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Abstract
In the past few years, significant efforts have been made to create and self-assemble covalent organic cages with 
increased complexity and functionality. However, although supramolecule cages have been widely recognized as 
probes to identify metal ions, the detection of mercury ions has not been fully developed. Here, we have designed 
and synthesized a pair of chiral cages with custom cavities based on the unique rigid structure of 1, 10-binaphthol 
(binol). Meanwhile, the supramolecular cage has excellent performance in high sensitivity and selectivity for 
detecting mercury ions. The UV titration results indicate that the binding ratio of the host to guest is 1:5. The 
titration curve conforms to the nonlinear fitting of the Hill function, which can obtain the binding constant K = 
2.57 × 105 M-1. Furthermore, the detection limit of 1.9 × 10-7 M can be obtained because the absorbance of cages 
exhibits a strong linear relationship with Hg2+ concentrations. This work provides a new method for selective 
recognition of ions by supramolecular cages.
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INTRODUCTION
The global attention on environmental pollution caused by heavy metal ions persists due to their potential 
to inflict severe harm on both animals and humans[1]. Many highly sensitive and selective probes have been 
developed and successfully used in practical life in order to detect metal ions in the environment. For 
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example, probes synthesized by Mohandoss et al. were widely used for detecting Fe3+, Al3+, Cu2+, and Ag+ 
ions[2-4]. As is well known, mercury is extremely harmful to organisms and the environment, especially to 
mammals. It can not only enter the human body directly through the skin, digestive system, or respiratory 
system but also accumulate in the environment, ultimately entering the human body through the food chain 
and causing serious damage to the central nervous and endocrine systems of the human body. In addition, 
all stable forms of Hg (i.e., metallic, inorganic, and organic) cause neurological poisoning in fish, wildlife, 
and humans. It causes several disorders in the liver, kidney, heart, stomach, brain, intestine, and immune 
system[5-7]. According to the United States Environmental Protection Agency (US EPA), the maximum 
possible limit of Hg2+ ions in drinking water is 2 ppb, but the amount of Hg2+ ions in drinking water excess 
to the limit may pose a risk to human health and the environment (Environmental Protection Agency, 
2001). Despite these drawbacks, mercury and mercury salts still widely exist in nature in the form of 
elemental mercury, inorganic, and organic compounds. Human activities, industrial production, and 
natural phenomena can all lead to the production of various forms of mercury compounds[8-10]. Therefore, it 
is necessary to seek efficient, simple, and fast new ways to detect mercury ions in the atmosphere and 
wastewater in order to protect the Earth's environment[11-25].

In recent years, mercury ions have been detected by a large number of analytical methods, including cold 
vapor atomic fluorescence spectroscopy[26], inductively coupled plasma mass spectrometry (ICP-MS)[27], gas 
chromatography[28], neutron activation analysis (NAA)[29], and high-performance liquid chromatography[30]. 
However, these technologies often require cumbersome operations and expensive instruments. As a result, 
the development of more efficient and facile approaches for mercury ion detection is highly appealing yet 
challenging.

Supramolecular chemistry, as an interesting field, has successively attracted much attention due to its 
unique structures  and extensive appl icat ions in sensing[31,32], catalysis[33,34], separation[35,36], gas  
adsorption[37,38], biological imitation[39], and so on[40,41]. The intriguing three-dimensional molecular cages 
have proven to be superior alternative architectures, garnering considerable interest owing to their 
outstanding structures, properties, applications, and the diverse array of charming skeletons successfully 
generated via coordinative self-assembly, such as octahedrons[42,43], tetrahedrons[44-47], spirals[48], capsules[49], 
etc. Additionally, subcomponent self-assembly, as the most powerful bottom-up strategy, has attracted great 
attention by preparing highly organized structures with different functions in an "order-out-of-chaos" and 
well-controlled manner[50-53]. Comparatively, the discrete supramolecular structures formed by covalent 
bonds remain underdeveloped, possibly due to the dynamic and unstable interactions[54,55]. In this context, 
molecular cages formed by imine condensation have developed rapidly[56-58] since the groundbreaking work 
of Quan et al. in 1991[59]. Despite the impressive progress made by chemists in this field, the involvement of 
multiple functional components in a single supramolecular system causes further difficulties for synthesis 
and its evocative biological heuristic process. Meanwhile, there are relatively few examples of detecting 
mercury ions as fluorescent probes, although covalent supramolecular cages have been widely reported as 
examples of fluorescent probes[60-64]. Therefore, it is crucial to create novel covalent supramolecular cages 
and use them for mercury ion detection.

Herein, we purposefully designed and constructed covalent organic cages with (R)- or (S)-binaphthyl 
skeletons as ligands and tri(2-aminoethyl)amine as vertices by amine aldehyde condensation-driven 
collaborative self-assembly. Notably, the ether chains were introduced on three symmetric binaphthyl 
ligands to form 20-crown-6. In addition, mercury ions were successfully recognized through fluorescence 
testing. To our delight, these covalent organic nanocages, which possess chemiluminescent properties, can 
serve as a fluorescence sensor to detect these ions. The successful synthesis of the cage had been 
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demonstrated by NMR, mass spectrometry, Fourier transform infrared (FT-IR), and molecular simulations.

RESULTS AND DISCUSSION
As shown in Scheme 1, our investigation was commenced by using the compound 1 [3, 6, 9, 12-
tetraoxatetradecane-1, 14-diol] and compound 3 (R)- or (S)-BINOL (binaphthol) as the starting substrates. 
Initially, (S)-4 was treated with potassium t-butoxide at 75 °C, and the resultant system was reacted with 
pentaethylene glycol di-p-toluenesulfonate 2 to afford the product (S)-5 in 40% yield. A Suzuki coupling 
reaction of bromide (S)-5 with 4-formylphenylboronic acid gave an important precursor (S)-7 in 30% yield, 
which has two aldehyde functionalities attached to the binaphthyl backbone. On the basis of the successful 
synthesis of (S)-7, covalent organic nanocage cage (S)-8 was prepared by co-self-assembly with tris(2-
aminoethyl)amine in a yield of 55% as a yellow solid. The same method was used to synthesize (R)-8 for a 
53% yield. The chemical structures of these chiral cages were adequately characterized by 1H NMR, mass 
spectrometry, and correlation spectroscopy (COSY) spectral information.

The desired covalent organic cages were successfully synthesized according to 1H NMR spectroscopy 
[Supplementary Figures 1-20]. As shown in Figure 1, the protons Ha-Hg located on the binaphthyl backbone 
and phenyl moiety were represented by eight independent sets of peaks in the spectra of both ligand 7 and 
cage 8. It is worth noting that the characteristic peak of aldehyde in the 7 disappeared due to the 
condensation with amine, indicating that compound 7 was completely reacted. Moreover, the signal of 
Schiff base hydrogen appeared at 8.01 ppm, also proving the successful synthesis of the target cage structure. 
Chemical shifts were observed for protons Ha (from 7.96 ppm to 7.43 ppm) and Hb (from 7.84 ppm to 6.99 
ppm), as compared with the free aromatic ligand 7, because of the electronic effect on the imine group. 2D 
NMR spectroscopies, such as COSY and diffusion-ordered spectroscopy (DOSY), provided more precise 
structural data in support of the formation of covalent organic cages [Supplementary Figures 21 and 22]. 
Moreover, additional evidence for the formation of [2+3] imine cages could also be provided by electrospray 
ionization mass spectrometry (ESI-MS). Experimental isotope patterns for the peak of [8+2H]2+ are strongly 
consistent with theoretical isotope patterns, suggesting that covalent organic supramolecular cages were 
constructed successfully via self-assembly. All main peaks of mass spectra also indicated the formation of 
corresponding cage architectures [Figure 1E and Supplementary Figure 23].

FT-IR characterization has also proven to be an important tool for detection of changes in functional 
groups [Figure 2]. The infrared spectrum of compound (S)-7 displayed a strong aldehyde stretching 
vibrational peak at 1,695 nm alongside a stretching vibration peak at 1,642 nm due to the imine formation.

The UV-Vis and fluorescence spectra also show the structural characteristics of the cage, as shown in 
Figure 3; the UV-Vis absorption spectra for the cage display two main peaks at 322 nm and 280 nm, which 
correspond to the n-π*transitions (C=N) and π-π* transitions (C=C). The UV-Vis absorption spectra for the 
ligand exhibited a unique peak at 337 nm, which was attributed to the existence of n-π* transitions (C=O). 
Furthermore, the emission wavelengths of (S)-8 and (S)-7 are 414 nm and 458 nm in the fluorescence 
spectra, respectively.

A simulated molecular model of cages was constructed due to many unsuccessful efforts to obtain the 
crystal structure of cages [Figure 4 and Supplementary Figure 24]. Analysis of the simulated cages showed 
the expected [2+3] structure, with two amine moieties connected by three side arms based on binol in the 
top and bottom views. The structure of cages had a C3 symmetric topology and three C2 axes perpendicular 
to the C3 axis.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
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Scheme 1. Synthetic route to chiral organic cages.

Figure 1. Part of the 1H NMR (600 MHz, CDCl3, 22 oC) spectra of (S)-7 (A); (S)-8 (B); (R)-8 (C); (R)-7 (D) and experimental ESI-MS of 
the (S)-8 of [8+2H]2+ (blue) and simulated mass spectra (red) (E).
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Figure 2. Fourier transform infrared spectroscopy of cage (black line) and compound 7 (red line).

Figure 3. UV-Vis and fluorescence spectra of compound (S)-7 and (S)-8.

The inherent chirality of imine cages was characterized by circular dichroism (CD) spectroscopy. As shown 
in Figure 5, (R)-8 and (S)-8 exhibited mirror CD spectra with highly pronounced Cotton effects in the 
wavelength range of 240 to 400 nm. The CD spectra of cages displayed one strong band at 286 nm, which 
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Figure 4. The simulated crystal structures of (S)-8 (A) and (R)-8 (B). (N, blue, O, red, C, gray, and hydrogens are omitted for clarity).

Figure 5. (A) The UV-Vis spectra of (R)-8 and (S)-8 in CDCl3 (c = 0.01 mM); (B) CD spectra of (R)-8 and (S)-8 in CDCl3 (c = 0.1 mM).

indicated the absorption of naphthalene groups on the binaphthyl backbone. Therefore, we have 
successfully synthesized the covalent supramolecular cages through NMR, ESI-MS, molecular simulations, 
CD, and FT-IR characterization methods.

The heavy metal ion Hg2+ poses a significant threat to the environment due to its high affinity for thiol 
groups in proteins and enzymes. Additionally, it is important to note that mercury ions are not 
biodegradable. As a result, even at extremely low concentrations, they can have detrimental effects on the 
kidneys and brain, potentially leading to various diseases. The US EPA stipulates that the maximum 
concentration of mercury ions in drinking water is 10 μM. Consequently, in this work, the cage can be used 
as a fluorescence probe because adding mercury ions to the solution does not decompose the cage 
[Supplementary Figure 25]. As shown in the results, the fluorescence intensity of the supramolecule cage 
gradually increases with the increasing concentration of mercury ions [Figure 6A and B]. Meanwhile, the 
covalent supramolecule cage shows a redshift of 48 nm in the emission spectra. The addition of mercury 
ions created an umbrella-shaped structure that made the molecule more rigid. As a result, electron 
delocalization between the crown ether and imine parts became more viable. This enhanced dipole moment 
and charge separation, leading to a significant redshift of 48 nm in the fluorescence emission spectrum 
[Figure 6C][65,66]. Moreover, the UV-Vis titration experiment provided important quantitative information 
[Supplementary Figures 26-30]. As shown in Supplementary Figure 26, the absorbance at 280 nm gradually 
decreased and underwent a shift to red with the addition of mercury ions. The change remained basically 
unchanged after adding 5 eq. of mercury ions. Therefore, the binding ratio of 1:5 could be obtained by using 
the molar ratio plot [Supplementary Figure 28]. Two linearly fitted lines intersected at a point with a 
horizontal coordinate of 5 eq., proving that the binding ratio of the cage to mercury ions was 1:5. 

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
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https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
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Figure 6. Fluorescence titration of (R)-8 (10 µM) upon addition of Hg2+ ion up to 10 µM in CHCl3 (A) and the plot of fluorescence 
intensity versus Hg2+ concentration (B) (λex = 322 nm, Silt = 2, 2); (C) Mercury ion detection mechanism.

Meanwhile, the UV-Vis titration data could be well fitted by the Hill function. Based on the fitting results,
the binding constant K = 2.57 × 105 M-1 could be obtained [Supplementary Figure 29]. Finally, the detection
limit was calculated by showing a good linear relationship between the absorbance of the cage and 0-5 eq. of
mercury ions at 280 nm [Supplementary Figure 30]. It was worth noting that the CD spectrum of the cage
could also detect these ions. The CD spectrum underwent significant changes with the continuous addition
of mercury ions. On the contrary, no significant changes were observed after the addition of copper ions,
suggesting that copper ions could not bind to the cage [Supplementary Figure 27]. In order to prove that the
cage can effectively recognize mercury ions, common metal ions are also used for detection [Figure 7]. It is
obvious from Figure 7 that Hg2+ ions have the most fluorescence enhancement effect on the supramolecule
cage.

In order to further explore the sensing ability of the cage for the Hg2+ ion, selective recognition experiments
of the cage (0.2 mM) were also conducted by using different concentrations of Hg2+ (0.7, 1.4, 2.1 mM) in
CHCl3 [Figure 8]. The results, as depicted in Figure 8, exhibit distinct changes in color that can be obviously
observed by the naked eye. The color of the CHCl3 with spiked Hg2+ transformed from colorless to light
yellow. The ability of cages to detect mercury ions in different pH solutions was also tested separately, and
similar results were observed [Supplementary Figure 31]. In addition, the cage had been compared with
supramolecular materials that were used for detecting mercury ions in recent years [Supplementary Table 
1]. According to [Supplementary Table 1], the diverse detection methods of the cage possessed 
unique advantages. Therefore, it is possible to detect the presence of mercury ions without the use of any 
additional instruments and make the process more efficient and expedient.

https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
https://oaepublishstorage.blob.core.windows.net/articlepdfpreview202310/cs3039-SupplementaryMaterials.pdf
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Figure 7. (A) Emission spectra and (B) bar graph of (R)-8 (10 µM) with various metal ions (10 µM) in CHCl3 (λex = 322 nm, slit width = 
2, 2 nm).

Figure 8. Hg2+ion detection diagram based on (R)-8.

CONCLUSIONS
In conclusion, we have demonstrated the formation of two chiral organic cages using chiral binaphthyl as 
the main building block. The structures of the chiral cages were characterized using 1H NMR, 2D NMR, 
mass spectroscopy, molecular simulation, CD, and FT-IR characterization analyses. Furthermore, the 
absorbance of cages exhibited a good linear correlation with Hg2+ concentrations with detection limits of 
1.9 × 10-7 M. On the other hand, the cage could be used for selective recognition of Hg2+ ions as a 
supramolecular probe, especially allowing for the direct observation of changes in solution systems, thereby 
contributing to the protection of environmental pollution, which may contribute to the development of new 
approaches for utilizing supramolecular cages as probes in the future.
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