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Abstract
Artificial intelligence (AI) is the discipline of computer science dedicated to processing a large amount of 
throughput data and is based on algorithms that can rationalize increasingly complex tasks and ultimately 
reproduce human intelligence. It has been speculated for clinical uses in liver transplantation (LT) for several years, 
but its application remains incipient worldwide. Therefore, the recent advancements of digital and robotic tools in 
daily medical practice make the modern environment propitious to its proper implementation. Nevertheless, it is 
noteworthy that this technology has significant limitations: (i) its unconditional dependence on a pre-established 
reliable and extensive database; (ii) the potential impact on independent medical decision-making; and (iii) a major 
economic and environmental burden. So, despite its seducing and flawless simplicity features, AI emerges as a new 
“Pandora’s box” that should be carefully understood and used under the light of ethical principles to improve 
clinical outcomes, promote medical and para-medical working conditions, and increase patient safety and access 
to medical care. The present work aims to review literature data supporting AI implementation on this basis.

Keywords: Liver transplantation, artificial intelligence, machine learning, organ allocation, donor-recipient 
matching, sustainability, big data, explainability

INTRODUCTION
Liver transplantation (LT) currently represents the best curative treatment for diverse liver-related diseases 
and is a life-saving therapy. During the last decades, major advances in surgical technique, anesthesiological 
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management, organ preservation, and immunosuppression therapies have been achieved, resulting in a one-
year adult recipient and graft survivals of 94% and 92%, respectively, and a 10-year patient survival rate for 
pediatric recipients as good as 90.7%[1]. Based on these excellent results, the number of LTs performed 
worldwide has increased, and clinical indications have been progressively widened. Hence, the current most 
prominent challenges for the LT community are the organ shortage and the increasing complexity of organ 
allocation (e.g., oncological transplantation and exception points situations)[2].

In this context, it is noteworthy that LT is based on limited resources (i.e., liver grafts) and is highly costly, 
requiring significant human, structural, and instrumental investments. Moreover, it is a complex 
multidimensional and multifactorial process, which depends on the elaboration of dynamic variables related 
to donors, recipients, and logistical factors that encompass clinical, psychological, social, and environmental 
dimensions. These variables interact simultaneously and have short- and long-term effects not only on the 
single patient’s life but also on the whole transplant healthcare system. Managing all these complexities has 
relied on progressive experience accumulation, development of specific logistics systems, integrated and 
multidisciplinary collaboration, intense clinical and experimental research, implementation of new 
technologies, and personal commitment and resilience.

Artificial intelligence (AI) is the discipline of computer science that can simultaneously observe and rapidly 
process a large amount of throughput data and create algorithms that can rationalize increasingly complex 
and non-linear relationships, thus ultimately recapitulating human intelligence[3]. In medical practice, AI 
may provide new opportunities for developing evidence-based medicine. Its efficiency and accuracy may 
save time, resources, and money, and improve patient safety and outcomes. From this perspective, AI 
projects in healthcare involved more investments than those in any other sector worldwide in 2016[3].

Due to LT’s inherent multidimensional and multifactorial complexity, AI may represent an ideal tool to 
support and enhance LT practice. However, despite its deployment in clinical practice, which may appear 
technically feasible, particularly for those with solid computer science knowledge, several non-technical 
aspects could make AI a new Pandora’s box. The present review aimed to explore the methodological, 
ethical, legal, and socioeconomic issues that a clinician may face when implementing AI in a complex 
clinical setting such as LT. A systematic and detailed analysis of all potential clinical applications of AI and 
ML in LT was beyond the comprehensiveness of the present review. Instead, we preferred to build a 
pragmatic perspective for future users, who realistically are not in the position to explore and comprehend 
all the complex and specific technicalities of AI but clearly understand the complexities and limits of the 
real-world settings in which such technologies can potentially be deployed.

BIG DATA, BIG RESPONSIBILITY
AI works with a data-driven rather than a hypothesis-driven approach; therefore, its development and 
function depend essentially on data. Particularly, machine learning (ML) is specifically targeted to the 
management of vast and diverse collections of heterogeneous data that continue to grow exponentially over 
time and are generated from a wide variety of sources, i.e., big data. The digital transition in clinical practice 
has favored the creation of longitudinal electronic health records (EHRs), which record diverse and 
longitudinal data on diagnosis, procedures, medications, and labs for each patient. Moreover, developing 
federated or swarm methods for ML provides the appropriate framework for protected data sharing since 
they enable the training of models beyond numerous devices in different locations with no need to 
centralize or share the fundamental data[4,5]. Most ML algorithms currently available are based on structured 
data, which are limited by coding. Therefore, data incorporation and recording in EHR require a major 



Sepulveda et al. Art Int Surg 2024;4:170-9 https://dx.doi.org/10.20517/ais.2024.11                                                     Page 172

revision of clinical routines across health facilities, which is indeed challenging. It has been estimated that 
up to 90% of digital data in healthcare are unstructured[6], and great efforts will be required to achieve a 
systematic, nationally/internationally agreed, structured, and measurable standardization and 
rationalization of imaging, laboratory, pathology, and clinical data.

LIVER TRANSPLANTATION PERSPECTIVES
LT would represent an ideal setting for deploying AI since LT consists of big data. Organ quality 
assessment, donor-recipient (D-R) matching, and recipient prioritization are just some clinical scenarios in 
which multiple, diverse, and dynamic clinical data are evaluated in the decision-making process. Besides the 
necessity of correctness and completeness in data collection, the most critical aspect that the process of AI 
deployment must manage is probably represented by data selection, operational definition/classification, 
and measurement, which are genuinely clinical rather than technological issues[4-7]. Moreover, classification, 
nomenclature, diagnostic criteria, and pathogenic theories evolve over time. A clear example in the LT 
setting is represented by hepatorenal syndrome (HRS), whose definition of HRS type-1 has undergone a 
radical revision after the concepts of acute kidney injury, acute and chronic kidney disease have been 
introduced[8]. Furthermore, some clinical classifications inherently present even a certain grade of 
subjectivity. Indeed, in the Child-Pugh classification of end-stage liver disease, two variables, ascites and 
hepatic encephalopathy, are qualitatively graded as absent, mild/moderate, and severe. Even histology, 
which currently represents the gold standard for acute rejection diagnosis, can be subjective, as shown by 
the continual updating of the Banff classifications over time[9].

Intuitively, supplementary complexity will not improve performance if primary variables and data are 
identical. In a study assessing 2,179 North American patients with acute-on-chronic liver failure, ML 
models showed comparable accuracy to the Model for End-Stage Liver Disease (MELD-Na) model in the 
prediction of patient death[10]. Therefore, the highest priority in contemporary research activity should 
probably target, even with the support of ML, the development/identification of new biomarkers to be 
implemented in clinical practice. Then, deploying AI models would be an achievement and an advance in 
real life.

The implementation of AI as a tool in translational medicine and omics research may confer a more 
straightforward applicability. Omics research aims to comprehensively identify, describe, and quantify the 
molecules and molecular processes that translate into the function, structure, and dynamics of cells and 
tissues[11]. There are diverse areas of upcoming research that can be classified as omics. For instance, the 
comprehensive analyses of RNA, genes, metabolites, and proteins can be defined as transcriptomics, 
genomics, metabolomics, and proteomics, respectively[12]. Clearly, the inherent high complexity of the omics 
data and models requires AI to be managed. The clinical application of such high-throughput analyses may 
provide new mechanistic insight and advances in translational medicine, thus potentially identifying new 
highly predictive and accurate biomarkers as well as key and specific interventional targets for precision 
medicine and individualized therapies[13,14]. Ischemia-reperfusion graft injury, immunotolerance, rejection, 
immunosuppression, and primary disease recurrence are probably the most prominent LT-related clinical 
aspects in which omics research may provide promising results with impactful clinical advances[11,14].

FRAILTY IN THE HIGHLIGHTS
Frailty has emerged as a precise biological syndrome characterized by decreasing physiological reserve and 
growing vulnerability to stress factors, resulting in multidimensional disturbs across the musculoskeletal, 
neurological, endocrine, immune system, and psychosocial spheres[15]. Assessing frailty in clinical practice 
demands complex efforts, including exhaustive examinations to comprehensively estimate the 
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multidimensional aspect of frailty. Currently, the main assessment tools are based on performance and 
functional tests, which can exclusively be performed in a prospective manner, aside from being time-
consuming and resource-consuming[14]. In this perspective, cirrhotic patients are at major risk of frailty and 
might show diverse clinical features related to a large range of frailty severeness[15,16]. Prevalence rates can 
reach up to 43%, depending on the studied population, definitions, and assessment methods[15,16]. Moreover, 
frailty has been singly related to the risk of specific cirrhosis complications, such as encephalopathy, ascites, 
variceal bleeding, and acute decompensation, and ultimately to waiting list drop-out and mortality. Despite 
the use of the principle of the “sickest-first” for prioritization in the current transplant decision-making 
process, the assessment and estimation of frailty become an issue of paramount significance that needs to be 
urgently tackled[15-17]. Furthermore, taking into account that the severity of liver disease at the moment of 
transplantation has worsened in recent years, the proportion of older adults (≥ 65 years) on the waiting lists 
increases, and the prevalence of liver disease associated with obesity is soaring, we can conclude that there is 
a growing number of LT recipients who become more and more complex from a medical point of view, and 
can notoriously be defined as “frail”[15,17]. In this context, frailty is inherently “big data”; an AI could 
efficaciously manage it technically, but AI outcomes may not currently be able to correctly address frailty 
from a clinical standpoint unless the above outlined methodological and ethical issues are primarily ruled 
out.

ORGAN ALLOCATION CHALLENGES
Medical AI models have been attracting attention primarily because of their capacity to identify highly 
complex non-linear patterns based on the analysis of massive amounts of complex variables. In addition, AI 
models are designed to continuously improve their performance and accuracy[18]. These seducing 
advantages have been claimed to be the ultimate solution for many medical problems, earning time and, 
theoretically, being cost-effective[3]. Considering the number of different variables used in the process of 
donor-recipient matching, organ allocation is one of the best examples of how AI models could be 
implemented to improve accuracy and decrease disparities. Nevertheless, we should consider that there is a 
significant risk of decreasing explainability and transparency while trying to increase the precision of these 
models[19]. Considering that the liver allocation process implicates legal and ethical features such as justice 
and equity, the opacity of those models may undermine human scrutability, making it hazardous to define 
the moral responsibility for the decisions that have been made or to identify possible bias that could 
perpetuate inequities[20]. In this perspective, Governmental institutions, such as the Committee of the Legal 
Affairs of the European Parliament, published in 2022 the “AI Liability Directive” with the perspective to 
address the legal risks related to the AI “black box” effect and to determine civil liability rules[21].

In transplant settings, disparities and inequity represent a huge and currently unsolved issue, with female 
sex and racial minorities being the most disadvantaged. Considering racial and sex differences among 
populations in large datasets, it is noteworthy that they are more often a consequence of socioeconomics 
and healthcare policies rather than genetic or biological factors[22]. Therefore, just adjusting highly 
sophisticated ML models for race or sex, while well-intentioned, would probably not overcome the inequity 
or even potentially exacerbate it. Before the worldwide adoption of the MELD score in the early 2000s, liver 
allocation was brimful of variability and inaccuracy, which resulted in inequities and a high rate of mortality 
while waiting for a liver graft[23]. The MELD score, which is calculated using simple lab tests - bilirubin, 
creatinine, international normalized ratio (INR), and more recently, sodium - is fairly correlated to a three-
month mortality risk in patients with cirrhosis. Its implementation allowed transplant programs to improve 
and standardize organ allocation programs according to the principle of “the sickest first”, which 
significantly decreased mortality while waiting for a liver graft but not necessarily improved post-transplant 
survival. Despite its apparent good balance between simplicity and efficiency, the MELD score has been 
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criticized for its limitation in avoiding inequity in specific situations and its inability to predict post-
transplant mortality and avoid futile transplants.

One example of MELD’s drawbacks is the misestimation of women’s renal dysfunction. Because of a lesser 
muscle mass compared to men, renal function calculated by creatinine values leads to the attribution of 
lower scores to female candidates compared to male ones, and it negatively impacts women’s accessibility to 
liver transplantation[24]. In 2021, the MELD 3.0 was designed to eliminate this evident sex disparity[25]. Other 
corrected MELD scores have been designed with the same purpose, but allocation changes concerning liver 
size, driving smaller livers to shorter candidates, may also be needed to equalize access to liver transplants 
between men and women[26-28]. Size mismatches may lead to unfavorable outcomes and should be accurately 
evaluated before organ harvesting. Because of abdominal wall morphological constraints, this risk concerns 
more frequently women and young recipients. Graft volume has been a prominent issue in the field of liver 
transplant with live donors, but even if it is less frequent while considering cadaveric whole grafts, D-R 
matching for tiny recipients is definitely a subject of concern[29,30]. Intraoperative recognition of organ-
recipient mismatches can be related to technical difficulties and early graft failure[31]. Deep learning (DP) 
models have recently been speculated to estimate liver graft weight automatically, including segmentation to 
optimize D-R matching[32]. This is a plausible clue of how AI can effectively optimize D-R pairing and 
improve recipients’ safety.

Another example of the limitation of current allocation systems is the “exception points” policy. It allows 
patients with certain conditions, such as HCC, to gain extra points and an advanced position on the waiting 
list. A study based on the Organ Procurement and Transplantation Network’s (OPTN) registries revealed 
that patients to whom MELD exception points were attributed had a lower risk of mortality on the waiting 
list, higher chances of being transplanted, and mostly were men[33]. In an ideal world, the policy of organ 
allocation would consider not only the principle of urgency but also the principles of “individual transplant 
benefit” and “population-based transplant benefit”[33]. In addition to the difficulties in prioritizing 
individuals on the waiting list considering all potential ethical issues, the challenge of matching a graft to a 
specific recipient based on different principles is a complex daily task experienced by liver transplant teams.

The Transplant Benefit System (TBS), developed in the UK, was one of the first propositions of a more 
developed model that considers not only donor but also recipient characteristics. Although not designed 
with AI models, this system is based on 28 variables, including 7 concerning the donor and 21 about the 
recipient - aiming to achieve a more accurate prediction of D-R matching outcomes[33]. A multicentric study 
assessing data from 11 Spanish transplant centers used 57 variables: 26 concerning the recipient, 19 
regarding the donor, six regarding the harvesting procedure, and six regarding the transplant procedure. 
Artificial neural networks (ANN) models were used to predict the probability of graft survival with a 
sensitivity of 90.79% but showed suboptimal ability to predict graft loss[34]. This methodology was explored 
and validated in a second study performed at the King’s College Hospital during the same period, obtaining 
accurate predictions for 3 and 12 months, which was almost 15% higher than the best reached in the 
Spanish study. The discrepancy between these two studies highlights the lack of consistency when using 
specific AI models across different populations and environments[35]. There are many other models based on 
patients’ characteristics, donor risk features, and combined donor-recipient-based systems developed on 
traditional biostatistics. Most of them have been deeply reviewed, but unfortunately, hitherto, none of them 
could be considered suitable to give a perfect response to D-R pairing.
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TRANSPLANT ONCOLOGY
Transplant oncology is not a completely new concept but has garnered increasing interest in recent decades. 
It is fundamentally based on the principles of radical oncological surgery and transplant medicine as it 
enables the removal of the entire tumor burden in addition to the underlying liver disease, avoiding 
recurrence. The first improvement toward a mature concept of oncological transplantation came with 
Mazzaferro et al., who defined for the first time a subgroup of candidates who could benefit from LT for 
HCC, achieving 5-year survival > 70%, what is called “Milan Criteria”[36]. In times of organ shortage, the 
increasing number of indications for LT tends to accentuate the “liver gap”, which is known as the 
discrepancy between patients on the waiting list and the annual liver transplants performed[37]. Despite all 
efforts of the transplant community to optimize the pool of available organs (e.g., living donors, split grafts, 
machine perfusions, and extended criteria grafts), the need for high-performance and reliable selection tools 
has become of paramount importance in order to avoid futile transplants[38]. For instance, liver 
transplantation for HCC has progressively increased and currently represents one-third of indications 
worldwide, with a recurrence rate that can reach up to 35% in patients beyond the Milan Criteria[39]. Factors 
related to recurrence can be classically divided into morphological features (based on radiological 
assessment), biomarkers (e.g., α-fetoprotein), and pathological features (micro-invasion and differentiation). 
Seeking more comprehensive models that could be able to analyze these different data, some teams 
proposed models based on omics technology and AI. Qu et al. developed a model of deep pathomics score 
(DPS) for estimating HCC recurrence following liver transplantation[40]. Despite the significant limitations 
of this model, which is based on training data from a single institution with predominantly HBV patients, 
the DPS model seemed to facilitate the identification of specific aspects of HCC and called attention to the 
importance of immune cells and tumor microenvironment. Another Asiatic team, using patients with 
treated hepatitis B and a machine learning model, developed a system based and validated on a large cohort 
of  Korean and Caucasian patients that outperformed other risk scores[41]. It is called the Prediction of Liver 
Cancer using Artificial Intelligence-driven model for Network - hepatitis B (PLAN B model), which is 
available online as a web-based system (https://planbhcc.com). Multicentric and multinational consortiums 
seem to be a coherent and viable formula to develop and validate complex models that are highly dependent 
on costly investments and large-scale datasets. The RELAPSE model[42] is the result of the association of the 
US Multicenter HCC Transplant Consortium (UMHTC) and the European Hepatocellular Cancer Liver 
Transplant (EurHeCaLT) Study group to build and validate a model destinated to predict HCC recurrence 
and the outcomes based on more than 6,000 patients from 20 American and 6 European centers. The 
authors of this work advocate the use of their model to manage post-transplant follow-up, including 
modification of immunosuppression and ultimately defining the necessity or not of implementing adjuvant 
therapies in recipients with HCC according to the assessed recurrence risk.

EXPLAINABILITY AND TRANSPARENCY
AI’s accuracy encompasses so many complex processes that make the pathways by which the result was 
reached unintelligible to human minds. Therefore, while expert informaticians may discern the architecture 
of the AI system that processes the data, it is inexorably impossible to explain why and how a defined 
outcome was reached[43]. On the other hand, having a system that is as accurate as possible could be the 
solution to eliminating discrepancies and promoting equity and justice. In this context, some researchers 
claim that accuracy should be a more important value than explainability based on the argumentation that 
losing explainability could be acceptable when the benefits are superior to the costs[18]. Conversely, others 
advocate that although accuracy is an essential value in the context of outcome-oriented justice, 
explainability is a sine qua non condition for procedural fairness, such as scarce medical resources and 
organ allocation[44]. Moreover, explainability and transparency are essential to protect society from possible 
biases that might recurrently lead to favoring or harming particular groups or minorities, which can 
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reproduce systemic inequalities and reinforce discriminatory trends. This debate raises several bioethical 
and philosophical points that become crucial in the process of designing and implementing AI decision-
making models.

Analyzing clinical human decisions, we can define them as a sequence of objective and subjective reasoning. 
Objective reasoning is built based on scientific resources, as well as cumulative observation and knowledge. 
Our subjective reasoning also impacts on our decisions. It can be in accordance with our intuition, 
understanding, and in part, on the subconscious. Thus, in various degrees, pairing a donor with a recipient 
in the real world can also be impacted by uncontrollable factors[45]. Considering these mechanisms of the 
clinical decision-making process, one should claim that, similarly to AI algorithms, many human decisions 
lack transparency and explainability. So, can the medical community, society, and legal institutions accept 
the lack of AI transparency and explainability in the name of accuracy?

Obviously, there is a real need for more precise and comprehensive systems for organ allocation, not only in 
liver transplantation but also in other medical fields. AI systems seem to be a helpful tool for reaching goals 
such as accuracy, efficiency, and time savings. Nevertheless, because of its intrinsic drawbacks, the 
implementation of AI systems in liver transplantation, which depends immensely on public human 
resources, must be accompanied by a prior deep discussion with medical and societal representatives to 
address debatable points and survey its impact on medical practice and population health.

SUSTAINABILITY
Big data are associated with massive energy expenses and carbon imbalance, and their long-term 
sustainability must be critically debated. Data centers are intensive energy-consuming machinery that 
encompasses all the facilities necessary for information technology, including physical spaces, computers, 
data storage devices, and specialized human resources[45]. According to recent estimates, data centers have 
the fastest growing carbon imbalance index over the “Information and Communication Technology” sector 
due to their high rates of CO2 emissions and consumption of non-renewable energy, besides the massive 
waste production. Healthcare currently contributes 4.9% to the world’s carbon emissions, which is more 
than aviation (1.9%-2.4%) or shipping (1.7%)[46]. LT is considered one of the most resource-consuming 
procedures in current medical practice, and its impact is multidimensional, ranging from transports and 
logistics for organ allocation to waste disposal of the enormous amount of waste produced by surgery and 
anesthesia[47]. Therefore, the implementation of AI in LT clinical practice should probably take a broader 
perspective and strive to focus on its overall sustainability rather than just targeting an aprioristic, uncritical 
creation of massive, unsustainable ML models without any pragmatic clinical benefit just for the sake of the 
technology.

DIGITAL TRANSFORMATION
In the context of Digital Transformation in medicine, it is crucial to build digital models that can not only 
enhance accuracy but also tackle societal challenges and promote universal values that can positively impact 
our society and individuals. Therefore, it is paramount for the different representatives, such as education 
promoters, private and public organizations, clinical practitioners, and users, to work together to make 
comprehensive and responsible human-focused decisions. While there is clear evidence of the critical call 
for responsible design and implementation of AI in medicine, there is still a lack of research in the LT field 
on the basis of Responsible AI, Explainable AI, Human-centered AI, and Inclusive AI. Likewise, big data 
must be critically assessed in terms of environmental sustainability; the overall implementation of AI in 
clinical practice will require a debate on its socioeconomic sustainability. Currently, private investors and 
private data analytics companies are the leading actors in AI development, while the ongoing major global 
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economic crisis has been putting significant pressure on publicly-funded health systems. LT is already a 
highly costly procedure, and the actual achievement that the transplant community should strive for with 
the implementation of new technologies should be not only the improvement of outcomes and safety but 
also the enhancement of equity and accessibility[21,44,48].

CONCLUSION
In conclusion, AI has a huge potential to enhance medical practice by processing massive amounts of 
complex throughput data. Its use in the field of LT is still incipient, but a plethora of speculations have 
emerged regarding its potential applications both pre- and post-transplantation. Nevertheless, there are 
some fundamental points concerning ethical, socioeconomic, legal, and even philosophical features that 
should be discussed and clarified to help institutions and individuals conduct a responsible digital 
transformation. The upcoming new era is still surrounded by much uncertainty, but the only aspect that is 
bound is that we are prone to live a milestone transformation that can change our society in a significant 
manner. A systematic and detailed analysis of all potential clinical applications of AI and ML in LT was 
beyond the scope of the present study, and rather than providing solutions, we actually meant to call 
attention and pose questions that may be neglected when technology is unconditionally considered the 
solution for clinical problems. So then, the actual scientific community and healthcare providers, as well as 
users, must be aware and ready to handle the present challenges that encompass education, planning, and 
regulation of the whole process in order to build a human-focused balance and avoid the digital 
dictatorship.

Key points
● Scientific questions remain the starting point and researchers should refrain from jumping into analyzing 
complex big data while neglecting the critical first step of putting data into context. 
● The deployment of AI in clinical practice requires as a methodological prerequisite a systematic, 
nationally/internationally agreed, structured, and measurable standardization and rationalization of 
operational definitions, classification, measurement, and reporting of data (imaging, laboratory, pathology, 
and clinical data). 
● AI promoters should balance the risks of losing explainability and transparency with the potential benefit 
of improving accuracy and efficiency on the basis of equity and justice. 
● It is paramount for the different representatives such as private and public organizations, as well as field 
staff, to work together in order to make human-focused decisions from a problem-solving perspective 
rather than adapting human activity to technology. 
● Economic, geographic, and epidemiological features must be taken into account to avoid resource 
wastefulness.
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