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Abstract
Exosomes, nanovesicles of endocytic origin, are secreted by most cell types; cancer cells representing no 
exception. Exosomes facilitate intercellular communication as they deliver diverse proteins, mRNA, miRNA and 
lipids. In this review, we discuss how exosomes represent one of the main risks associated with cancer but also 
one of the most promising new tools to fight it. Exosomes appear to function as signalling molecules between the 
tumour microenvironment, i.e., the complex of both cancer and stromal cells, and the rest of the body. Cancer-
derived exosomes have been shown to drive the initiation and progression of metastasis, by transporting their 
cargoes to target tissues. In this respect, exosomes are implicated in cancer progression, dissemination and 
therapy resistance. However, exosomes are also emerging as a key tool in precision medicine, pivotal for cancer 
liquid biopsy in early diagnosis and for assessing when there is a recurrence. Profiling exosomal cancer-derived 
nucleic acids by ultrasensitive next-generation sequencing along with mapping the protein profile utilizing high-
throughput proteomics will allow earlier cancer detection, therapeutic stratification and monitoring of response to 
therapy. Exosomes are also a promising new tool for cancer immunotherapy. Clinically utilizing exosomes for these 
applications in cancer diagnosis and therapeutics will be the next challenge.
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INTRODUCTION
Exosomes (Exo) are nanovesicles secreted by virtually any cell and found in all human body fluids[1-4]. They 
play important roles in intercellular communication both in physiology and disease[4-6]. After being released 
into the extracellular space, Exo can enter the circulation and ultimately be taken up by recipient cells 
to which they can convey their protein, nucleic acid and lipid cargo in turn modulating their activity[7,8]. 
By proteomic and biochemical analyses, we have reported a novel characteristic of human Exo, i.e., 
they can consume oxygen to aerobically synthesize ATP[9-11]. Proteomic and statistical analyses of both 
human mesenchymal stem cell (MSC) and urinary Exo showed enrichment of proteins related to aerobic 
metabolism, including the redox complexes I, IV, and V in their membranes[9-11]. Such aerobic metabolic 
capacity appears consistent with the Exo need to maintain their cup-shaped structure and functionality in 
the face of a prolonged permanence in the circulation[10-12] and with their ability to rescue bioenergetics of 
damaged cells[13,14].

Research in the field of cancer is benefiting from the growing understanding of the biogenesis and 
functions of Exo released from cancer cells[15-18]. However, the role of Exo in the pathophysiology of cancer 
is multifaceted[19]. Cancer cell-derived Exo have long been known to be involved in processes such as 
cancer progression, metastasis, immune escape, angiogenesis and therapy resistance[20,21]. Exo function as 
signalling molecules between the tumour microenvironment, i.e., the complex of both cancer and stromal 
cells, and the rest of the body[16]. Tumour-derived Exo can drive the metastatic process by targeting specific 
organs setting a pre-metastatic environment[17]. The tumour environment reacts by amplifying oncogenic 
pathways in which Exo signalling is proposed to play a role[22]. 

Nonetheless, Exo also contain biomarkers, and can be considered biomarkers themselves[23,24]. For example, 
urinary Exo deriving from every cell of the urinary tract and kidney, may represent a promising reservoir of 
cancer biomarkers to assess disease progression in urologic cancers[25,26]. Exo can be noninvasively isolated 
from human urine to detect biomarkers, with promising applications in patient stratification, monitoring of 
therapy response or use as vehicles for therapeutic delivery[27]. 

Thanks to high throughput mass spectrometry techniques, it can be envisioned that Exo will help in earlier 
diagnosis, directing therapeutic targets and assessing therapy resistance upon detection of signature cargo 
biomarker biomolecules[1,16]. In the landscape of precision medicine, cancer liquid biopsies, i.e., the analysis 
of circulating cell-free tumour DNA and tumour cells (CTC)[28], can exploit examining Exo signatures, 
when they are derived from biological fluids[29]. Exo can also potentially be used as tumour-targeting 
vehicles for cancer[17,18,21]. There is also the exciting possibility of engineering the content of Exo and 
targeting them to tissues of interest[30,31]. 

This review focuses on the dual role of Exo in cancer. The good side of Exo is their clinical potential. 
The ability of Exo to mediate cell-to-cell communication as stable carriers of molecular messages can 
be exploited for cancer diagnosis and therapy, with novel exciting perspectives of translation to the 
clinical setting[16,32]. The bad side of Exo is the long-recognized ability of their cargo to modify the cancer 
microenvironment promoting cancer progression and metastasis by recruiting target cells, as is the case for 
melanoma[33].

EXOSOMES
Exo, a subset of extracellular vesicles (EVs) of endocytic origin, actively shed from multivesicular bodies 
(MVBs) which carry proteins, RNAs (mRNA, miRNA, transfer RNA, ribosomal RNA, nucleolar RNA, and 
noncoding RNA) and DNA fragments[1,3,7,34]. Exo biogenesis involves the formation of early endosomal 
vesicles, that develop into late endosomes undergoing inward budding forming intraluminal vesicles 
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(ILVs) in MVBs[6,35]. Exo acquire their luminal and membrane contents through both direct and stochastic 
sorting[6]. If nascent ILVs are not degraded by fusion with lysosomes, they fuse with the plasma membrane 
and are released into the extracellular space[36]. Once in the circulation, Exo are directed to other cells via 
an unclear mechanism, probably involving members of the tetraspannin family (CD9, CD63 and CD81), 
where they are taken up by the target tissues through membrane fusion, endocytosis, or receptor-ligand 
interaction[2,34,37,38].

Exo isolation involves a variety of techniques[39,40]. Several commercial exosome isolation kits are 
in use, although their ability to yield pure and functional Exo is uncertain[41]. To date, differential 
ultracentrifugation is considered the gold standard, and it is much preferred when pure Exo are required. 
Low-speed centrifugation subsequent to polyethylene glycol precipitation has been utilized to enrich 
Exo from large sample volumes, but there is the possibility of polymer contamination[42]. The other Exo 
isolation methods are size-based, antibody capture-based, microfluidics-based techniques or precipitation 
by altering Exo solubility with water-excluding polymers such as polyethylene glycol, all of which do not 
require high-speed centrifugation[40]. Fluidic techniques such as exosome total isolation chip, can sort Exo 
from a heterogeneous population of EVs based on their size, with the advantage of allowing the handling 
of small sample volumes[43]. Label-free efficient separation of Exo from human blood has been reported, 
using an integrated continuous-flow acoustofluidic device[44]. This last automated isolation technique is 
useful in case of biohazard, and for integration with downstream Exo analysis systems[44]. Notably, most 
novel isolation methods are limited by the requirement of sophisticated instrumentation or costly reagents. 
Therefore, notwithstanding their promising potential, a concern about the clinical applications of Exo 
appears to be the standardization of isolation techniques. 

THE GOOD SIDE OF EXOSOMES
Exo are emerging as promising and sensitive cancer biomarkers for disease diagnosis[21,23,24,26]. Once released 
from cancer cells, Exo enter the circulation and are transported in biological fluids carrying their functional 
cargoes[1]. Profiling Exo cancer-derived nucleic acids by ultrasensitive next-generation sequencing and 
proteins by large-scale high-throughput proteomics could allow early cancer detection, therapeutic 
stratification and response to therapy monitoring[17,18,38,45,46].

Liquid biopsy has drawn attention as a minimally invasive and cost-effective method for sampling of 
genetic, proteomic and metabolic material from different types of cancer[47]. While traditional cancer liquid 
biopsies utilize cell free DNA or CTC[48], Exo are emerging as a novel tool in the field of precision medicine 
in the early diagnostic and recurrence assessment applications[24,49]. This has proven true especially for 
urologic tumours[29,50]. The advantage of Exo over existing approaches is their stability in body fluids 
allowing the specific cancer-derived proteins and nucleic acids to be preserved[1,4]. For example, a cell 
membrane-anchored proteoglycan, glypican-1 (GPC1), overexpressed in a variety of cancers such as breast 
and pancreatic cancer, was also identified in the circulating Exo from the serum of pancreatic cancer-
bearing patients. Detection of GPC1+ Exo in the serum can be utilized to distinguish healthy subjects from 
pancreatic cancer patients with very high specificity and sensitivity, findings that can then be correlated with 
survival rates[51]. Considering its cited role in the progression of human pancreatic cancer, miR-301a-3p 
was proposed as a biomarker in the diagnosis of this type of cancer[52]. An Exo-specific “melanoma 
signature” with prognostic and therapeutic potential has been proposed[33]. 

Exo can also become stable and reliable engineered nanocarriers[23]. In fact, the benefits of the use of 
Exo as therapeutic agents include their biocompatibility and ability to deliver their content to specific 
target cells, an unfavourable feature per se, that can however be of advantage. The characteristic exosomal 
membrane stability, which is enriched in cholesterol, sphingomyelin and ceramide, along with its tumour-
targeting capacity, has suggested the use of Exo in anticancer therapy delivering therapeutic miRNAs 
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and proteins or as drug delivery system for cancer therapy[53]. Drug delivery with Exo has been utilized 
for the treatment of breast, pancreatic, lung, and prostate cancers and glioblastoma[54]. Drug loading into 
Exo can be accomplished by both active and passive encapsulation approaches[55,56]. Passive loading can 
be accomplished by simple incubation of the Exo with the drug or miRNAs to let them diffuse along the 
concentration gradient or treating cells with a drug, and using Exo secreted by these donor cells. Active 
encapsulation can be performed by freeze-thawing cycles, electroporation of the Exo membranes, or 
sonication in the presence of the drug[56]. Sonication can be also used to encapsulate proteins. Freeze-
thawing method has also been utilized to fuse Exo with liposomes, to develop exosome-liposome hybrids 
carrying specific proteins[57]. By manipulating the shedding process of Exo, these can also be engineered 
using viral vectors, such as retroviruses and adenoviruses to engineer the parent cells to secrete modified 
Exo, or alternatively, to directly manipulate the content Exo following secretion[30,56]. The use of Exo also 
shows significant safety and low toxicity benefits as compared to cell-based therapies, which bear the risk 
of activation of a host immune response. By contrast, allogenic Exo elicit lower immune response[30]. The 
use of MSC-derived Exo for delivery of anticancer therapy was shown to hold more promise[58] than the use 
of MSC themselves[59]. The fact that MSC Exo carry an aerobic metabolic ability[11] may also be taken into 
closer consideration.

Exo are also a promising new tool of cancer immunotherapy[15,60]. In lieu of dendritic cell (DC)-based cancer 
immunotherapy, still in its infancy due to problems associated with culture and storage, the use of DC-
derived Exo to generate immune responses against tumours, has been proposed[31]. DC-derived Exo possess 
immunostimulatory properties thanks to the expression of integrins, ICAM-1 and MHC class II and class I 
molecules as well. Exo stability would maintain the DC-derived Exo cancer antigen composition, including 
surface MHC-peptide complexes and the CD80 and CD86 costimulatory molecules, thus triggering the 
desired cancer antigen-specific immune response[31]. DC-derived Exo-based phase I and II clinical trials 
have demonstrated their ability to target cancer sites[61].

By genetic modification of the parental cell, Exo can be loaded with a variety of biological molecules, such 
as miRNAs and proteins. Exo surface modification by addition of ligands or proteins to the Exo surface can 
direct them to target cancer cells[32]. In this respect, the features that allow Exo to reach their targets (i.e., 
ligands expressed onto their surface) allow their positive applications. Targeting ligands on the surface of 
Exo can also be engineered. For example, HEK293T cells were engineered to express the protein Lamp2b, 
fused to a fragment of interleukin 3 in their Exo membrane, and it was found that these Exo loaded with 
imatinib or with a specific siRNA were able to target cancer cells and inhibit their growth in vitro and 
in vivo[62]. Exo released by macrophages, loaded with paclitaxel (PTX) increased the cytotoxicity of PTX by 
about 50-fold. In vivo, those Exo co-localized with lung metastases causing a significant inhibition of their 
growth[63].

The hallmark of the double nature of Exo is their ability to deliver miRNA, small noncoding RNAs that 
target mRNAs and change their expression. Exo can be manipulated to have them deliver anti-miRNAs, 
or tumour-suppressing miRNAs for cancer treatment. It was shown that endothelial cells can transfer 
exogenous miRNA to cancer cells via Exo[64]. 

THE BAD SIDE OF EXOSOMES
Cancer cells secrete more Exo than healthy cells[65]. Moreover, their contents appear to be tailored to 
mediate cancer dissemination[8,16,17,23]. Being potent signalling mediators, Exo shed from cancer cells 
act in facilitating cancer initiation and progression[20,21]. Exo are also secreted by cells in the tumour 
microenvironment (TME) such as stromal and immune cells[22,66]. TME is the complex setting of the 
interplay between cells and signalling events, of which Exo along with cytokines and chemokines are key 
players[8]. In particular, Exo can precondition the TME setting the pre-metastatic niche, which increases 
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metastatic success[16]. Evidence suggests that the contents of Exo modulate immune cell activity, enabling 
immune surveillance and treatment evasion. For example, Exo were shown to express programmed death-1 
(PD-1), which interacts with programmed death-ligand 1 (PD-L1)[61]. Upregulation of the expression 
of PD-L1 receptor on T cells mediates PD-L1-dependent immune evasion, by actively suppressing the 
function of CD8. It was shown that exosomes expressing PD-L1 shed form metastatic melanomas helping 
the tumour to evade immune surveillance. Assessment of exosomal PD-L1 content has been proposed to 
stratify patients for therapy with anti-PD-1 antibodies, a promising treatment for metastatic melanoma[61]. 
While remaining a poorly understood process, metastasis is the cause of most cancer-related deaths with 
miRNA transfer to endothelial cells, mediated by Exo, facilitating this metastatic process[16]. 

Exosomal mRNA and proteins from prostate cancer cells were shown to modulate the prostatic TME[21,67]. 
The formation of melanoma lung metastases is preceded by the recruitment of bone marrow progenitors 
primed through receptor tyrosine kinase MET activation by Exo[33]. Pancreatic cancer cell-derived Exo 
can induce stellate cells to recruit macrophage subpopulations, establishing a pre-metastatic environment 
inside the liver[17,33]. Pancreatic cancer cell Exo promote metastasis by inducing the M2 polarization of 
macrophages through activation of the PTEN/PI3Kg pathway[52]. It was shown that Exo miR301a-3p 
overexpression is associated with poor survival[52]. 

Given that Exo have “good” and “bad” roles (see Schematic in Figure 1), a prerequisite for the successful 
implementation of their use for cancer therapy requires rigorous isolation, and characterisation. In an 
attempt to support the standardisation of Extracellular vesicles (EV) in research and clinical applications, 
an international consortium was established, named “EV-TRACK” (http://evtrack.org). EV-TRACK is a 
knowledgebase intended to gather and centralize reports on EV biology and methodology[68].

CONCLUSION
Exo are nano-sized vesicles secreted from living cells into all body fluids. They bear a dual role in cancer 
biology, being supportive of cancer progression, by setting the tumour metastatic niche, but are also 

Figure 1. Schematic graphical representation of the “good” and “bad” sides of exosomes
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carriers of cancer cell-specific protein and nucleic acid contents. Exo are viewed as promising tools for 
cancer diagnosis and therapy. We highlight how current research is exploiting both these utilities and the 
strategies used to enhance the potential of Exo in the treatment of cancer. If understood in more detail, 
the identification of cancer-specific Exo would become vital in early diagnosis and assessing response to 
therapeutic intervention(s) when monitoring cancer progression and its treatment. The unique stability, 
biocompatibility, homing ability and low immunogenicity of Exo, can also be exploited as a delivery system 
for therapeutic agents since Exo can also be loaded with a variety of molecules. As our understanding of 
Exo biology and the profiling of their protein and RNA cargoes as potential biomarkers is expanded, the 
ability to engineer content of Exo opens new possibilities for their use as selective carriers of therapeutic 
miRNAs and/or drug carriers to target tumour cells. It is foreseeable that the next years will witness the 
challenging clinical applications of Exo in cancer diagnosis and therapeutics.
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