new dynamic phenomenon, as will be shown in the next 



Cao et al. Soft Sci 2021;1:1  I  http://dx.doi.org/10.20517/ss.2021.01                                                                                Page 7

subsection. The non-dimensional damping coefficient is given as  = 0.04 and the pre-stretch ratio is λ P 
= 1.02. It is noteworthy that, with the material parameters adopted in this work, the nominal electrical 
breakdown electric field is about 90 MV/m with no pre-stretch[49], while the applying nominal amplitude 
adopted in this study is equivalent to about 40 MV/m, which is significantly lower than the critical value. 
As a result, it is believed that no electric breakdown occurs within this study.

Frequency sweep results
In the first study, forward and backward frequency sweeps are conducted for the ADR = 0.6 and 1.0 case 
from a non-dimensional frequency of 0 to 6 (6 to 0 for the backward sweep) over τ  = 12000. The sweep 
results are shown in Figure 3A and B, respectively. For the ADR = 0.6 case, two distinct resonant peaks can 
be observed and, for each resonant peak, a backward sweep leads to a higher amplitude than the forward 
sweep, which is mainly due to the strong nonlinearity in the DEA system causing the occurrence of two 

Figure 3. (A) Frequency sweep results of the ADR = 0.6 case, blue represents the forward frequency sweep and red illustrates the 
backward sweep. (B) Frequency sweep results of the ADR = 1.0 case. (C) Scalogram of the ADR = 0.6 case, where dark-red represents 
high-amplitude frequency responses. (D) Scalogram of the ADR = 1.0 case.
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possible stable oscillations at the frequencies near resonance, one with very high resonant amplitude 
and another one with low amplitude. Note that, in the forward frequency sweep, as the sweep frequency 
approaches the resonant frequency from a lower value, the response first follows the lower branch and 
experiences a sudden jump up, before gradually reducing as the excitation frequency increases further, 
as illustrated by the dark-blue arrows in Figure 3A. However, in the backward sweep result, the response 
follows the high amplitude branch as the sweep frequency decreases from above resonance and drops down 
sharply once the maximum value is reached. As the ADR value is increased to 1.0, the two resonant peaks 
observed in the ADR = 0.6 case grow in amplitude. Furthermore, a new resonant peak emerges at a higher 
sweep frequency, as marked in Figure 3B.

The frequency components and their amplitudes in the forward frequency sweeps for the ADR = 0.6 
and 1.0 cases are analyzed using a wavelet transform and the scalograms are shown in Figure 3C and D, 
respectively. It can be noted from Figure 3C that the fundamental response frequency, ω r, (the frequency 
component in the response with the highest amplitude, represented by the dark-red color) is equal to the 
excitation frequency, ω e, with the exception near the first resonant peak, where ω r = 2ω e, demonstrating a 
super-harmonic response. The fundamental response frequency in the case ADR = 1.0 follows the same 
pattern. The new resonant peak found in this case shows an ω r = 0.5ω e relationship, which corresponds to a 
subharmonic response.

Detailed frequency response study
The frequency sweep results demonstrated that, apart from super-harmonic and harmonic resonance, 
which result from the square of the sinusoidal excitation function, there exists the subharmonic response 
that is not directly correlated to the excitation. The results also illustrated that multiple stable periodic 
solutions might exist at a single frequency for this dynamic system (e.g., the region between the jump-
up and down points in Figure 3A) and the stable periodic solution of the system is determined by the its 
initial conditions, displacement and velocity. By using a sufficient set of initial conditions at each excitation 
frequency, and numerically integrating the equation of motion in the time domain until the system reaches 
a steady-state periodic oscillation, the stable responses of the DEA system, which might be hidden from the 
forward and backward sweeps, can be analyzed.

i. ADR = 0.6 case
Figure 4 shows the frequency response for the ADR = 0.6 case. It can be noted that, apart from the super-
harmonic (red) and harmonic (blue) resonant peaks observed in the frequency sweep results in Figure 3A, 
a “hidden” resonant peak is uncovered using this multi-initial condition approach, as marked in green in 
Figure 4. The third resonant peak is in fact the same subharmonic resonant peak observed in the ADR = 
1.0 case in Figure 3B, yet it is detached from the main response branch. Hence, in a continuous frequency 
sweep, such a response is not able to be captured and tends to be overlooked when analyzing such systems. 
Isolated response curves, or isolas, have been reported in different nonlinear dynamic systems (see, e.g.,[50-54]). 
Yet to the best of the authors’ knowledge, this is the first time that an isolated subharmonic response curve 
being demonstrated theoretically using a parametrically forced DEA system. The mechanism leading to this 
type of isolated curve has not been fully understood, but it is believed to a result of the multi-valuedness 
of the nonlinear system at some frequencies[50,51]. The oscillation amplitude of the isola can be over 10-fold 
higher than the primary response at the same frequency, once triggered, it will cause a sudden jump in the 
oscillation amplitude, which serves as a real threat to the dynamic stability and controllability of such DEA 
systems. In practical applications, this could lead to a system failure and catastrophic outcomes.

Note from Figure 4 that, at all three frequencies where resonant peaks occur, as marked by i, ii, and iii, 
there exists two stable periodic solutions. The time histories and the phase paths of the stable periodic 
oscillations at ω e = 1.2, ω e = 1.8, and ω e = 3.7 are also plotted in Figure 4. It can be noted that at ω e = 1.2, 



Cao et al. Soft Sci 2021;1:1  I  http://dx.doi.org/10.20517/ss.2021.01                                                                                Page 9

for both high and low amplitude solutions, the mass oscillates twice as the excitation signal repeats itself 
once, demonstrating a clear 2:1 super-harmonic behavior (i.e., ω r:ω e = 2:1). At ω e = 1.8 where the primary 
resonance occurs, the high amplitude solution lags behind the excitation signal by 90 degrees, while 
the low-amplitude one is approximately in-phase with the excitation. At ω e = 3.7, two types of periodic 
solutions exist, where the high amplitude solution corresponds to a 1:2 subharmonic response (i.e., the 
mass oscillates once in every two excitation cycles). The low amplitude solution shows a 1:1 anti-phase 
response with the excitation signal.

Figure 4. Frequency response, time histories and phase paths at ω e = 1.2,	ω e = 1.8, and ω e = 3.7 for ADR = 0.6 case.
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ii. ADR = 1.0 case
The same frequency response analysis is conducted for the ADR = 1.0 case and is shown in Figure 5. It 
can be noted that, in contrast to the ADR = 0.6 case, the 1:2 subharmonic resonant branch is “attached” to 
the main branch, that is, only one stable solution exists near the root of the subharmonic branch. Hence 
this resonant response cannot be “skipped” in a continuous frequency sweep (as shown in Figure 3B). 
The transition from an isola to an attached response curve is believed to be attributed to the transcritical 
bifurcation[52], in other words, the unstable solution between the two stable solutions lowers and eventually 
merges with the 1:1 harmonic branch as ADR increases.

It is noteworthy that, in the ADR = 1.0 case, a new isola emerges between the 1:1 harmonic and 1:2 
subharmonic branches, as is indicated by the purple dots in Figure 5. However, this isola occurs only at a 
very narrow frequency band from ω e ≈ 3.65 to 3.75. Note that, at ω e = 3.7, there exist three stable periodic 
solutions, and the time history and phase path of each solution are plotted in Figure 5. The solution in 
purple repeats itself in every three excitation cycles, which correlates to a 1:3 subharmonic response.

Figure 5. Frequency response, time histories and phase paths of the three stable periodic solutions at ωe = 3.6 for ADR = 1.0 case.
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iii. Basins of attraction
In the previous study, multiple stable periodic solutions of the DEA system at some excitation frequencies 
have been demonstrated for both ADR = 0.6 and 1.0 cases. To map the initial conditions that are attracted 
to the different periodic solutions in the two cases, a point mapping technique[55] is adopted by dividing the 
initial condition region of interest into discrete points and numerically computing the steady-state response 
that each initial condition leads to. By plotting the initial conditions and the corresponding steady-state 
response, Basins of attraction can be obtained. In this study, the initial displacement and velocity ranges are 
set as [-0.8, 0.8] and [-1, 1] with a step fixed at 0.08, which lead to a total of 201 × 251 points.

Two cases are considered in this basin of attraction study: (1) ADR = 0.6 and ω e = 3.7; and (2) ADR = 
1.0 and ω e = 3.6. In the first case, there are two stable periodic responses (i.e., a 1:1 harmonic and 1:2 
subharmonic) where the latter one is on the isola, as is demonstrated in Figure 4. In the second case, apart 
from these two types of periodic orbits, a 1:3 subharmonic response also exists, as is demonstrated in 
Figure 5. 

The basins of attraction for the two cases are plotted in Figure 6A and B, respectively. The black, white 
and red regions correspond to the periodic oscillations with 1:1 harmonic, 1:2 subharmonic and 1:3 
subharmonic responses, respectively. It can be noted that both black and white basins follow a spiral 
pattern. Also note that the black basin occupies the largest area in both cases, which indicates that, for both 
cases, the system is more likely to be attracted to a low amplitude 1:1 harmonic response. A more intricate 
pattern can be found for red basin in Figure 6B and its area is much smaller than the other two basins, 
meaning it can be more difficult to detect without using the rigorous initial condition search since it is 
isolated from the main response curve. It is worth noting that, for both cases, there exists a non-negligible 
possibility to achieve a periodic response on the isolated response curve by adequately perturbing the 
system.

Parametric study
In the last section, the frequency response of the DEA system with ADR = 0.6 and ADR = 1.0 were analyzed 
and isolated response curves were uncovered in both cases. It was noted that the isola observed in the 
ADR = 0.6 case becomes attached to the main response curve as ADR is increased to 1.0. In this section, an 

Figure 6. Basins of attraction for a parametrically forced DEA system with (A) ADR = 0.6, ω e = 3.7 and (B) ADR = 1.0, ω e = 3.6. The black, 
white, and red regions represent the stable periodic solutions with the 1:1 harmonic, 1:2 subharmonic, and 1:3 subharmonic responses, 
respectively.
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extensive parametric study is conducted to investigate the effects of excitation voltage parameters (ADR and 
Ea), the damping, and the pre-stretch ratio of the DE membrane on the frequency response of the system. 
Particular attention is given to the evolution of the isola and its interaction with the main branch.

Effects of excitation parameters
In this subsection, the effects of the excitation parameters (ADR and Ea) on the frequency response of the 
system are studied. First, the ADR value is varied from 0.2 to 1.0 while keeping Ea as 0.22, and the results are 
presented in Figure 7. The pre-stretch ratio is set as λ p = 1.02 and the non-dimensional damping coefficient 
is  = 0.04. Note that Figure 7 shows the oscillation amplitude as a function of the excitation frequency, 
defined as the difference between the maximum and minimum values of λ I in a steady-state periodic 
oscillation cycle.

As the ADR value increases, both the harmonic forcing amplitude Eb and super-harmonic forcing amplitude 
Ec in equation 10 increase, which increases the harmonic and super-harmonic resonant amplitudes in 
Figure 7. It can be noted from Figure 7 that, at a low ADR = 0.2, no subharmonic response can be found 
in this system, and, as ADR is increased to 0.25, a subharmonic isola emerges and its amplitude grows 
as ADR increases further. At ADR = 0.65, the isola begins to merge with the main branch, as highlighted 
in the zoomed-in section. When the ADR value is increased to 1.0, this isolated response curve is firmly 
attached to the main branch. Meanwhile, a new 1:3 subharmonic isola appears at ADR = 1.0, which is also 
demonstrated in Figure 5.

Figure 7. Effects of ADR  value on the frequency response of the DEA system. Zoomed in sections show the evolution of the 1:2 

subharmonic response curve. λp = 1.02,  = 0.04, and Ea = 0.22 are adopted in this study.
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In the next study, the ADR value is fixed at 0.6 while varying the Ea and the results are plotted in Figure 8. 
Increasing the Ea value increases both the AC and DC components of the excitation simultaneously, which 
causes higher Eb and Ec forcing components; this leads to increases in the amplitudes of both the harmonic 
and super-harmonic responses. The 1:2 subharmonic response also emerges as Ea increases, first as an 
isola, before attaching to the main branch as Ea rises further. Note that, as Ea becomes sufficiently high, 
the displacement from the equilibrium to one end could be greater than 1, which violates the physical 
constraints of this system (i.e., the mass will collide with the constraint frames). For the case with λ p = 1.02, 

 = 0.04, and ADR = 0.6, Ea should be less than 0.252 to avoid collision.

Effects of damping
In this subsection, the effects of a physical parameter, i.e., damping coefficient , is investigated with the 
focus on the excitation frequency range of 3 to 6 where the subharmonic resonant peak occurs. In this 
study, the ADR, Ea, and λ p values are set as 0.6, 0.22, and 1.02, respectively, while  is increased from 0.02 to 
0.1 with an increment of 0.02. 

The frequency response of the DEA systems with different damping coefficients are shown in Figure 9. It is 
worth noting that, for all five cases, the 1:2 subharmonic response curve remains detached from the main 
curve. As the damping coefficient increases, the size of the isola shrinks and eventually vanishes at  = 0.01. 
Also note that in the lightest damping case (  = 0.02) there exists the 1:3 subharmonic isola, but this isola 
quickly disappears as  becomes higher. The viscous damping in the DE membranes has a clear effect on the 
development of isolas in this system, for VHB elastomers which have significant viscoelastic properties, the 
high viscous damping could reduce and even eliminate the isola phenomenon. However, utilizing resonant 
actuation to optimize the dynamic performance of a DEA system usually requires minimizing the viscous 
damping in the actuation system, which is one of the main reasons why, in dynamic applications, silicone 
elastomers are preferable to VHB[15,16]. It should be noted that silicone DEA systems require comprehensive 

Figure 8. Effects of Ea value on the frequency response of the DEA system. λp = 1.02,  and ADR = 0.6 are adopted in this study.
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dynamic analyses to ensure their dynamic behavior is fully understood due to their low viscous damping.

Effects of pre-stretch
Apart from the damping coefficient, another important physical parameter for the DEA system is the pre-
stretch ratio, λ p. In this study, the pre-stretch ratio is varied from 1.01 to 1.06, while the other parameters 
are fixed at ADR = 0.6, Ea = 0.22, and  = 0.04. The results of this study are plotted in Figure 10 with a focus 
on the evolution of the subharmonic response curve. Note from Figure 10 that, at the lowest pre-stretch 
value of 1.01, the subhramonic response curve is attached to the main branch, and quickly transitions to 
an isola as λ p is increased to 1.02. It is noteworthy that increasing λ p leads to a reduction in the size of the 
subharmonic response curve, such that the peak amplitude reduces and the bottom of the curve separates 

Figure 9. Effects of damping coefficients on the frequency response of the DEA system. λp = 1.02, ADR = 0.6, and Ea = 0.22 are adopted in 
this study.
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further from the main branch. At λ p = 1.06, the subharmonic curve disappears under the current forcing 
conditions.

Discussions
The study of the effects of the damping coefficients and the pre-stretch ratios demonstrate that, under 
the same forcing conditions, by increasing either the damping coefficients or the pre-stretch ratios, the 
subharmonic response is suppressed and eventually vanishes. However, it cannot be concluded that 
subharmonic responses, either in isolated or attached form, do not exist in the parametrically forced DEA 
system when the physical parameters reach those values. For insistence, as is demonstrated in the last 
subplot in Figures 9 and 10, for (  = 0.1, λ p = 1.02) and (  = 0.04, λ p = 1.06) cases, no subharmonic response 
is observed with the forcing condition of ADR = 0.6 and Ea = 0.22. However, it is found that, by increasing 
the forcing amplitude, a subharmonic response can be triggered again, as is demonstrated in Figure 11.

The structure of the subharmonic response exhibits a complex interaction between the two physical 
parameters (  and λ p) and the forcing parameters (ADR and Ea). Note that, by using the control variate 
technique, the effects of each parameter may be analyzed separately. However, the subharmonic response of 
this system is due to the interaction between different parameters. As shown in Figure 12, when λ p reaches 
1.2, even though the forcing amplitude is higher (Ea = 0.32), there is no subharmonic response. Hence a 

Figure 10. Effects of pre-stretch ratio on the frequency response of the DEA system. ADR = 0.6, Ea = 0.22, and  are adopted in this 
study.
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future work that fully investigates the five-dimensional space (ω e, Ea, ADR, , and λ p) could enhance the 
understanding of the isolated resonance responses in the DEA system.

CONCLUSIONS
This paper has investigated the nonlinear dynamic behavior of an antagonistic pure-shear DEA with a low 
pre-stretch ratio. Under high-amplitude oscillations, such a configuration can lead to the loss-of-tension 
of the DE membranes, which induces the discontinuity in the force-displacement function. By simulating 
the effect of initial conditions, the isolated subharmonic resonant responses have been uncovered; these 
behaviors cannot be captured using conventional continuation methods (e.g., frequency sweeps or 
steps). The main contributions of this work are: (1) reporting isolated subharmonic response curves in a 
DEA system for the first time; (2) developing a comprehensive method for the analysis of isolas in DEA 
systems, including global analysis and an electro-mechanically coupled DEA dynamics model; and (3) 
demonstrating the correlation between the system and forcing parameters and the evolution of isolas. The 
key findings of this paper are listed as follow:

Figure 11. Examples showing that, by increasing the forcing amplitude, the vanished subharmonic response can be triggered again. (A)  = 
0.1, λp  = 1.02, and ADR = 0.6. Ea is increased from 0.22 to 0.32. (B) , λp = 1.06, and ADR = 0.6. Ea is increased from 0.22 to 0.252.

Figure 12. Frequency response of the DEA system with λp  = 1.2. No subharmonic response can be observed in this example. , ADR 
= 0.6, and Ea = 0.32 are adopted in this case.
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(1) The pure-shear DEA exhibits multiple types of frequency response, including 2:1 super-harmonics, 1:1 
harmonics, 1:2 subharmonics, and 1:3 subharmonics.

(2) The 2:1 super-harmonic and 1:1 harmonic responses are the result of the square of the excitation 
function.

(3) Subharmonic resonant responses do not occur naturally from the forcing function, instead, it is a result 
of the complex interaction between the forcing and response.

(4) Increasing the forcing amplitude first leads to the growth of the subharmonic response curve outside 
the main frequency response curve, before causing it to attach to the main branch.

(5) Under the same forcing condition, increasing the damping coefficient and pre-stretch ratio could reduce 
the size of the subharmonic response curve until it vanishes.

Isolated response curves have received increasing attention in the nonlinear dynamics community as 
they often represent high amplitude responses which could lead to catastrophic outcomes[56]. For DEA 
dynamic systems, isolas can be easily overlooked by using continuation methods and in controlled 
environments with no perturbations, such as static lab conditions. However, in practical applications 
where the environment is dynamically changing, adequate perturbations could trigger isolas hidden in 
DEA systems, causing the response to jump to a high amplitude, which then leads to loss of control of 
the system. As a result, a careful selection of the system parameters and a comprehensive study of the 
dynamic responses are essential to avoid such outcomes in resonating DEA applications where dynamic 
stability and controllability are crucial. In the meantime, as highlighted in[50,51], the isolas demonstrated 
in the antagonistic pure-shear DEA system could also be exploited, for instance, in highly versatile 
dynamic mechanical oscillation systems with multiple resonant modes and amplitudes. Such oscillating 
systems could have practical applications in highly programmable robotic locomotion where the multiple 
resonant modes and amplitudes can serve as means for steering and speed regulation. The initial condition 
sensitivity of the isolas within these systems can be utilized as a passive collision controller for robots. For 
example, when a robot collides with other objects, the sudden change in system states can trigger isolas 
which increases the oscillation amplitude of the actuator, thus allowing for rapid escape of the robot. These 
systems can also be used in smart energy harvesting where the isolas can be actively triggered to increase 
bandwidth and efficiency of energy conversion.
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