
© 2015 Journal of Cancer Metastasis and Treatment ¦ Published by Wolters Kluwer - Medknow156

A B S T R A C T
Colorectal cancer remains a signifi cant cause of cancer-related mortality worldwide, mainly because of tumor relapse and 
metastases. Cancer stem cells (CSCs) are considered to be the main cause of resistance to chemotherapeutic agents, as well as 
being responsible for distant metastases. Although CSCs themselves possess innate abilities for self-renewal and differentiation, the 
environment surrounding CSCs provides oxygen, nutrients and secreted factors, and also supports angiogenesis, thus it's responsible 
for maintaining their CSC properties. Furthermore, extensive investigations have revealed that obesity, accompanied by excess 
visceral adipose tissue, induces chronic infl ammation, and is linked to the risk and progression of several gastrointestinal cancers, 
through modulating the capacities of the CSCs. This review presents the evidence linking colorectal CSCs and their environment 
and summarizes our current understanding of the molecular mechanisms underlying this relationship.
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Introduction
Colorectal cancer (CRC) is the fourth-leading cause of 
cancer-related deaths worldwide.[1] Although the incidence 
of CRC has started to decline in developed countries, 
it continues to increase in developing countries.[2] 
Environmental factors, including chronic infl ammation, 
obesity, metabolism and nutrition, have become 
recognized as major contributors to the development 
of CRC.[3-6] Dietary fat intake and obesity have been 
shown to be signifi cantly involved in CRC progression 
through an increased risk of gene mutation, epigenomic 
alterations, and effects on the equilibrium of various 
adipokines.[7-11] Chronic infl ammation is also considered 
to be a risk factor for CRC,[6] and infl ammatory mediators 
and substances such as interleukin (IL)-6, tumor necrosis 
factor-α (TNF-α), and reactive oxygen species have been 
shown to affect CRC development.[12-15] The clearest link 
between chronic infl ammation and CRC is seen in patients 
with infl ammatory bowel disease, which has been reported 
to promote tumorigenesis by altering the microbial 
composition in the gut and supporting the expansion of 
microorganisms with genotoxic capabilities.[16]

Cancer stem cells (CSCs) are tumor cells that 
possess capabilities for self-renewal, clonal tumor 

initiation and clonal long-term repopulation.[17,18] 
The discovery of colorectal CSCs highlighted the 
existence of intratumoral heterogeneity, revealing 
the presence of tumor cells expressing markers 
characteristic of immature cells and with increased 
abilities to resist chemotherapy and to seed secondary 
tumors.[19-21] CSCs were initially considered to be 
a cell population with well-defined phenotypic and 
molecular features. However, emerging evidence has 
revealed that certain cancer cells exhibit plasticity, 
and can change reversibly from stem to non-stem 
cells under the regulation of genetic, epigenetic and 
microenvironmental factors.[22-25] In this review, we 
focused on accumulating new evidence indicating 
that microenvironmental factors maintained colorectal 
CSC properties responsible for promoting tumor 
development and metastasis.

Markers for Colorectal CSCs
CSCs have been isolated from cancer tissues using 
fl ow cytometry with specifi c surface markers. 
Several molecules have been proposed as colorectal 
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CSC markers, including CD133, CD44, CD24, 
CD166, Lgr-5, and aldehyde dehydrogenase 
1 (ALDH1) [Table 1].[26] CD133, a pentaspan 
transmembrane glycoprotein,[27] was one of the fi rst 
colorectal CSC markers to be identifi ed.[19,20] However, 
although selecting CRC cells based on AC133 
positivity, an epitope of the CD133 protein identifi es 
the tumorigenic and clonogenic population.[28] CD133 
expression has been detected throughout the normal 
gastrointestinal tract and is not restricted to the stem 
cell compartment.[29,30] In addition, both CD133+ and 
CD133- metastatic CRC cells were able to form new 
tumors, suggesting that CD133 may not be a reliable 
marker of CSCs.[29]

The cell adhesion molecule CD44 has been identifi ed 
as a cell surface marker associated with CSCs in 
several types of tumor.[31] CD44+ cells exhibited 
CSC properties, and a single cell could form a sphere 
in vitro, and a xenograft tumor resembling the original 
lesion in vitro.[32] Overexpression of CD44 in CRC has 
been associated with depth of invasion and lymph node 
involvement and is shown to be an independent predictor 
of overall survival.[33] Although CD44, like CD133, is 
not a specifi c marker for colorectal CSCs, it is possible 
that a combination of these two markers may be more 
reliable for detecting colorectal CSCs than either marker 
alone.[34]

In addition to cell surface markers, activities of certain 
pathways or enzymes may also act as markers of 
stemness. For instance, normal colorectal stem cells can 
be identifi ed by the activity of ALDH1, a detoxifying 
enzyme that oxidizes intracellular aldehydes.[35,36] 
ALDH1+ cells were sparse and restricted to the bottom of 
normal crypts, where stem cells reside but were increased 
in number and distributed further up the crypts during 
progression from normal epithelium to adenoma.[37] In 
addition, implantation of ALDH1+ colon cancer cells into 
NOD/SCID mice generated xenograft tumors, whereas 
ALDH1- cells did not.[37] These fi ndings indicate that 
ALDH1 activity may be a useful colorectal CSC marker.

Other markers include CD166, epithelial cell adhesion 
molecule, CD29, CD24, CD26, Msi-1, Lgr-5, and Wnt 
activity/β-catenin.[38-42] The presence of these molecules 
has been associated with stemness characteristics both 
in vitro and in vivo. These markers were also used to 
enrich isolated CSCs further to enhance their tumorigenic 
ability. The transcription factors Oct-4 and Sox2 are 
also promising CSC markers, given their roles in cell 
renewal. Oct-4 and Sox2 levels have been shown to be 
elevated in CRC and to correlate with increased CSC 
proliferation and poor prognosis.[43,44] Other pluripotency 
genes, Nanog, Lin-28, Klf-4, and c-myc, are regarded as 
promising surrogate markers, given that they appear to 
facilitate a shift towards an undifferentiated state.[45]

Table 1: CRC stem cell markers
Marker General function Signifi cance References
CD133 (Prominin-1) Pentaspan transmembrane 

glycoprotein
Tumor initiation in xenografts, colony formation, correlation 
with: poor prognosis, survival, metastasis, resistance to 
therapy

[28-31,41,43,45]

CD44 Cell adhesion molecule, 
hyaluronic acid receptor

Tumor initiation in xenografts, colony formation, association 
with tumor stage, lymph node infi ltration, survival

[32-36,41,43,45]

ALDH1- Detoxifying enzyme Tumor initiation in xenografts, further enrichment, transition 
from colitis to cancer, mitochondrial isoform is increased in 
CRC

[37-39,41]

CD166 (ALCAM) Cell adhesion molecule Tumor initiation in xenografts, colony formation, further
enrichment, correlation with prognosis and survival

[41,45]

EpCAM Cell adhesion molecule Expression in CD133þ or CD44+ cells [41]
CD29 (β1-integrin) Receptor for ECM Colony formation elevated in CRC, association with tumor 

stage
[41,45]

CD24 Cell adhesion molecule Clonogenic ability, multilineage potential, further 
enrichment, correlation with invasiveness, differentiation, 
and survival

[41,45]

CD26 Cell surface glycoprotein Tumor initiation and metastasis formation in a mouse model [43]
Msi-1 Maintenance of the 

undifferentiated state
Expression in CD133+ cells and spheroid cultures, 
association with tumor stage

[22]

Lgr-5 Wnt target gene, crypt base 
restriction

Tumorigenicity, poor prognostic factor, metastasis 
formation, adenoma development in APC knockout mice

[40-42,44,45]

Wnt activity/
b-catenin

Maintenance and proliferation 
of the SC reservoir

Associated with clonogenicity and tumorigenicity, detection 
of low stage CRC cases with high risk of relapse

[40-42,44,45]

Oct-4, So×2, Nanog, 
Lin-28, Klf-4, c-Myc

Transcription factors Correlation with poor prognosis, relapse, distant recurrence, 
resistance to therapy

[46-48]

ALDH-1: Aldehyde dehydrogenase-1; CRC: Colorectal cancer; ALCAM: Activated leukocyte cell adhesion molecule; EpCAM: Epithelial 
cell adhesion molecule; ECM: Extracellular matrix; Lgr-5: Leucine-rich repeat containing G protein-coupled receptor 5; Msi-1: Musashi-1; 
SC: Stem cell; APS: Adenomatous polyposis coli
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Colorectal CSCs Niche in the Tumor 
Microenvironment
Tissue stem cells reside in their surrounding 
microenvironment, known as the stem cell niche, and play 
an essential role in maintaining tissue homeostasis through 
their abilities of self-renewal and differentiation.[46,47] 
Lgr5+ stem cells in the intestinal crypts are interspersed 
among terminally differentiated Paneth cells, which act as 
guardians of the stem cells by providing essential niche 
signals.[48] The tumor microenvironment surrounding 
cancer cells contains multiple cell types including immune 
cells, endothelial cells, and fi broblasts, in addition to the 
extracellular matrix. Recent evidence suggests that cancer 
cells interact with their microenvironment and each other 
by secreting growth factors, cytokines, and proteases. 
Furthermore, the properties of the CSCs depend on 
the CSC niche, which regulates their proliferation and 
differentiation, as well as those of the tissue stem cells.

Mesenchymal stem cells (MSCs) have been shown to be 
recruited into the tumor stroma, and to enhance tumor 
growth and metastasis in CRC.[49] MSCs are considered 
as potential precursors of carcinoma-associated 
fibroblasts (CAFs, also known as tumor-associated 
fi broblasts), which play a key role in tumor progression 
in various types of cancer, including CRC.[50-52] 
Carcinoma-cell-derived IL-1 was shown to induce 
prostaglandin E2 (PGE2) secretion by MSCs, and the 
resulting PGE2 then acted in an autocrine manner 
with ongoing paracrine IL-1 signaling to induce 
expression of cytokines by the MSC, thus creating a 
CSC niche.[53] A recent study demonstrated that CRC 
cells can induce adjoining bone-marrow-derived MSCs 
to exhibit the typical characteristics of CAFs in vitro, 
and activated Notch signaling mediates transformation 
of bone-marrow-derived MSCs to CAFs through the 
downstream TGF-β/Smad signaling pathway.[54] Cytokines 
secreted by CAFs, including hepatocyte growth factor, 
osteopontin, and stromal-derived factor 1α, increase 
CD44v6 expression in colorectal CRCs, which in turn 
promote migration and metastasis.[55] Another study 
demonstrated that CSCs were resistant to conventional 
chemotherapy and that chemoresistance was also 
increased by CAFs. In this study, chemotherapy-treated 
human CAFs promoted CSC self-renewal and in vivo 
tumor growth associated with secretion of cytokines and 
chemokines, including IL-17A.[56]

The Wnt/β-catenin signaling pathway has been shown 
to play critical roles during the transition from normal 
colorectal mucosa to adenocarcinoma.[57-59] The tumor 
microenvironment may play a central role in malignant 
transformation by locally modifying β-catenin activity 
in tumor cells, thus contributing to tumor growth 
and cancer stemness.[60] Likewise, myofi broblast-secreted 
factors, especially hepatocyte growth factor, activated 
Wnt signaling and restored the CSC phenotype in more 
differentiated tumor cells both in vitro and in vivo.[61]

Several studies have reported that CSCs reside in 
perivascular niches in certain types of cancer.[62-64] 
Endothelial-cell-derived, soluble Jagged-1 led to Notch 
activation in colorectal CSC cells in a paracrine manner, 
thus promoting the CSC phenotype.[65]

Hypoxia is known to play pivotal roles in cell survival, 
angiogenesis, tumor invasion and metastasis, and is 
involved in the maintenance of self-renewal and the 
undifferentiated state of CSCs in various types of 
tumors.[66-68] According to a study of colorectal cell 
line-derived CSCs, hypoxia maintained their stem-like 
phenotype and prevented differentiation of enterocytes 
and goblet cells by regulating CDX1 and Notch1.[69]

Obesity, Nutrients, and Colorectal CSCs 
Properties
Obesity and visceral adiposity are closely related to 
disorders such as diabetes, cardiovascular disease, and 
increased risk of various cancers, including CRC.[4,70,71] 
Although a meta-analysis showed that an increase in the 
body mass index in men was associated with a relative 
CRC risk of 1.24,[72] the relationship between increased 
body mass index and CRC risk in women is inconsistent. 
It is possible that the insulin and the insulin-like growth 
factor-1 axis may play different roles in colorectal 
carcinogenesis in men and women.[4,73]

Visceral obesity is associated with increased infi ltration of 
infl ammatory cells such as macrophages and T-cells into the 
adipose tissue, together with low-grade infl ammation.[74-77] 
Adipose tissues produce various growth factors, hormones, 
and cytokines known as adipocytokines, including leptin, 
resistin, visfatin, adiponectin, and numerous infl ammatory 
mediators such as TNF-α, IL-6, IL-8, IL-10, and IL-1 
receptor agonists. These adipose-derived factors have 
demonstrated an intimate involvement in increased 
risk of CRC.[4] In addition to adipocytokine-mediated 
infl ammation, dyslipidemia, insulin resistance, and 
activation of the renin-angiotensin system may also 
contribute to CRC development.[78]

Colorectal CSC clones have been reported to express 
leptin receptors and to respond to leptin by cell 
proliferation, activation of the ERK1/2 and PI3K/AKT 
signaling pathways, enhanced growth in soft agar, and 
improved sphere formation associated with E-cadherin 
overexpression. Moreover, leptin counteracted the 
cytotoxic effects of 5-fl uorouracil.[79] Other authors 
reported that leptin acted as a growth factor for 
carcinogen-induced colorectal tumors in a mouse 
model of obesity. They also showed that leptin receptor 
expression levels were markedly increased in colorectal 
tumors compared with normal epithelium, in association 
with activation of Wnt signaling.[80]

Chronic infl ammation is considered to be a risk factor for 
CRC, and an obvious association has been demonstrated 
between the incidence of CRC and infl ammatory 
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bowel diseases, such as ulcerative colitis and Crohn’s 
disease.[81,82] A recent study showed that the inflammatory 
lipid mediators leukotriene D4 and PGE2 increased the 
ALDH+ cell population, colony formation capacity, and 
tumor growth in a xenograft model of colon cancer.[83]

A high-fat diet can cause changes in the composition 
of the intestinal microbiota, and affect gut immune 
and infl ammatory effectors implicated in intestinal 
tumorigenesis.[84-86] In contrast, omega-3 polyunsaturated 
fatty acids (PUFAs) have shown substantial benefi ts 
in patients with the chronic infl ammatory disease. 
In a placebo-controlled, randomized controlled 
trial, administration of omega-3 PUFAs decreased 
polyp number, size, and overall burden in patients 
with familial adenomatous polyposis.[87] Omega-3 
PUFAs were shown to inhibit proliferation and 
angiogenesis, and exert a pro-apoptotic effect in 
several in vitro models of CRC.[88-91] One possible 
molecular mechanism involves the G-protein-coupled 
receptor 120, which functions as an omega-3 fatty 
acid receptor/sensor in pro-infl ammatory macrophages 
and mature adipocytes and represses the production 
of TNF and IL-6, as well as macrophage-induced 
tissue infl ammation.[92,93] Furthermore, omega-3 PUFAs 
down-regulated the expression of CRC stem-like 
cell marker CD133, and up-regulated the colorectal 
epithelium differentiation markers cytokeratin 20 and 
mucin 2.[94] A recent study revealed that the low-cytotoxic 
combination of eicosapentaenoic acid-free fatty acid, 
epigallocatechin-3-gallate, and grape-seed extract (GSE) 
inhibited mammalian target of rapamycin signaling and 
thus reduced cell proliferation and induced apoptosis in 
CRC cells.[95] GSE pre-treatment of adipocytes decreased 
their growth-promoting effects on CRC cells. In addition, 
adipocyte-conditioned media collected after chronic 
and acute pre-treatment with GSE signifi cantly reduced 
the chemotactic properties of adipocytes toward CRC 
cell invasion. Finally, GSE decreased the expression of 
CD44 and inhibited adipocyte-mediated pro-tumorigenic 
signals in   CSC-enriched colonospheres.[96] Overall, 
these fi ndings indicate a close link between obesity 
and chronic infl ammation, leading to CRC progression 
through enhanced colorectal CSC properties, whereas 
some nutrients decrease the expression of CSC markers 
and attenuate the properties of CSCs.

Conclusion
The microenvironment surrounding cancer cells forms 
the CSC niche, allowing them to give rise to a hierarchy 
of proliferative and differentiating cells. Targeting the 
innate pathways and molecules between colorectal 
CSCs and their environment may thus represent a 
promising therapeutic strategy, and may provide a 
complementary approach to conventional therapies that 
target the malignant cells themselves. Anti-tumorigenic 
agents related to nutrients in the microenvironment may 
have particular potential to eliminate the population of 

colorectal CSCs. Further understanding of the molecular 
mechanisms underlying the regulation of CSC properties 
by environmental factors may lead to the development of 
potential therapeutic targets for patients with CRC.
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